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Droplets and layers in the gradient model of a capillary liquid 

A. BLINOWSKI (WARSZAWA) 

THE GRADIENT model of the capillary liquids recently proposed by the author [1] is employed 
for the investigation of the equilibrium of the droplets and films with their saturated vapours. 
The well known dependence of the saturated vapour pressure versus the interfacial curvature is 
obtained within the framework of the model. A relation between the film tension and the film 
thickness is derived. Some of these results are employed for the analysis of the stability of the 
constant density solutions of the equilibrium equation within the regions of the supersaturated 
vapour and the superheated liquid. 

Gradientowy model cieczy kapilarnej, zaproponowany poprzednio przez autora [1], zastosowano 
do badania r6wnowagi kropel oraz blonek cieczy z ich par~ nasycon~. Otrzymano na gruncie 
tego modelu znan~ zalemosc p~Zilosci pary nasyconej od krzywizny powierzchni. Wyprowadzono 
wz6r na zalemosc napi~cia blonki od jej grubosci. Cz~sc z otrzymanych wynik6w zastosowano 
do analizy statecznosci rozwi~an o jednorodnej g~tosci w obszarze pary przesyconej i cieczy 
przegrzanej. ' 

TipeAJIO}f{eHHaH pa.Hee aBTOpOM [1] rp~eHTIIaH MO~eJIL I<aiiHJUipHOH >KH~OCTH HCllOJIL3y
eTCH WIH a.Ha.JIH3a pasHoseCHH I<aneJIL H UJieHOJ< c HaCblli(eHHbiM napoM. Ha noqse 3TOH MO

~eJIH BbiBO~TCH H3BeCTHaH 3aBHCHMOCTb ~aBJieHHH HaCblli(eHHoro napa OT l<pHBH3Hbl.flOBepx
HOCTH. BbiBO~TCH TaiDI<e 3aBHCHMOCTb HaTHffieHHH TOHI<OH UJieHI<H OT ee TO~HHbl. Tiony

'tleHHbie pe3yJILTaTbi HCUOJib3YIOTCH ~ aHaJIH3a ycroiil.IHBOCTH peweHHii c o~opo~oil nnoT

HOCTbiO a o6naCTH nepecblli(eHHoro napa H neperpeToii ~oCTH. 

1. Introduction 

A NON-LINEAR gradient theory was proposed in Ref. [1] for approximate description of 
liquids with simple non-local interactions. The equation obtained had the form 

(1.1) 

where 
e density, 

P(e) density function, which may be interpreted, for an infinit~ homogeneous 
medium of constant density, as pressure, 

l/J3 material constant characterizing the non-local interactions, 
V gradient operator, 
L1 Laplacian operator. 

With an appropriate form of P(s) the Eq. (1.1) has a one-dimensional solution with va
riable density, which may be interpreted as a model of equilibrium between the liquid 
phase and the saturated vapour. For such a solution we can determine the surface tension 
at the interface between the two phases, which is 

00 

(1.2) a = l/J3 J (e')2 dx. 
-oo 
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954 A. BLINOWSKI 

To estimate the share of the gradient term in the Eq. (1.1) a quantity I has been intro· 
duced, defined as follows 

(1.3) I= ,/ fP3f!L -V c2 , 

where f!L -the asymptotic value of the density of the liquid (at a considerable distance 
from the transition zone) and c2-the square of the velocity of sound. The estimations 
made (compare [1]) have shown that I can e.g. be of order' 10-7cm. 

Although the Eq. {i.l) can be solved in quadratures, accurate determination of e1 

comes up against difficulties of physical nature (some mathematical difficulties can easily 
be overcome by solving numerically appropriate integrals) consisting in the fact that 
the function _P(e) can be found experimentally, in general, only for certain variability 
ranges of e corresponding to regions of existence of a stable or metastable solution of 
constant density. 

Thus direct verification of usefulness of the model submitted is difficult. 
In the present paper it will be shown that further investigations of the model considered 

lead to quantitative conclusions in agreement with the classical retations obtained in a differ
ent way. It will also be attempted to use the present model for the investigation of those 
surface problems which cannot be tackled by a two-dimensional mechanical model of the 
interface. 

2. SphericaUy symmetric solutions 

It will be assumed that the solution of the Eq. (I. I) is known for the conditions consid
ered in [1], in which we have e' -+ 0, e" -+ 0 for x-+ ± oo and the density itself tends to 
certain finite values, which may be interpreted according to [I] as the density of liquid 
and saturated vapour. 

For a problem of spherical symmetry (i.e. for a droplet or a bubble), the Eq. (1.1) takes 
the form: 

(2.1) aP , ,.. ( , 2 ,)' 0 -aee +""Je e +,-e = , 

(the "prime" 9enoting differentiation with respect to the radius r) with the boundary con
ditions 

(! -+ (!oo, e' -+ 0, (} 11 
-+ 0, for r -+ oo, 

(! -+ (!o, e' -+ 0, r/' -+ e;{' for r -+ 0, 

where e;{ is finite. 
If the radius of the droplet (or of the bubble) tends to infinity, the solution of the prob

lem should tend to the solution of the former one-dimensional problem. Let us see now 
how the values of the density and the pressure of the liquid phase in the droplet and the 
saturated vapour vary as compared with the limit case of a droplet of infinite radius(!). 

(
1

) In the case of the bubble, all considerations are of course "symmetric". 
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Integration of (2.1) from r to oo yieds 

00 

(2.2) - (P ,-P(e)) -Ill. ( ee" + ~ ee'- ~ e'2)- Ill. J ~ e'2(t)dt = o. 
r 

On multiplying this bye' /e 2 and integrating by parts from r to oo, we obtain 

(2.3) 

Qoo oo 

f P(u)-Poo .J. 1 m e'
2 

2m 1 f 1 'l( )d _ O uu+-.,3-- '*'3- -e t t- . 
u2 2 (! e t 

Q r . 

9SS 

If we let~ ee' tend to the limit for r = 0, then, on eliminating the indeterminateness, 
r 

we have 

(2.4) I. 2 , 2 " 
liD-(!(! = f!o(!o' 
r-o r 

therefore (2.2) and (2.3) take, for r = 0, the form: 

(2.5) 

(2.6) 

00 

Po-Poo-2f/J3 J +e'2dr-3f/J3eoe;{ = 0, 
0 

It will be shown later for a droplet of radius R ~ 1 that the last term of the Eq. (2.5) 
may be represented in the form: 

3m " eokc2 
'*'3f!o(!o = - I R 

RshT-1 
(2.7) 

where k is some constant which will be defined later. With this assumption and bearing 
in mind that the thickness of the transition layer is small in practice as compared with R, 
we can assume that a practically does not depend on R and can be expressed as in (2.1 ), 
and that the second integral in (2.5) and (2.6) can be replaced by a/R, i.e.: 

(2.8) 

00 

f/>3 J e'2dr ~ a ~ const, 
0 

00 

m I 1 '2..1 (J 
'*'3 re ur ~ R 

0 

(R may be, for instance, the radius corresponding to maximum value of e'2
). 
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Then, we can write 

(2.9) 

a kc2 

Po-Pco-2R+eo ---- = 0, 
i._sh.!!.-1 
R I 

(2.10) 

Let us denote for convenience eo = y, eco = z,! = x and express (2.9) in the form 

F(x, y, z) = 0 and (2.10) in the form 4>(x, y, z) ~ 0. Use will now be made of the relation 

(2.11) 
dz F~tP;-F;4>~ 
dx = F'4>' -F'4>' . 7 • % 7 

By calculating the relevant derivatives and finding the limit for 1/R .-. 0, we obtain 

deco 2a 1 

(2.12) d( 1) = aPI -· (~-1)' 
R ae r~=r~a ea . 

or 

(2.13) 
dP(eco) = 2a 1 

d(~) . ~-1 
R ea 

where f!L, ea are the densities of the liquid and the saturated vapour for R .-. oo, respec
tively. Then, bearing in mind that (!L :.> eo, we obtain, as an approximation (linear in 
1 I R) the following equation for the pressure of saturated vapour p~R> in equilibrium with 
a droplet of radius R: 

(2.14) 

where P: is the pressure of saturated vapour in equilibriUiil with a plane surface. From 
similar considerations we obtain for the pressure at the centre of a vapour bubble of radius r 

(2.15) P (r) ~ pco_~ 2a 
• ~ • (!L R . 

It remains to verify the approximate equation (2.7). For R ~ 1 the density gradient 
in the inner region of the droplet is small, it can therefore be assumed that aPJae = c2 = 
= const. Thus, on dividing by e and integrating, we can write the equation of equilibrium 
(2.1) in the following form: 

(2.16) - C
2 1n..!... + 4>3 (e"- .3...e')- 34>3 eo = 0. 

(!o · · r 
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On introducing the symbol ex = (e0 -e)/eo fex ~ I] and making use of (1.3) we find the 
equation 

(2.I7) I [ "] 2 p: ln(l-ex)+3P ~: +ex"+-,:-ex' = 0. 

On linearizing with respect to ex (In (I- ex) ~ -ex) and substituting 

(2.18) 

we obtain 

(2.19) 11 1 0 y -p:Y = . 

Solving this with the conditions 

e(O) =eo< oo, le~l < oo, 

we find 

(2.20) I! = eo +3l'e:i{! sh ~ -1). 
The approximations used give a good result for (e0-e)/eo ~ I only, therefore we cannot 
make use of the conditions at infinity and there remains a free parameter e~. 

It is known, however, that the gradient zone is usually very narrow and the gradient 
is very steep, we can assume therefore for the radius of the droplet a certain valuer = R, 
for which (e0 -e)/eo = k, where 0 < k·< (e-0 -eoo)/eo is (to som.e extent arbitrary) 
constant determining the boundary of the liquid phase.. Then, from (2.20) we obtain 

" eok 1 
eo= - 3!2 I R 

lfsh7 -1 
(2.2I) 

Hence (2. 7). 

3. Solution for a symmetric layer 

In the same manner as was done in the foregoing secti~n for a droplet we can confront 
the solution for the finite layer with the asymptotic solution for a layer of infinite thickness. 
In the one-dimensional problem the 'equation of equilibrium has·the form: 

(3.1) 
aP -7f"i e' + t/>3 ee"' = o. 

The problem will be considered, with the same boundary conditions, for the interval 
0 ~ x ~ oo , in a manner similar to the above. Thus, we have on integrating 

(3.2) 

2• 
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and 

(3.3) 

For e = eoo we obtain 

(3.4) 

•ao 
(3.5) J P(u)~;(eoo) du = 0. .. 
The functions (3.4) and (3.5) will be considered as functions of three variables: eo, eoo 
and e~ . On denoting in an appropriate manner the variables and applying equations of 
the type (2.11 ), we obtain 

(3.6) deo l = p deoo I = 0 
d(e~') 4=0 ' d((!~) e()=O . • 

With the following definition of the surface tension, similar to [1], 

(3.7) 

where T = ( -P+ ~ 4i0 Ve ·Ve+4i3 eLie) 1-!1>2 Ve 0 Ve is a stress tensor, and with the 

same argument as in [1], we obtain for the case considered 

(3.8) 

From (3.8) and (3.3) we easily find 

(3.9) 

00 

-- ~ J n'2dx. .. - '~~'3 1::' 

0 

If a is considered as a function of e;:, we find 

(3.10) da oa oa deoo oa deo 
d(e:J) = a(e~) + oeoo d(e~) + oeo d(e;{) . 

On differentiating {3.9), we obtain 

(3.11) Cloo 

~ = c/)~ v». 4J~e;; f e-eoo de 

d(e;;) f!oo (-1 __ I )(-oP(e)l +c/)
3
e'O)+q,

3
f!'O eo J!j s" P(u)-P(eoo) du . 

eoo (!o ae t=fo f!oo e u2 
Qo 
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Now finding e' from (3.3) and integrating with respect to x,. we obtain 

00 

da 2f/J~ eo r ( ) 
(3.12) d(e;{) = [( 1 1 ) ( oP(e) I lfi. ") dl. eo] 0 e(x)-eoo dx. 

eoo --- --- +ov3eo +'11'3-
eoo eo oe Q=Qo eoo 

The limit for e;{ --+ 0 in (3.12) is connected with an indeterminateness of the type 0 · oo, 
because the integral in the right .. hand term is half the "surplus" mass per unit area of the 
layer, which tends to infinity with the thickness of the layer (for eo--+ 0). For sufficiently 
large x and under the conditions 

lime = eoo, lime' = 0,. lime" = 0, 
x~oo x~oo x-m 

we have (e-eoo)/eoo ~ I and the Eq. (3.1) can be approximated by the equation 

(3.13) oP I I m ,,, 0 -y e +ov3(!oo(! = e Q=Qoo 

with the same conditions at infinity. A solution of (3.13) is 

e = eoo+Cexp(-v/ ~r· x), 
0(! P='~oo 

(3.14) 

where C is the integration constant. It is seen that the integral in (3.12) is convergent at 
d/2 

infinity, therefore it suffices to analyse lime;{ J (e-eoo)dx, where 
d-+oo 0 

d/2 

lime;{ J (e-eoo)dx <lime:; 
2
d (eo-eoo). 

d-+ 00 0 cl-+00 

The Eq. (3.1) can be approximated inside the layer by 

(3.15) 

On introducing the notations 

(3.16) fY = eo-e ,..._ ,. 
eo 

double integration yields 

<X 

(3.17) f t +Pcx~ I a.'z 
~--:-;:-- dt = - p --. 
(1-t)2 2 1-m 

0 

By evaluating the integral, expanding ln(l- ex) in series aud confining ourselves to terms 
containing ex to a power not higher than two, we obtain 

(3.18) 
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This equation can be solved for x. The same argument as in the foregoing section 
leads to the relation 

(3.19) d = 41 Arsh V 2/~a'O • 

Hence 

(3.20) , eok 1 
(!o = - 2J2 d 

sh
2 4f 

Similarly to the foregoing section, the value of d depends on the choice of the limit value 
fork. However, on substitating (3.20) Into (3.12) and taking into consideration (3.14) 
and (3.15), we obtain, irrespective of the values odd and k 

I
. dG 
tm d( ") = 0. 

~~-+O (!o 
(3.21) 

From (3.21) and (3.6) we find, therefore, for the linear approximation of the parameter 
e;;, which is connected with d by the relation (3.20), that (loo (therefore also P oo) and G 

are independent of d. For eo we obtain from (3.6) and (3.20) 

(3.22) 

k . 

2sh2{ )· 
As a result of the arbitrariness of the parameter k, this equation gives only a rough approxi
mation to (!o. 

The second derivative of (! 00 with respect to the parameter e;; can easily be found. 
Then,. the next approximation is obtained 

(loo~ (!G(l+-} (kl )· ap sh4_!!_ 
ae ~=~~G 41 

(3.23) 

A similar argument for G would be very tedious due to the indeterminatenesses involved 
in the process of finding the limit. We shall proceed in another way, by treating the expres
sion (3.12) as a differential equation for Gin function of e;;, by linearizing the factor before 
the integral in e;; and applying the approximate equation 

00 

(3.24) 
f (e(x)-eoo)dx 
0 

We obtain the equation 

(3.25) dG - (/)3 f2n'o' d, 
d(e;;) = ~ 
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where d is a function of e~. On changing the variable for d, we have 

(3.26) 

d 
eh-

, - c~eo k2 41 d 
ad - --gr- d . 

sh5 --;u 

961 

On integrating (3.26), rejecting terms containing powers of sh ~141 higher than the fourth 

power and denoting by A( d) the tension of a layer of thickness d, we obtain 

(3.27) 

where a 00 is the surface tension ford-+ oo. 

4. Discussion of results and conclusions 

The Eqs. (2.14) and (2.15) for the pressure of saturated vapour in equilibrium with a 
spherical surface are familiar approximate equations usually derived from the membrane 
model of the surface on the basis ofthe second law ofthermodynamics (cf. [2]). Using the 
present model, they have been obtained by purely mechanical considerations. In the 
present author's opinion this is an additional fact confirming the applicability of the 
model and the correctness of the method. The same model and the same method applied 
to the problem of a layer (a film) lead to the Eqs. (3.22) and (3.23) for the density inside 
the film and the density of saturated vapour in equlibrium with the film. It is easy to obtain 
the following equation expressing the pressure 11 in equilibrium with a film of thickness d: 

~- poo+ eac2k2 
• - • d . 

4sh4 --;u (4.1) 

Another equation obtained is the Eq. (3.27) for the membrane tension. These equations 
cannot be derived from the simple film model of a surface. It remains to observe that the 
approximation d ~ 1 was used, which is a "thick film" approximation in the sense of 
[3], so that, for instance, the apparent paradox of negative density in the Eq. (3.22) for small 
d has no physical interpretation and is simply a result of a formula being used beyond its 
applicability range. 

Let us observe also that the case studied in Sec. 3 is of no direct practical applicability, 
the object of the considerations being a film in equilibrium with its saturated vapour only, 
which would probably be very difficult for experimental realization, but the results 
obtained show the qualitative effect of surface tension decreasing as a result of a reduction 
of the linear dimensions and an increase in pressure of saturated v~pour. This enables 
us to suppose, that the case of a drop, for instance, is similar, that is it enables us to expect 
that the scale effect does not suppress but perhaps strengthens, in the case of very small 
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d.rops, "the effect of geometrical form" as expressed by the Eq. (2.14). It can also be expect
ed that the values of pressure, density and energy will remain within reasonable limits 
even for very small drops, while the membrane model of constant tension leads for R--+ 0 
to an infinite energy density of the disintegrated medium. 

The problem of stability of solutions for constant density was not studied in Ref. [1 ]. 
Physical observation show that homogeneous states are instable or quasi-stable within the 
interval f!G < e < f!L· The case of Regio-n II (Fig. 1}, where oPfoe < 0, is relatively simple. 
(The condition of existence of such a region is necessary for the existence of a solution in 
the case of equilibrium of phases because in the opposite case the condition (3.5), for 

p 

I I 
I I 
I I 
I I 
I I 
I I 
I I 
I 

p 

FIG. 1. 

instance, could not be satisfied). Let us consider a small deviation from the state of 
equilibrium u(x) within the range of negative oPfoe. · 

By rejecting non-linear terms we obtain, for a certain density e* in that region, 

(4.2) oP I '+""' * ,, *" -- e 'P3 e e = e u. 
0(! (1=(1· 

Let us consider the displacement field in the direction x from the state of homogeneous 

e* in the form 

(4.3) u = f(t) sin : , 

where f( t) ~ b is a function of time t. Then, we have for the density 

(4.4) e = e• (J-fit) ! cos : ). 

On substituting ( 4.3) and ( 4.4) into ( 4.2) and integrating ( 4.2) with respect to time with the 

boundary conditions /(0) =a andf'(O) = 0, we obtain for h2 > - . tl>r• 
oP 
0(! (]=(/· 
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the expression 

(4.5) f( t) = a eh ( v' bt ) . -~:I.~.·- ~~rt 
We have therefore an almost exponential growth of the amplitude of small perturbation 
that is local instability of the solution with constant density e* for any periodic perturba-

tion with a "vawelength" A > 2n, I -~r . . For the considerations of stability, 

V ae (!=(!· 

in the regions I and Ill of saturated vapour and superheated liquid, respectively, the Eqs. 
(2.14) and (2.15) obtained within the frames of the model considered may be applied. 
Let us quote the standard argument of the theory of phase processes. It may be assumed~ 

- for instance, that we are concerned with homogeneous density e* > (!a in Region I, the 
corresponding pressure being P(e*) > P 5 • From the Eq. (2.14) it is seen immediately that 
the equivalent pressure of saturated vapour for any droplet of diameter R > RK = 

P(e*~e_ P 
5 

:: is lower than the pressure P(e*). This means that if there occurs due to 

any reason, a droplet of radius greater than Rk, it becomes a nucleus of condensation 
of the surrounding vapour. The case of Region 11 is analogous. Any vapour bubble of 
radius exceeding a certain critical value will grow. This mechanism is well known, of 
course, but it is only by obtaining (2.14) and (2.15) by analysis of the model itself that it 
is legitimate to use them for the analysis of this particular model. It is seen that the 
conclusions are in agreement with the behaviour of real systems. 

The author wishes to express his gratitude to Professor J. RYCHLEWSKI for his remarks 
concerning the form of the present paper. 
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