
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 27, 1, pp. 201-217, Warszawa 1975 

Effective viscosity of suspension 

Notation 

R. HERCZYNSKI and I. PIENKOWSKA (WARSZAWA) 

THE AVERAGE rate of mechanical energy dissipation in homogeneous suspensions is expressed 
in the form of a scalar parameter- effective viscosity. The present approach follows as close 
as possible EINSTEIN's original paper and, on the other hand, has some thing in common with the 
cell mod~ls. However the radii of these cells are not constant but obey the distribution Jaw deter
mined on the basis of a closest neighbour distance distribution of statistically independent 
points. This enables to take into account the complex statistics of suspensions. The proposed 
theory covers wide range of volume concentrations of suspensions. 

Srednia dysypacja energii mechanicznej w przeplywach jednorodnej zawiesiny zostala wyrai:ona 
za pomoC(l wielkosci skalarnej - Jepkosci efektywnej (lub zast~pczej) zawiesiny. Przedstawione 
w pracy podej8cie jest w istocie uog6lnieniem metody zaproponowanej przez EINSTEINA dla 
zawiesin rozrzedzonych. Z drugiej strony proponowane przez nas podej8cie jest bliskie tzw. 
modelowi kom6rkowemu z tym jednak, i:e promienie kom6rek nie SC\ stale, za8 rozklad pro
mieni opiera si~ na znanym rozkladzie odleglosci do najblii:szego punktu dla zbioru punkt6w 
Josowo rozmieszczonych w przestrzeni. Teoria dotyczy szerokiego zakresu obj~toSciowych 
koncentracji zawiesin. 

Cpe,zn~IDI AHCCHIIatUHI MeXaHHllecKoii 3HeprnH B Tel!eHIDIX o,z:umporomii: cycneH3HH Bbipa»<eHa 
B BJme CKaJIHpHOH BCJIHllHHbl- 3<l><l>eKTHBHOH (HJIH 3KBHBaJieHTHOH) BH3KOCTH cycneH3HH, 
ITpe~craBJieHHbiH B pa60Te no~o~ HBJIHeTCH B CYJIUIOCTH o6o6~eHHeM MeTO~a npe~o)l(eH
Horo 3mmrreii:HoM ~ pa3pe>J<eHHbiX cycneH3HH. C ~yroii: cropOHbi npe~o>J<eHHbm HaMH 
llOWCO~ 6JIH30K T. Hll3. HllCCllHOH MO~eJIH C TeM O~aKO, l!TO pll,lUiyCbi .R:lleeK He HBJUIIOTCJI 
nocromnlbiMH, pacnpe~eJieHHe >J<e pa~HYCOB onHpaeTCH Ha H3BeCTHoM pacnpe~eJieHHH pac
cro.R:HHH K caMOH 6JIH3KOH TOl!Ke ~JIH COBOI<yiiHOCTH TOl!CK CJIYllaHHO pacnpe~eJICHHbiX B npo
CTpaHCTBe. TeopHH KacaeTc.a niHpoKoro HHTepBaJia o6"beMHbiX KOHQeHTp:num cycneH3HH. 

a particle radius, 
b characteristic length, 

Di dissipation rate in the set Gi in the simple fluid, 
Df dissipation rate in the set Gi in the particulate fluid, 
Dt total energy dissipation rate in the reference spheres 

D(g, R, s) dissipation rate in the R-sphere, D = D/{P. 
d(g, s) reduced non-dimensional dissipation rate, d = d/{Jl, 

f(R) distribution function of a distance (2R) to the nearest point, 
f(a, R) distribution function of a distance (2R) to the centre of the nearest particle, 
f(s, g) distribution function of the reference spheres r().dii, 

g = R/b non-dimensional distance from the centre of a particle, 
K, L, M functions defined in (6.3), 

n mean number of particles in a unit volume, 
N actual number of particles in the volume V, 
ni directional cosine, 

p, Po pressure, 
R radial distance from the centre of a particle, 

s = afb non-dimensional particle radius, 
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u, u, velocity and velocity components, 
W global volume of the reference spheres per unit volume, 

a.11 imposed rate-of-strain tensor, 
ociJ(R) mean value of the rate-of-strain tens01 in the R-sphere, 
a.iJ(r) rate-of-strain tensor inside the b-sphere, 

P function defined by formula (8.2), 
"' = P,/p, viscosity ratio, 

p, viscosity of ambient fluid, 
P, viscosity of ·suspended particles, 

p,* effective viscosity, 
(} density of ambient fluid, 

4> volume concentration of suspended particles, 
f/Jm maximum volume concentration. 

IN nns PAPER we are concerned with the dissipation of mechanical energy in suspensions 
in the case of simple shear flow. The average rate of energy dissipation can be expressed 
in the form of an "effective viscosity", a scalar parameter, which assimilates the dissipa
tion rate in a particulate fluid and that of a simple one. 

The experimental values of effective viscosity, especially for greater concentrations 
obtained using different kinds of viscometers vary significantly, sometimes even by an or
der of magnitude. This may be due to the fact that near the walls the concentration is not 
the same as in the bulk and, what seems to be more important, the presence of the walls 
induces in their neighbourhood some ordering of particles. In the bulk flow itself some 
authors observed the existence of clusters and regions with locally ordered distribution 
of particles and in most cases significant fluctuations of concentr~tion (see for example 
[1]). Hence the dense suspension can hardly be treated without taking into account its 
statistical properties. 

Statistical features of suspensions have been discussed by several authors (PRAGER [2], 
BUEVICH [3]), but still we are lacking an adequate description of the global mechanical 
behaviour of dense suspensions. 

From the theoretical point of view the notion of effective viscosity encounters serious 
difficulties: besides the change of the concentration near the walls the isotropic structure 
of the suspension may be violated by the flow and hence the necessary condition for the 
proper definition of the viscosity - the isotropy of the medium - may be not fulfilled. 

In the first part of the paper we discuss the questions of homogeneity and isotropy of 
particulate media and this leads us to the critical recapitulation of the assumptions com
monly used in derivation of the effective viscosity of suspension. 

The second part of the paper contains the theory of energy dissipation which can be 
applied to low Reynolds number flows of an incompressible liquid for a wide range of 
concentrations. 

The present approach follows as close as possible Einstein's original paper and we do 
believe that (as it was expressed by Eddington in relation to Einstein's paper on radiation) 
his investigation gives the clearest insight into the considered phenomenon. In the Appen
dix the Einstein original paper is recapitulated and confronted with the proposed approach. 
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EFFEcnVE VISCOSITY OF SUSPENSIONS 203 

On the other hand, the present theory has much in common with the cell (or cage) 
theory proposed originally by SIMHA [4]. Different versions of this approach are present
ed in [5]. There are, however, several important deviations from previous contributions. 
First, the radius of the cell (sphere) is not constant but obeys the distribution law deter
mined on the basis of a closest neighbour distance distribution of statistically independent 
points. This . enables us to take indirectly into account the fluctuations of the velocity field 
in suspensions and their contribution to the rate of energy dissipation. It is also important 
to note that the enveloping spheres are not overlaping. Second, the boundary conditions 
are chosen in such a way that the mean simple shear flow in the neighbourhood of each 
particle is the same as the imposed one. 

The proposed theory gives in the limit of dilute suspension the Einsteib-Taylor 
expression for the effective viscosity. 

2 

For finding the average values needed for the description of a suspension we must start 
with the definition of the homogeneous distribution of particles. A medium is considered 
homogeneous when the number of particles in a volume large in comparison with the size 
of the individual particle is proportional to this volume. However for, the theory of dense 
suspensions we need a more precise definition. 

The random distribution of statistically independent points in space obeys the Poisson 
distribution. Let G« be sets with a given measure, mes (G«) = V for all et, and let n be the 
mean number of particles in a unit volume. Then the relative number of sets containing N 
points is 

(2.1) 
{nV)Ne-"V 

w(N)=-m-· 

Hence the mean number of points within a distance between 2R and 2(R+dR) from 
a given point is equal to 32mr:R2dR and the probability that the nearest point to a given 
one is at such a <listance is 

(2.2) f(R)dR = 32nR2n · exp [ -
3
: nnR3 }R. 

It is clear that these expressions are not valid for spheres of a finite radius (constant 
radius a); for large N the appropriate wa(N) function is identically zero, since only a finite 
number of spheres can be embedded in a finite volume V; also fa(R) is identically zero 
for R < a and, moreover, this function is not even monotonous because for a close 
packing and in its neighbourhood there exists a given order of spheres. 

Still for small volume concentrations tP i.e. for na3 ~ 1 the previous formulae can be 
safely used and they give the value of the relative fluctuation of the volume concentra-

. ,.,. 4n u 3 • h ~ tton ""'N =--Ha m t e 1orm 
3 

(2.3) where 
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In spite of many efforts (connected mainly with the kinetic theory of fluids) the precise 
definition of the random distribution of finite · spheres is not known [6]. 

However using physical arguments, similar to those used originally for (2.1) by 
SMOLUCHOWSKI, BUEVICH [3] has derived the distribution function which reads 

(2.4) 

where C~, i~ the normalizing coefficient and Nv the maximal number of particles which 
can be embedded in a volume V, i.e., Nv · Ve = V, where Ve is a volume of an elementary 
cell defined as a ratio of the particle volume to the volume concentration of the close pac
king fl>m. This distribution gives instaed of (2.3) the expression 

(2.5) 
V LJq}~ _ -. /(/)m- fl> 1 
--q,- - ·v-q,- v·nv · 

On the basis of this consideration the homogeneous distribution can be defined as such 
for which the relation (2.5) holds. 

Instead of the Eq. (2.2) we will (see Sec. 6) introduce the distribution function which 
in the dilute limit gives (2.2) and for the close packing tends to the delta-function, ~(R-a). 

The homogeneity of the suspension is the necessary but not sufficient condition for its 
isotropy. It is clear that for non-spherical particles the flow itself induces the orientation 
of particles and the isotropy is lost. A deepr result has been obtained by BATCHELOR and 
GREEN [9]; they have shown that even in the case of spherical particles in a simple shear 
flow the structure of suspension is flow-dependent due to the presence of closed trajecto
ries qf one particle center rel'!tive to the other one. The Brownian motion and the hydro
dynamic interference with other- partic1es presented in the flow undoubtedly try to regain 
the isotropic structure. 

3 

The viscosity is intrinsically connected with the isotropic structure of the medium. 
As the flow itself violates the isotropy the viscosity in the usual sense cannot be determined 

and in this paper the term "effective viscosity" is used only as a convenient measure of the 
average rate of energy dissipation. This measure can be used only when some conditions 
are fulfilled, namely: 

(a) the suspension is homogeneous (but not necessarily isotropic); 
(aa) the distribution function of the orientation of particles (if non-spherical) does not 

depend on the initial positions of particles. 
These two conditions are similar to the condition of thermodynamic equilibrium which 

is necessary for the definition of the usual viscosity of simple liquids: its determination 
on the basis of the kinetic equation involves the assumption that the appropriate distri
bution function is close to the Maxwellian; the phenomenological definition is also pos
sible only in the state of equilibrium, i.e., if the gradients of velocity, pressure and tempe
rature are small [8, § 49]. 
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Now let a simple shear flow be assumed in the whole space. Furtherlet G;, i = 1, 2, ... 
are such sets that G; c Gb if i < j and such that V; = mes(G;) is finite for all i but lim 

l-oo 

V; = oo. The prescribed velocity field imposes the boundary conditions on FG;. The rate 
of dissipation of mechanical energy in G; is equal to 

(3.1) 

where, assuming the Cauchy;..Poisson relation, the dissipation function tp can be written 
in the form 

tp = 6£)2 + 2p,r:x.ii r:x.ii, 6, p, - viscosity coefficients 

with() = div u, u being the velocity field and r:x.11 = ~ (u;,1+u1,;) is the rate-of-strain tensor 

In principle it is possible to solve the equation of motion both in the case when in G; we 
have only a simple fluid (and to obtain D;) and in the case when the particles are distribu
ted in this volume. In the last case it is assumed that the particles are not deformable and 
hence that there is no additional contribution to dissipation due to the deformation. Both 
the material inside and outside the particles is assumed Newtonian but possibly with the 
different values of viscosity coefficients (resp. Ji and p,). The particular flow field u and 
the dissipation depend on the positions of particles in G; but due to the assumptions intro
duced above there exists a mean value (Df) for t -+ oo. The quantity 

(3.2) * 1. (Df) p, = p,tm--
;-oo D; 

is called the effective viscosity. 
This definition takes into account the very fact that the kinematics of the flow of a me

dium remains the same when the simple liquid is replaced by a particulate one (at least 
far from the walls). 

It is important to notice that the rheological properties of suspensions will exhibit 
themselves through the response to the change of the imposed velocity field. These pro
perties are due to the reorientation of particles or their trajectories. The effective viscosity 
as defined above does not describe this phenomenon and the relaxation time involved. 
The result of BATCHELOR and GREEN [9] shows that the effect of reordering can be signi
ficant even in the case of spherical particles (the change of the coefficient of the (P2-term). 

4 

In such a general form the problem hardly can be examined and several simplifications 
have been introduced. They are of different kinds: 

The first simplification is that we confine ourselves to incompressible flows. Only for 
these flows we known how to compute the rate of dissipation, because instead of (3.1) we 
have simply 

(4.1) D; = 2p, f r:x.kl r:x.kldV. 
G, 
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As only the rate-of-strain tensor influences the energy dissipation rate then for the simple 
shear flow for which o:11 (r) = const we have at once D; = 2p,V;o:~c 1 o:11 • 

Second, in most papers the authors discuss only spherical non-deformable particles to 
remove the question of orientation and deformation of particles. 

Third, it is assumed that there is no particle-particle interactions (besides hydrodynam
ical), that no external forces are acting on particles and that the Reynolds number of 
the flow is small. These conditions justify the use of the Stokes equation. 

The next, fourth assumption presented in Einstein's paper and in most other papers 
relates to the level of concentration. The arguments run as follows: if the suspension is 
very dilute then the interactions of particles are negligible and one can consider the contri
bution of each particle separately. This means that we prescribe (or compute) an addi
tional dissipation D' due to the presence of a single particle and hence the energy dissipa
tion rate in G; is Df = 2pV;rx~cerx~~:e+N;D', where N; is the number of particles in the set Gi. 
Hence the effective viscisity can be written directly as 

(4.2) p* = p,(t + D' lim _N_;) = p(l + _____ n_D_'_') 
2p O:te O:te i~oo V; 2prxll:e fXte 

or, 

(4.3) p* = p,(l +nC), 

where C is an unknown constant. 
These arguments are however open to some criticism. From the use of linear Stokes 

equation it follows immediately that the velocity (at a given point) is an additive function 
but in no case this is true for the dissipation. In essence Einstein's approach is not connected 
with the idea of noninteracting particles but with the conviction that the presence of par
ticles changes the dissipation significantly only in their closest neighbourhoods and that 
the additional dissipation far from the particle plays a negligible role in the total energy 
balance. 

The fifth and final assumption concerns the way of computing D'. EINSTEIN found 
the solution of Stokes equation in the case of a rigid sphere assuming straining motion 
condition at infinity. However the range of validity of Stokes equation is [7, p. 250]: 

(4.4) : < C"·'~a2e f"2 
and hence it is not surprising that the use of the velocity field far from the particle may 
lead to some kip.d of "paradox". In the considered case it is the following one: the integral 
describing D' is divergent and the proper mathematical method of avoiding this very fact 
does not exist. 

The ways to go around this difficulty are of different kinds. The first one used by 
EINSTEIN himself and criticized just after publication of his work is based on the use of 
the principle value of the divergent integral. The second one proposed by LANDAU [8] and 
essentially improved by BATCHELOR [7] is based on the use of the divergence theorem. 
BATCHELOR considers the finite region (ours G;) and the straining motion on FG;. The 
dissipation rate can be expressed · as the sum of integrals over the surface of the (unique) 
particle in G;. However in the final calculation instead of use of the assumed straining 
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motion condition on FG; the authors are using the condition which follows from the impo
sed straining motion at infinity. 

These are some indications that if the Navier-Stokes equation is used instead of the 
Stokes equation this will lead to the finite value of the integral describing D'; BERKER 

[10, §77] has shown though only for a particular flow field at infinity that in the steady 
flow of a viscous incompressible fluid past a fixed body the disturbed velocity vanishes 
faster for the Navier-Stokes solution then this for the Stokes solution. The velocity field 
in the Einstein problem vanishes as R- 2 and as it has been stated many times if the solu
tion of the full equation vanishes as R- 2 -e, E > 0, then D' will be finite . . 

5 

In what follows we use the first three assumptions in the unchanged form. The fourth 
assumption is relaxed and we indirectly take into account the hydrodynamic interactions 
of particles. This assimilates the present approach with those based on general statistical 
considerations [2] and permits its applicability to a wide range of concentrations. Unlike 
pure statistical theories ours essentially uses hydrodynamical equations which enables 
us to avoid the use of numerical values of parameters taken from experiments. 

Also the fifth assumption is not used, instead we exploit the idea that the dissipation 
can be presented as a sum of the dissipation near the particles (inside the reference spheres) 
and the dissipation rate in the region outside the reference spheres. 

6 

Let in a volume G be given the velocity field u(x). In the neighbourhood of each point 
the velocity field can be split according to the Helmholtz theorem into the translational, 
rotational and straining part. Only the last term contributes to the dissipation. 

Let each single particle be surrounded by its own reference sphere with radius R such 
that no other particle enter this sphere. The dissipation rate inside the reference sphere 
can be calculated by solving the following problem: to find the velocity field in an incom
pressible liquid sphere of radius b and viscosity p,, surrounding a concentric incompressible 
liquid sphere (with viscosity p,) of radius a, a < b. The equations describing this prob
lem are 

(6.1) 

p,L1u; = P,; 

pLJu; = P,t 

a~r~b 

0 ~ r ~a, 

u;,; = 0 r ~b. 

We assume the outer boundary condition (on the b-sphere) in the form of the pure straining 
motion i.e. 

(6.2) 

The liquid sphere (of radius a) remains spherical due to surface tension and on this sphere 
we assume the no-slip condition. The functions u and p inust be continuous in the whole 
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field r ~ b. The condition of no net force or torque at the inner sphere must be fulfilled and 
besides the radial component of u must vanish and tangential component of the normal 
stress must be continuous. This problem can be solved using LAMB [11] method and the 
solutions for some particular cases were found independently by several authors. The 
full solution for all admissible values of P, is given in [12] and the results are as follows: 

(6.3) 

I' p(r) = Po+ Lt(s, 'Y}) M(r, s, 'Y})a.iinini, for a~ r ~ b, 

where for r ~ a 

(6.4) K = ( -5:: +3r)f]), 
and for a ~ r ~ b 

(6.5) 

M= - [21C4>2 -4~4>4]· a2 r3 

Here 'YJ = P,/ ft, s = afb and the expressions for the functions introduced above are [12]: 

4>(s) = 5s7 -1s5 +2, 

(6.6) 

4>1 (s,'Y)) = -[5(2-5'Y})s7 +21'Y}s5 +4(1+'Y})], 

4>2(s, 'Y}) = s5 [5'Y}s 2
- (2+5'Y})], 

4>3s(,'YJ) = (1-'Y})s 5 +'Y), 

4>7 (s,'YJ) = 5(1-'Y})s7 +2+5'Y), 

Ll(s, 'Y}) = 4(1-'Y})S10 -5(2-5'Yj)S7 -42'Y}S5 +5(2+5'Y})S3 -4(1+'Y)). 

The energy dissipation rate D(g, R, s) in the R-sphere is 

D(g, R, s) = ~ nR3P,a.iia.iid(g~ s), 0 ~ R ~a, 
(6.7) 

D(g, R, s) = ~ nR3 fta.iia.iid(g, s), a~ R ~ b, 

where g = Rfb, g e [s, ex:>) and 

d(g, s) = 5~2 [ K(~ K,R+2L,R+ i L+ 2~K-M)+L(2K,R+2L,rM) l 
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in the above formulae we have not visualized the dependence of the D and d functions on 
the viscosities. The function d(g, s) denotes the reduced, non·dimensional dissipation rate 
per unit volume. 

For further use it is important to note that for s = 1- E, e ~ 1, we get 

(6.8) 
-14+(112-701])e 

d(1,l) ~ -140e3 +(490-1751J)e4 "'e-
3

, 

and, on the other hand, for s -+ 0 

(6.9) 

7 

As mentioned above we divide the flow field into two regions: one near the particles 
taken as a sum of the reference spheres and the particle·free region. 

A detailed description of the position and hydrodynamical interactions of the parti
cles is not possible and hence we are forced to use an indirect method. We assume that the 
reference radii vary and the boundary conditions are those following from the imposed veloc
ity field. In this approach we may use as a guide the distribution function of the distance 
from the given point to its closest neighbour. 

The characteristic length of the suspension, b, is taken as proportional to n- 1 ' 3 • For 
taking into account the limit of dense suspension we assume that for the close packing i.e. 
for f/J = f/Jm, b = a. Hence we arrive at the following definition of b: 

(7.1) or 

Using this value (2.2) can be presented in the form 

(7.2) f(R) = AR2 exp[- 8</>m ( ~ ) 
3

], 

where A is the normalizing coefficient. 
Now our main assumption is that for the spheres of constant l"adius a the distribution 

function of R is given by 

(7.3) _ [ ( R-a)
3

] f(a, R) = A(R-a)2 exp - 8f/Jm b-a , 

where A is again the normalizing coefficient. For the very dilute suspensions a ~ b and in 
the limit a -+ 0 we get the classical formula (2.2) and for the dense suspensions, a ~ b, 
we get the ~-function as it has to be expected from the geometry of close packing. 

It must be however stressed that in spite of the fact that both in the limit of dilute and 
dense suspensions the formula (7.3) gives proper results it cannot be considered as an 
exact formula describing the distribution of the distance to the closest sphere. We claim 
only that one may expect on the basis of physical properties that (7.3) gives a good ap
proximation to such a distribution. 

http://rcin.org.pl



210 R. HERCzvNSICI AND I. PIENKOWSKA 

The function (7.3) will be taken as the function describing the variation of the reference 
radius R for a given value of characteristic length b. 

The physical meaning of (7.3) is that we surround each particle by a sphere of radius 
equal to half of the distance to its closest neighbour. Hence the reference spheres of dif
ferent particles are not overlaping. 

By introducing the non-dimensional variables sand g we arrived at 

(7.4) I( ) _ 24(/),. )2 [ ,.. ( g-s )
3

] 
s,g - (1-s)3 (g-s exp -8.,.,,. 1-s , 

where 
00 

J f(s, g)dg = 1. 
.s 

8 

The kinematics of the flow of suspensions shows that the mean velocity for the par
ticulate medium is the same as for the simple fluid. However by introducing R-spheres 
we have violated this property and we aim now to restore it keeping simultaneously the 
pattern of the simple shear flow in the reference sphere unaltered. 

The mean value of a.i1 in the R-sphere (for R ~ b) is 

(8.1) ~u(R) = ;- J a.ii(r)dV, KR = : nR3
, 

R KR 

and by the use of (6.3) we get 

(8.2) 

where 

1 [( s )
3 

( 6 21 ) 21 ( g )
2 J p(g, s) = Lf g . -5ifJ-ifJ1 +5ifJ2 -5 s ifJ2 + ifJ1 . 

(At this point we again follow Einstein's idea, see Appendix). 
It is important to notice that the function p "is a scalar one with scalar arguments and 

that p(l, s) = 1. The general shape of P-function for 1J = oo is shown in Fig. 1 (ifJ,. = 0.74). 
From the linearity of Stokes equation it follows that by chaning the boundary condi

tion on b-sphere, i.e. by setting 

~8.3) ui(r) = ui(r)jp(g' s) for lrl = b, 

we obtain that the mean' value of i 11(r) in the R-sphere is equal to the rate-of-strain tensor 
of the superimposed velocity field, i.e. to a.11 • 

Because of the scalar character of the p function the pattern of the flow remains unal
tered. Using this velocity field we obtain for the dissipation rate in the R-sphere the expres
sion 

- 2p, J 8 -(8.4) D(g, R, s) = 7f2 a.i1(r)a.1J(r)dV = 3 np,R3 a.11 a.11 d(s, g), 

KR 

0 ~ R ~ b, 

where i(s, g) = d(s, g)Jp2 • 
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FIG. 1. The plot of the function {J versus g = R/b for the rigid particles and for different volume concentra
tions. 

For g > 1, i.e., R > b we must take 

d(s,g) = d(s, 1)+g3 -1 

according to the physical sense of the proposed approach. 

9 

Having the distribution functionf(s, g) and the energy dissipation rate d(s, g) in a ref .. 
erence sphere of radius R we ate able to represent the total dissipation inside the ref
erence spheres in the form 

00 

(9.1) D, = 2pailrti/Pmf g 3d(s, g)f(s, g)dg = 2pailailD~. 

In the region outside the reference spheres the energy dissipation rate is equal to 

00 

(9.2) 2paiJai1 • (1-(/>mf g 3f(s, g)dg) = 2pailai1(1- W) 

and hence the effective viscosity p* is 

(9.3) p* = p(1+Dt- W). 
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The effective viscosity p.* depends on s or, what is the same on the volume concentra
tion (/}. The maximum concentration (/}m plays a role -of parameter. 

Now we will shown that for small concentrations we obtain the Einstein-Taylor for
mula which is independent of (/)m· Using the asymptotic expansion of d(s, g) [formula 
(6.8)] from (9.3) it follows that 

1[ - J p.* 517+2 - . J - d(s,1)-1 
(9.4) # = 1+

2
(
1

+1])(/J+(higher terms)+(/Jm d(s,g)-1- g 3 g3f(s, g)dg. 
s 

The expression for i(g, s) reads 

(9.5) 
- 51]+2 s3 

d(g, s)-+ 1+ 2(1 ) -3-
s_..o +1] g 

and the simple calculations show that the integral in (9.4) is of an order of magnitude 
higher than s3 • 

It is important to mention that we cannot use the Stokes equation in the region larger 
then the one prescribed by the inequality (4.4). From this inequality if follows also that the 
admissible values of the imposed rate-of-strain tensor are greater for denser suspensions 
since the characteristic length b is smaller or, in other words, the Reynolds number based 
on the effective viscosity decreases with the increase of concentration. From this point 
of view the classical Einstein formula is valid not only for the imit of very dilute suspen
sion but also for the limit of very small imposed rate-of-strain tensors. 

Jl*IJl 
~.---~--~----~---r----~~~--~----~ 

Br---~--_,----+----r-+~r---4----+----~ 

~r---~--~----+-~~--~r---4----+------~ 

er---~--~----+-~~~~r---4---~------, 

1~--~--~----~--~----~--~--~------~ m ~ ~ M ~ M M • 

F'Io. 2. The dependence of the effective viscosity on volume concentration (rigid particles) for different 
values of the maximal volume concentration ~m. 
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10 

_As was mentioned earlier the effective viscosity p,* depends on ~he chosen value of the 
close packing parameter f/>m. For the rigid particles this dependence is shown in Fig. 2 
which presents the plot of effective viscosity as a function of volume concentration. Be
sides the curve which corresponds to the theoretical value of close packing (fP,. = 0.74), 
two other curves are presented; first for f/>m = 0.6, the value of close packing parameter 
determined experimentally and the second, f/>m = 0.53 which corresponds to simple cubic 
packing. Our results are also compared with those which follow from Einstein's original 
formula and with BATCHELOR and GREEN second order formula p,*/p, = 1+2.5fP+7.6f/>2 • 

This comparison shows that the differences became significant even for small concentra
tions; our curve for f/>m = 0.74 coincides with Einstein's results only up to the concentra
tion 0.04 and with Batchelor's up to 0.1. 

It is of some interest to compare contributions due to different terms entering into the 
expression (9.3), namely Wand D~ (Fig. 3). It is clear that the contribution of D~, i.e., of 
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FIG. 3. Contributions of differ;nt terms, Dj and W, to the effective viscosity (fJ = oo, 4>,. = 0.74). 
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the dissipation in the vicinity of particles grows rapidly with the volume concentration and 
that the dissipation outside the reference spheres plays an important role only for dilute 
suspension. With the increase of concentration the term 1 - W becomes small in compa
rison with D?. 

There are many experimental investigations concerning the measurements of the effec
tive viscosity and the most. extensive presentation of available data was given by 
THOMAS [13]. He collected the data obtained with both rotational and capillary viscometers 
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FIG. 4. The comparison of the theoretical curve for the rigid spheres and tPm = 0.74 with the data collected 
by THOMAS [13). 

for a wide range of particle diameters and materials. The scatter of experimental data is 
large and hence the good fitting of our curve cannot be treated as its full verification fFig 4). 

Similar results to these shown in Fig. 2 were obtained for different viscosity ratio fJ. 
Here we present the influence of the viscosity ratio on the effective viscosity (Fig. 5). The 
effective viscosity for a given concentration increases with fJ· The lowest value is reached 
by suspensions of gas bubles, the highest for suspensions of solid particles. The general 
shape of all curves is the same but it must be noticed that it may be due to the simplifying 
assumption that in all cases the particles are not deformable. 

The dependence of p,* f p, on the value of the imposed velocity field reported by several 
authors as an experimental result (see for example [13]) can be perhaps partially attributed 
to the deformability and compressibility of suspended particles. 
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FIG. 5. The dependence of the effective viscosity on the viscosity ratio fJ = /i/P., cpm = 0.74. 
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215 

As was mentioned earlier our approach is very close to the one given in Einstein's or
iginal work [14]. To our best knowledge his approach has never been repeated and hence 
it seems worthwhile to recapitulate briefly his paper. 

Einstein starts with the solution of the flow field assuming the pure straining motion 
conditions at infinity (b = oc. ). This leads (in our notation) to the expressions: 

(At) K = (-~+t)r L = 2_(~-~) M= -5 a3

3

, ,s ' 2 r4 r2 ' r 

instead of our formula (6.5). The dissipation rate based on (Al) is 

(A2) D(a, R., 0) = { nR'#a;;aiJ[l+ ~ (~ r- 1; (~r + 12(; r -6(; )'"]. 
In Einstein's original version only terms up to (a/R) 3 are given due to the assumption 

of a very low concentrated suspension. Hence it follows that the additional dissipation 

rate due to the presence of a single particle is D' = : na3 prxii rxii and that the global dissipa

tion is of the form 

(A3) 

14* 
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Einstein calculates the influence of the presence of particles on the straining motion 
field and finds that the relation between a.ii and the mean straining motion in the suspension 
is 

(A4) 

If p,* denotes the effective viscosity then the dissipation rate in the field "i-;1 is 2p,*"i.iJ iiii. 
Comparing this expression with (A3) and using (A4) Einstein finally finds 

p,* 5 
(A5) ~ = 1 +24> . 

In our approach the role of relation (A4) is played by (8.2) which for the dilute suspen
sion of solid spheres leads to 

(A6) p(a, R, oo) = 1-(~)'. 
For the low concentrated suspension it is convenient to introduce the variable {J = a/R 
and by using it the formula (7 .4) for solid particles gives 

(A7) _ 244>m ( s )
2 

2 [ s
3
(1- {J)

3
] 

f(fJ,s)- (1-s)3 . (f (1-fJ) exp -84>m [J3(I-s)3 , 

and the formula (9.3) leads immediately to 
l 

p,* 5 844>2 J(1- {J) 2 
[ s3(1- {J)3 J 

~ = 1 + 24>- (1-s)3- -{J-exp -84>m {J3(1-s)3 d{J 
0 

(A8) 

It is interesting to mention that the first non-linear term in concentration is negative as 
follows also from (A2). 

The above derivation seems to have several advantages over those commonly used, 
namely it uses explicitly the randomness of the particles distribution and the dissipation 
is calculated in separate, not overlaping volumes. 

However due to the involved assumption about the form of distribution function this 
derivation does not pretend to satisfy those who wish to have a precise mathematical proof. 
The only way to obtain such a proof is to find the upper and lower limits of dissipation in 
the set occupied by many particles as it has been done by KELLER, RUBENFELD and 
MOLYNEUX [12]. 
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