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Diffraction of a plane harmonic SH wave by semi-cylindrical layers 

U. GAMER (WIEN) and Y. H. PAO (ITHACA, N.Y.) 

THE PLANE problem of the interaction between a half space, several infinite coaxial cylindrical 
layers, and an inclusion under the excitation of a plane harmonic SH wave is dealt with by 
means of the method of wave functions expansion. For one layer and inclusion displacement 
as a function of space and time is derived explicitly. Furthermore, the three special cases half
space~lastic layer-rigid inclusion, half-space--elastic layer-cavity, and half-space-rigid 
layer - elastic inclusion are considered. 

Rozwa.Zono plaskie zagadnienie wsp61dzialania pomi~zy p6lprzestrzenill, szeregiem nieskon
. czonych, wsp61osiowych warstw walcowych oraz inkluzj11, poddanych dzialaniu plaskiej, har
monicznej fali SH. W przypadku jednej warstwy oraz inlkuzji wyznaczono przemieszczenie 
jako jaWfill funkcjct zmiennych przestrzennych i czasu. Rozwa:iono nastctpnie trzy przypadki 
szczeg61ne nastctpujllcych uklad6w: p6JprzestrzeJl-warstwa sprct±Ysta-sztywna inkl~a, 
p61przestrzen-warstwa sprctzysta-pustka oraz p6Jprzestrzen-warstwa sztywna inkhuja 
sprctzysta. 

PaccMOTpeHa IIJIOCKWI aa,n;aqa B3aHMOAeHCTBHH Me>l<,ll;y no.nynpoCTpaHCTBOM, PHAOM 6eci<o
Hetmbrx CJioeB H BI<J1IOqeHHeM llO.l:{BepmyTbiX ,l:{eHCTBIUO IIJIOCI<Oit rapMO~eCKOH BOJIHbl 
SH. B CJI)"Iae OAHOro CJIOH H si<J1IOqeHHH onpeAeJieHo nepeMe~eHHe, I<ai< HBHYJO <1>~ 
npoCTpaHCTsemn.rx nepeMemn.rx H speMeHH. 3aTeM <>6cy>I<AeHLI TpH tlaCTHhiX CJI)"IWI CJie
AYIO~ CHCTeM: llOJIYIIPOCTpaHCTBO - ynpyndi CJIOH - )I(CCTI<oe BI<J1IOqeHHe, no.nynpo
CTpaHCTBO - ynpyndi CJIOH - nyCTOTa H no.nynpOCTpaHCTBO - )I(CCTI<Hit CJIOH - ynpyroe 
si<J1IOqeHHe. 

1. Introduction 

THE MOTION excited by an earthquake is influenced strongly by inhomogeneities, e.g. inclu
sions or layers of different properties, in the soil if the ratio of the wavelength of the inci
dent seismic wave and a characteristic length of the inclusion is not too large. Inhomo
geneities may result in amplification of the surface motion due to the combination of ma
terial properties, frequency and angle of the incident wave, and focusing. Heavy and "hard" 
foundations exhibit smaller amplitudes than the surrounding soil. The knowledge of pos
sible patterns of the surface motion is essential in designing earthquake resistant structures. 

To,interpret the measured surface motion a mechanical model is needed. The simplest 
nonhomogeneous model consists of horizontally stratified layers. It is applicable if the 
depth of the layers is approximately constant and their lateral extension large compared 
to the depth. In this paper the two-dimensional problem of the interaction of several infi
nite coaxial semi-cylindrical layers with the half-space under the excitation of a plane har
monic SH wave is considered. The solution gives analytical expressions for the steady state 
displacement as a function of space and time. Therefrom stress is derived easily. As long 
as the wavelength of the incident wave is not too small it is not difficult to evaluate the 
results numerically. For the simpler problem of the diffraction of plane harmonic SH 
waves by a semi-cylindrical inclusion in a half-space, numerical results were given by 
TRIFUNAC [1] and by GAMER and PAO [2]. 
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2. Statement of problem and solution 

The coordinate system is chosen so that the z-x plane coincides with the free surface 
of the half-space, the z-axis ·being the axis of the cylindrical layers. They-axis shows inside 
the half-space (Fig. 1). Half-space, layers, and inclusion are considered homogeneous 
isotropic elastic materials. The radius a1 separates the la)Yer numberedj (1) with density(/ 
and shear modulus p,i from the layer numbered j + 1 with density ei + 1 and shear modulus 
p,i+~. The superscript 0 identifies the half-space and m+ 1 the inclusion. A plane harmo-

z ff.x 

lJ 

FIG. 1. 

nic SH wave incident under the angle of emergence y [3] hits the first layer and is refracted 
and reflected at the interface. Refraction and reflection causes vibration of all the layers 
and the inclusion. 

The equation of motion in anti-plane strain 

U = 0, V = 0, W :#; 0 

is reduced to the single scalar wave equation 

(2.1) 1 o2 w 
V2w =2-a~' c t 

where c = y' p,/(! means the velocity of shear waves in the material under consideration. 
The solution has to comply with the boundary conditions: At "welded" surfaces, displace
ment and shear stress are continuous. At free surfaces, the shear stress vanishes. 

The half-space is excited by an incident (i) plane harmonic wave 

(2.2) w 
7J =cl, 

propagating along the unit vector 

n<i> = cosy ex-siny ey, 

W being the amplitude, k the wave number, and w the circular frequency. In the steady 
state the motion of each material point is harmonic in time. The factor e- jCl)t is henceforth 
omitted. 

e) Superscripts are probably not misinterpreted as powers. 
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The incident wave is reflected (r) at the free surface of the .half~space y = 0 which is 
equivalent to the superposition of a second plane SH wave propagating along 

n<r> = cosyex+sinye>'. 

It is advantageous to use cylindrical-eoordinates 

rei8 = x+iy, 

since the boundaries are surfaces of constant coordinate in that system. The incident wave 
has to be expanded into a Fourier series [4, 5] 

00 

(2.3) w(i> = W}; e,.i"J,.(k0r)cos(O+y), 
n=O 

where J,.(kr) designates the Bessel function of the first kind of order n and argument kr. 
E,. is defined as 

e,. = {1, 
2, 

n=O 

n = 1, 2, 3 .... 

The sum of incident and reflected waves which is no longer a plane wave is 

(2.4) 
00 

w<i)+w<r> = 2W). e,.i"J,.(k0r)cosnycosn0. 
..:....; 
n=O 

To find expressions for the scattered wave and the vibration of the layers and the inclu~ 
si on the equation of motion, for time harmonic displacement w(r, 0) the Helmholtz equa
tion 

(2.5) 

is considered once more. By separation one gets as suitable solutions the wave functions 

J,.(kr)cosnO, Y,.(kr)cosnO, 

which satisfy for integer separation constant n the condition of vanishing shear stress u8z 

on the free surface 0 = 0 and 0 = n. Y,.(kr) is the Bessel function of the second kind. 
The wave functions (multiplied by e- iwt) mean standing waves with nodal lines in radial 

and circumferential direction. The displacement in the layers is a combination of such 
standing waves which is, generally, not a standing wave. Since bounded the displacement 
of the inclusion does not contain the terms Y,.(kr)cosnO. A wave travelling outward in 
radial direction, e.g., the wave scattered by the first layer, is represented· by 

H~1 >(kr)cosn0, 
where 

H! 1>(kr) = J,.(kr)+iY,.(kr) 

is the Hankel function of the first kind(2). 

e) Since the Hankel function of the second kind is not used, the superscript (1) is omitted in the 
following. 
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The displacement in the half-space, layers, and inclusion is then, respectively, 

00 

w0 = 2W ..J;[e,.i"J,.(k0 r)cosny+A,.H,.(k0r)]cosn0, 
n=O 

00 

(2.6) wl = -2W ..J;[C~J,.(klr)+D~Y,.(klr)]cosnO, 
11=0 

00 

w"'+ 1 = -2W ..J; C;'+ 1J,.(k•+lr)cosn0. 
n=O 

The factor -2 in w1 to wm+ 1 is arbitrary. 
The conditions of continuity of displacement and shear stress 

wl = wl+l } 

owl owl+l r = OJ pJ-- = 1'}+1 __ 
or or 

(2.7) 

give the 2(m+ l)n, n -+ oo, unknown complex constants A,., C~, Dj. Equating the coeffi
cients of cosnO, one finds the following system of equations (3): 

H,.(k0a0 )A,.+ J,.(k1a0)C~ + Y,.(k1a0)D~ = - e,.i" J,.(k0a0 )cosny, 

plkl plkl 
H~(k0a0)A,.+CiJCOJ~(k1a0)C~+ 0k 0 Y~(k

1a0)D~ = -e,.i"J~(k0a0)cosny, 
: p ft : . . 

(2.8) 

J,.(~a,)C:+ Y,.(k111a,)U:-
m+lkm+l 

l'(k"'a )C"'+ Y.'(k111a )D"'- ft 7 '(k"'+ 1a )Cm+t - 0 n m n n m .n pmkm Jn m ·n - • 

Since J,.(O) = 0 for n = 1, 2, 3 . . . the motion of the centre point of the inclusion is inde
pendent of the angle of emergence. 

If there exists only one layer the explicit solution is 

(2.9) 

with 

j(l) 

A,.= A,.' 
j(2) 

Cl 11 
,.=~, 

11 

j(2) 

D l n 
,.=~, 

n 

L1,. = Bi1>Bi2>-Bi3 >Bi4 >, 

L1i1> = Bi5>B~2>-Bi6>Bi4>, 

L1i2> = Br>Bi2>, 

L1i3> = -Bi'>B~4>, 

Lli4> = Br>Bi8 >, 

{') 'means derivative with respect to the argument. 

j(4) 
c; = J!_ __ 

n 
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where 
ft1k1 

Bi1> = ftoko H,(k0a0)J~(k1a0)-H~(k0a0)J,(k1a0), 

ft2k2 
Bi2> = - p1k 1 Y,(k

1a 1 )J~(k2at)+ Y~(k1at)J,(k2a1 ), 

1-'lkl 
.8!.3> = poko H,(k0ao) Y~(k1ao)- H~(k0a0) Y,(k1a0 ), 

p2k2 
B~4> = - f'1k1 J,(k

1a 1 )J~(k2at)+J~(k1at)J,(k2a1 ), 

Bf.'l = •· i"cos ny [- ;::: J.(k" a0)J~(k 1a0) + J~(k0ao)J.(k'ao)]. 
B~•l = e.i"cosny[- ;::: J.(k0a0)Y~(k1a0)+J~(k"a0)Y.(k1a0)]. 
Bi'> = e,i"cosny[ -H,(k0a0)J~(k0a0)+H~(k0a0)J,(k0a0)], 
Bi8> = J,(k1a1) Y~(k1a~)-J~(k1a1) Y,(k1at). 

137 

The general result implies a rigid layer or inclusion as a limiting case of the elastic ma
terial for p --+ oo and, on the other hand, the inclusion is replaced by a cavity for p = 0 [5). 
In the following three sj,ecial cases are dealt with. 

3. Special cases 

C a s e I. Half-space-elastic layer-rigid inclusion. The displacement of the rigid 
inclusion 

(3.1) 

is governed by Newton's second law 

(3.2) 

Unknown are A,, C~, D~, C5. The conditions of continuity of displacement and stress 
at r = a0 yield the first two equations (2.8) as before. At r = a1 displacement has to be 
continuous and independent of 0. 

That means for n = 1, 2, 3 . . . the third equation 

(3.3) J,(k1a 1)C,!'+ Y,(k1a1 )D~ = 0. 

The solution is given by (2.9) and 

Lf = p
1

k
1 

H (k0a )B<11>-H'(k0a )B< 12> , poko n 0 , , 0 n ' 

L1~1 l = e.i"cosny[- ;::: J.(k0a0)B~11l+J;(k"a0)B~12l]. 
Lf~2 > = Bi'>Y,(k1at), 

L1~3 > = - Bi'>J,(k1a 1) 

http://rcin.org.pl



138 U. GAMER AND Y. H. PAO 

with the abbreviations 

B~11 > = J~(k1a0) Y,(k1a1)- Y~(k1a0)J,(k1a1 ), 
B~12 > = J,(kla0 ) Y,(k1a1)- Y,(k1a0 )J,(k1a1). 

For n = 0 the additional two equations are 

J 0 (k1a 1)CJ + Yo(k1at)DJ- C5 = 0, 
(3.4) J~(k1a1 )CA + Y~(klat)DA+ ~ :: k 1a1 C5 = 0. 

From the above equations and the first two (2.8) follows 

where 

L1 o = B~ t > B~9 >-B~ 3 > B~ to>' 
Llbt> = B&s>B&9>-B&6>B~to>, 
LJb2> = B&1>B&9>, 

LJ~3) = -B&1>B&to>, 

LJ~4> = B&1>B&s>, 

B&9> = ~ -:: kla1 Y0 (k1at) + Yo(k1at), 

B&10> = } :: k1a1J0 (k 1a 1 )+J~(k1at). 
The motion of the inclusion does not depend on the angle of emergence. 

C a s e II. Half-space-elastic layer-cavity. The unknowns A,, c:, and D~ have to 
be determined. At r = a0 displacement and stress must be continuous. The first two equa
tions of the general system (2.8) apply. At r = a 1 the stress u,z vanishes which gives 

(3.5) J~(k1a1 ) c: + Y~(k1a1)D! = 0, 

and therefrom the solution is 

with 

L1 = fttp H (koa )B<t3)_H'(koa )B<t4) 
n 

11
oko n o n n o n ' 

LJ{l> = e i"cosny[-
111

k
1 

], (k0a )B< 13>+J'(k0a )B< 14>] ,. ,. ftoko ,. o ,. ,. o ,. ' 

LJ~2> = B~1> Y~(ktat), 
L1~3 > = - BF>J~(k1a 1 ) 

B~13 > = J~(k1a0) Y~(k1a1)- Y~(k1a0)J~(ik 1 at), 

B~14) = J,(k1a0 ) Y~(k1a1)- Y,(k1ao)J~(k1 at). 

Case Ill. Half-space-rigid layer-elastic inclusion. The rigid body displacement of 
the layer is designated by 

(3.6) w1 = -2WCJ. 

It moves according to Newtop's second law 
n :n 

(3.7) (/; (a5-at)w 1 = a0 J uY2(a0 )dO-aiJ u;z(at)dO. 
0 0 
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Unknown are An, CA, and c;. Continuity of displacement at r = a0 and r = a 1 means 
that w0 (a0 ) and w2 (a 1) do not depend on 0. 

Therefore 

c; = 0, n = 1, 2, 3 ... 

The complete system of equations for n = 0 is 

H0 (k0ao)A0 + C6 = -Jo(k0ao), 

(3.8) H' (k0a )A _ _!_ ~k0 aa-ai C 1 + f.l
2
k

2 
!!I_J' (k2a )C2 = -J'(k0a) 

0 0 0 2 rl ao 0 . f.loko ao 0 1 0 n 0 ' 

with the solution 

where 

CA- lo(k2at) C5 = 0 

L1o = Ho(k0a0 )B&15>- H~(k0a0)J0 (k2a1 ), 
L1~1 > = -J0(k0a0)B&15>+J~(k0ao)J0 (k2at), 
L1b2> = B~7>Jo(k2at), 
LJ~4> = B&1> 

B (lS) - J.l2k2 Q1 J'(k2 ) 1 (./ kO aa-ai J (k2 ) o ----- o at--- --- o at· 
J.t0 k0 ao 2 rl ao 

Neither the motion of the rigid layer nor the motion of the elastic inclusion is influenced 
by the angle of emergence. The displacement of the inclusion exhibits the pattern of 
a standing wave with nodal cylinders. This fact is of interest to earthquake engineering, 
because structures centered at such a nodal line are excited into torsional oscillations [1]. 
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