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Acoustical theory of turbulence (1
) 

CZ. P. KENTZER (LAFA YEITE) 

FLUID fluctuations are expanded in a complete set of orthogonal wave-type solutions of the 
linearized Navier-Stokes system. The motion of characteristic waves is governed by Hamil­
tonian equations of ray acoustics. Wave amplitudes are determined by non-linear interaction 
terms. The distribution functions (squares of amplitudes) satisfy Boltzmann-type equations 
and describe completely the averaged properties of turbulence. 

Fluktuacje cieczy rozwini~to w szereg funkcji stanowi~cych pelny i ortogonalny uldad roz­
wi~ falowych zlinearyzowanego uldadu Naviera-Stokesa. Ruch fal charakterystycznych 
opisany jest r6wnaniami Hamiltona akustyki falowej. Amplitudy fal okre81ono za pomoq 
nieliniowych czlon6w oddzialywania wzajemnego. Funkcje rozldadu (kwadraty amplitud) 
spelniaj~ r6wnania typu Boltzmanna i opisuj~ w spos6b pelny usrednione wlasno8ci turbulencji. 

<l>JiyKTyaQHH >KH.ZU<OCTH pll3.1IO>Kellbl B pR.D; <1>~ COCTaBJIJIIOII.{HX no.JIHyiO H oproroHa.m.­
HylO CHCTeMY aomroBLIX pememrli JIHHeapuaoBaBHoii ~creMbl HaB~.e-CToKca. ,llBH>KeHHe 
xapaKTepHCTINeCKHX BOJDl OIIHcaHO ypaBHeHWIMH raMBJILTOHa BOJIHOBOH aKyCTHKH • .A~UIJU:­
TYALI BOJDl onpe,D;eJiellbl npB DOMOIInf HeJIHHeHHbiX 'IIJieROB B3aHMO,Zl;CHCTBIDI. <l>yHKI.lHH pac­
npe,D;eJieHWI (KBa.z:tP&TLI a.MII.11HTY.zU y,D;OBJieTBopmoT ypaBHemmM THna BoJILQMaHa H onucLI­
BaroT llOJIHbiM o6pa30M ycpe,D;HeHIIble CBOHCTBa TYP6yne~. 

1. Introduction 

RECENT years witnessed numerous efforts to base theories of turbulence on fundamental 
principles of physics. Thus, to mention only a few, we have seen non-linear acoustics 
applied by LIGHTHILL (1952, 1962) to the problem of aerodynamically produced sound 
and random "pseudo-sound," statistical mechanics applied to pseudo-turbulence of 
suspensions by BUYEVICH (1970, 1971), weakly non-linear interaction theory of continuum 
and particle physics applied to plasma turbulence by K.AooMTSEV (1965), VEDENOV (1968), 
SAGDEEV & GALEEV (1969), and by DA vmsoN (1967), the theory of generalized Brownian 
motion used by CHUNo (1969, 1970) to derive a set of FOKKER-PLANCK equations for 
description of turbulence, the theory of microfluids, developed by ERINGEN (1964), and 
applied by him (1970) to a microp~lar description of turbulence, and quantum and wave 
mechanics used by KRZYWOBLOCKI (1971) to formulate the theory of turbulence in terms 
of solutions of the Schroedinger's equation. 

The present paper was inspired by and uses many of the ideas developed by the above 
mentioned authors. The primary objective of this work was the determination of the 
coupling, interaction, and separation of the effects of the various modes of fluid oscilla-

(1) Research supported by NASA, Grant NGR 15-005-174. 

http://rcin.org.pl



806 Cz. P. KENTZER 

tion as they may exist in turbulence and may have a bearing on noise generation and 
absorption. Such modes were identified by KoVASZNAY (1953) by factorization of the 
linearized fluid dynamical differential operators as the vorticity, entropy, and acoustic 
modes. In this study, however, we shall identify the wave-fype solutions of the flow equa­
tions, corresponding to vortical, entropy, and acoustic modes of propagation, with char­
acteristic energy states of the continuum, the latter treated as a vibrating system of in­
finitely many degrees of freedom, and apply quantum statistical and gas-kinetic methods 
to arrive at a description of turbulence in terms of averages over the probability distribu­
tion. Examples of transport equations for turbulent quantities will be derived to show 
the special role played by the acoustic mode. 

2. Formulation of the theory 

2.1. Time-dependent perturbation 

We shall consider a compressible, viscous gas with constant material properties. If 
p 1 and p 2 are the first and second coefficients of viscosity, then we may introduce the 

viscosity number V = 2 + p,2 / p,1 , so that the bulk viscosity becomes ~ p,1 + p,2 = p,1 (V- ~) 
~ 0, and Stokes' assumption amounts to setting V= 4/3. For such a gas the governing 
equations of conservation of mass, momentum, and energy are 

e,r+uie,i+eui,i = 0, 

(2.1) RT /-lt ) Uir+UJUiJ·+--ei+RTi--[UiJJ+(V-1 U:~'iJ] = 0, · · e · · e · · 

T r+u· T ·+ ("'-1) Tu1 ·- Yl-'t T- 1 _l!..!_<JJ = 0 
• J ,J I ,} Pr }, e ' 

where e- density, ui- velocity, T- temperature, y- ratio of specific heats, <P­
dissipation function. Pressure has been eliminated using equation of state, p = eRT. 
Repeated indices denote summation, and differentiation is indicated by a comma. 

Perturbing the flow by setting e = eo+e', Uj = Uo.+ui, T = To+T', symmetrizing 
' the system by introduction of non-dimensional ratios e'/e0 , ui/c, T'/(Jfy-1T0), where 

c2 = RT0 , we may put the system (2.1) in the form 

(2.2) 
01pj 
8t = L"Pi+B("P;, "Pi)+ T(1p;, 'f/Jj, "Pi), 

where "Pi is a column vector of the dependent variables, L, B, and T are, respectively, 
a linear, bilinear, and trilinear spati~l differential operators uniquely determined by the 
perturbation of (2.1). For brevity we shall omit giving the particular expressions for the 
operators. The "weakly non-linear" system (2.2) has been a subject of study by many 
researchers as reported, e.g., in the books by K.AnoMTSEV (1965), SAGDEEV and GALEEV 
(1969), and VEDENOV (1968). We shall depart somewhat from the standard procedures 
used in plasma physics. Our objectives are not a solution of the initial value problem 
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ACOUSTICAL THEORY OF TURBULENCE 807 

and time-evolution of turbulence, but a description of instantaneous local averages of 
random, wave-type oscillations of a flowing gas. 

If "Przfl = Ccz</Jrzpexp[Frzt+i(xmkm-wrzt)] is taken as any one member of the five (a= 
= 1, ... , 5) linearly independent, infinite families of solutions of the linear, homogeneous 
equation 

(2.3) 

then solubility of (2.3) determines five sets of real functions Fikm) and wrx(km)· Due to 
the fact that the amplitudes may be determined only up to a common factor, one may 
solve (2.3) for five complex eigenvectors if>rz.(km), linearly independent and normalized, 

' so that 

(2.4) if>rz.if>p. = 0 if a ¥= fJ, 
' ' 

and 

where the asterisk denotes a complex conjugate. This leaves the five scalar (in general 
complex) amplitude factors, C«, to be determined by the non-linear terms of (2.2). 

Adopting if>rz.exp[Frzt+i(xmkm-wrxt)] as the basis vectors (state vectors) representing 
' small amplitude plane waves as possible states of the fluid, we may form a formal ex-

pansion of the solution vector "Pi in the differential neighbourhood of an arbitrary point 
Xm = t = 0 

'f/Ji = .r .r C«(k, t)<fo«i(k)exp[F«t+i(xmk,-w«t)]. 
ex k 

Substitution into (2.2) gives 

(2.5) 2 4>rxi O~rz = 2 ... 2 c~, c~~' 8( <P«'h <P«"i) exp [ (F' + F"- I) t] t5(k-k'- k") X 

ex ex',ex",k',k" 

x t5(ro -ro' -ro") + ... , 

where the trilinear terms are indicated by ... , and where t5(x) = 1 when x = 0, t5(x) = 0 
when x =I= 0. The double sum over k' and k" is thus reduced to a single sum over all possible 
values such that 

(2.6) k~+k~ = km and ro' +ro" = ro. 

Dispersion relations, ro = w(km) to be given later, determine the selection rules for possible 
three-wave resonances. The trilinear term leads to conditions and selection rules for four­
wave resonances. 

We multiply the Eq. (2.5) by if>p1 c; and the conjugate of (2.5) by 4>;1 Cp and add the 
results making use of orthogonality relations (2.4). The result is a formal, but formidable 
expression for 

(2.7) 

It is customary to pass to the limit of infinitely many moving waves with continuou~ 
distribution of the square of the amplitude over the wave-number space. The derivative 
(2. 7) becomes then equal to a sum of double and triple integrals over km-space, and it 
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represents the time rate of change of the square of the amplitude of fluid waves having 
wavenumber km at position Xm and time. t. and associated with the ,8-mode of propaga­
tion. Since, for infinitesimal amplitude plane waves satisfying Eq. {2.3), the amplitudes 
remain rigorously constant, the symbol 8efflf8t in Eq. (2.7) will be used to denote effects 
of wave interactions (encounters .or "collisions") which alter amplitudes, and will be 
interpreted as a rate of change of the number of wave packets (quasi-particles) in analogy 
to kinetic theory expressions for chemical source functions in multi-component reacting 
gases. 

In the next Section we shall concentrate on the determination of the plane wave solu­
tions of Eq. (2.3). 

2.2. Characteristic states 

Substituting a state vector "P«i into Eq. (2.3) amounts to replacing time and space 
differential operators in (2.3) by multiplication operators (F-iw) and ikm, respectively. 
Thus (2.3) becomes a 5 x 5 linear, homogeneous, algebraic system for the complex ampli­
tudes l/Ja. .• The condition, that such a system admit a non-trivial solution, is the vanishing 
of the characteristic determinant. The determinant has the following form, (v = p,tfe): 

-A. ick1 ick2 ick3 0 I 

ick1 -v[k2 +(V -1)k~]- A. -v(V -1)k1k2 -v(V-1)k1 k3 ick1 yy-1 

ick2 -v(V-1)k1 k2 -v[k2+(V -1)k~]- A. -v(V-1)k2k3 ick2 y y-1 

ick3 -v(V -1)k1 k3 -v(V -1)k2k3 
2 2 v--, -v[k +(V-1)k3]-.A. ick3 y-1 

0 ick1 y y-1 ick2 yy-1 ick3 y'y-1 
yvk2 

I --A. I Pr I 

where A. = T+i(umkm-w). Thus, if the small perturbations are to exist in a fluid, they 
have to satisfy the characteristic condition with all its consequences. We observe that 
the matrix A representing the linear operator -L is symmetric but not Hermitian. The 
transformation km = ik~ renders A Hermitian. 

After a substantial amount of labor, the algebra being simplified due to symmetriza­
tion of the original system (2.1), the expression for the characteristic condition takes 
the form: 

(.H•k2
){ -<( H r;:; )<H V•k2)+a2k 2

( .H -•;:)] = 0. 

The cubic factor in square brackets may be factored out under the assumption that 
V· Pr = 1. This simplifies the analysis that follows. Consequently, we shall take as the 
characteristic condition: 

(2.8). 

where a2 = yRT. We note a formal similarity of (2.8) to the characteristic determinant 
of the theory of characteristics to which (2.8) is reduced if we set p, = r = 0, and identify 
km with characteristic normal. Each factor of (2.8), separately equated to zero, gives 
rise to a mode of wave propagation. To the first factor correspond two vorticity modes, 
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ACOUSTICAL THEORY OF TURBl,JLENCE 809 

to the second factor corresponds an entropy mode, and the quadratic factor corresponds 
to the acoustic mode. With the subscript IX denoting the mode or the root of the character­
istic relation (2.8), we have 

(2.9) r:x. = 3: 

r:x. = 4, 5: 

F« = -11k2 /Pr, 

ypk2 
Fa.=- 2Pr' 

Wa. = Umkm, 

Wrz = Umkm, 

vorticity modes, 

entropy mode, 

[ ( 
k )2]1/2 

Wa = Umkm±ak 1- J:Pr , acoustic modes. 

It will be convenient to write the dispersion relation common to all modes as wa. = 
= Umkm+ca.ak(1-K2)112, where ea.= Ofor r:x. = 1, 2, 3 and c4 = 1, c5 = -1, and where 
K = yvk/2aPr = Knudsen number based on the mean wavelength, 1njk. The modes 
loose their identity when K ~ 1, or k ~ 0(105) in units of cm-1 • 

With r« and eo« determined uniquely from (2.8), the system (2.3) defines a set of eigen­
vectors satisfying the orthogonality and normalization conditions (2.4) provided K < 1. 
Let the second subscript {3 denote a component of the column vector {e, u, v, w, T}. 
Then the most general solution of (2.3) is a linear combination of the eigenvectors 

<Ptfl = {o, k2, -k~, o, o}t{kf+kH1'2, 
l/>2p = {0, -k1k3, -k2k3, ki+kL O}/{k(ki+k~) 1 '2 }, 

/{ 
4K2 }

1
'
2 

(2.10) 4>3/l = {1, -2iktKfkvr, .... , ... , -1/ vy-1} 'Y~ 1 + -'Y- , 

4>4/l = { -g, -ik1 ye, ... , ... , g* y y-1 }/ {2ya2k2
}

1
'
2

, 

l/>sp = {-g*, -iktyc, ... , ... ,gyy-1}/{2ya2k2P'2, 

where g = -ak[K+i(1-K2)1'2]. Due to symmetry of the matrix A, 4>:11 , the complex 
conjugates of 4>«/1 are the solutions of the adjoint of Eq. (2.3). 

The state vectors, 1fl«fl = 4>rz11 exp[Fr~t+i(xmkm-Wrzt)], represent solutions of the Navier­
Stokes equations under the assumption of infinitesimal disturbances of a locally uniform 
flow. Further, the state vectors represent plane waves whose extent in space is infinite. 
Localized disturbances, obtai~ed by superposition of plane waves ("wave packets"), 
are described by the theory of group velocity, cf., e.g., LIGHTIDLL (1965). According to 
that theory, a wave packet at (xm, km, t) moves, so that 

(2.11) FJ = dk1 = _ aw 
dt ax . 

Thus, for the tX-th mode, we have 

(2.12) u«j = Uj+Crza(kj/k)(1-2K2)(t-K2)- 112, 

(2.13) F . = - [k aum k(1-K2)-tt2 aa] «} m a +c« a ' 
Xj Xj 

where U«J and F«J are the velocity _of and a "force" acting on a wave packet. The force 
F«l vanishes in uniform flow. 
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810 Cz. P. KENTZER 

2.3. Association with quantum mechanics 

Equations (2.11) are of the Hamiltonian form and permit association of fluid waves 
with particle motion. With the substitutions 

(2.14) liw = H, fzk1 = Pb x1 = ql, li = hfb&, 
where H- Hamiltonian, p1 - momentum, q1 - position coordinate, h- Planck's 
constant, Eqs. (2.11) take the familiar canonical form. Differentiating the state vector 1p 

once with respect to time and twice with respect to space, eliminating 1p itself and using 
(2.14), one obtains in the non-dissipative case, r = 0, the wave equation of Schroedinger, 
the starting point of the wave-mechanical theory of turbulence developed by K.Rzvwo­
BLOCKI (1971). We note that the quantum-mechanical problem for the Schroedinger 
equation, generalized to include dissipation (F ::f:: 0), namely the determination of all 
the characteristic energy states, has been solved jn the preceding Section by giving the ex­
pressions for the frequencies (energies) of the five modes of wave propagation. In the 
sequel we shall use the corpuscular point of view, justified by the Hamiltonian form of 
Eq. (2.11), in order to apply gas-kinetic methods to the dynamics of wave packet motion. 

Let f(xm, km, t)dx1 dx2 dx3 dk1 dk2 dk3 = fdx 3dk3 be the number of particles in the 
volume dx3dk3 of the phase-space having position Xm and wavenumber km at time t. Then 
the Liouville's equation, 

of of dx 1 of dk 1 _ 
0 Tt+ ox1Tt+ ok1Tt- ' 

must hold for the wave packets between or in absence of "collisions" as a consequence 
of the Hamiltonian form of the equations of motion. In the case of wave interactions, 
the time rate of change of the number density must be set equal to the source term, Eq. (2. 7). 
Specializing to the a-mode, a = 1, ... , 5, and using (2.11), we obtain the Maxwell-Boltz­
mann equation: 

(2.15) oJ,. + u . of« +F. . oJ,. _ oJ,. + ow« of« _ ow11 ofa. _ De !a. 
ot «} ox1 «} ok1 - ot ok

1 
ox1 ox

1 
ok1 - ot · 

Equation (2.15) implies that a redistribution of any property of the wave packets in 
the phase-space is brought about only by wave interactions. In particular, energy may 
flow in the phase-space as a consequence of energy transfer between waves under three­
wave and four-wave resonance condition. 

In order to justify the use of J,. as number density, we proceed as follows. Let e~~(k) 
be the energy in the a-mode per unit volume of phase space. By (2.14) the energy per 
particle is liw«. Thus the number of particles in unit volume at time t having energy liw« 
is f« = Erz(k)fliw«. The total content of energy in the a-mode is J erz(k)dk3 = fz J Wrz/,.dk 3 

per unit volume. If we require that energy be proportional to the square of amplitude 
then w«frz must be proportional to w«ICrzl 2 • We may, therefore, normalize C«, so that 

(2.16) 

where n« -number density of a-type quasi-particles in the x-space. Thus all five number 
densities must be known as functions of space and time in order to normalize the distribu­
tion functions, the latter being needed to form statistical averages. The subject of the 
choice of definitions for the statistical averages will be discussed next. 
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ACOUSTICAL THEORY OF TURBULENCE 811 

3. Statistical properties 

3.1. Statistical averages 

In what follows all integrals are assumed to converge, and integration is extended 
to the limit of validity of continuum concepts, k ~ kmax, for which value of k the collective 
wave motion ceases to be distinguishable from the molecular random motion. The choice 
of kmax will be made later. 

Let m~ be the (variable) mass of a quasi-particle. Then the partial density of species 
ex, f.!rx, and total density of the gas, (!, are 

e(/, = J m(/,hdk3
, e = 2; ea.. 

IX 

Let the momentum of a quasi-particle relative to the fluid be 

Pi = li, k1 = ~(Uoti-u1). 

Summing over all particles and requiring that the total momentum in laboratory frame 
be eu1, and that the average of the relative momentum vanish, we have, using (2.12), 

n 2; J kJi.dk3 =}; J m.ac.~~~~: it.dk• = 0. 
IX IX 

(3.1) 

Thus /IX must satisfy the condition 

(3.2) 

and, for consistency of the quasi-particle model, Eq. (3.1) requires that 

(3.3) 
likyf=K2 

m«= a(l-2K2) ' 
ex= 4,5. 

Observe that the mass m(/,, ex= 4, 5, equals 0 or oo when k = 0 or k = y' faPrfyv = 
= kmax, respectively. Thus the limits of integration, kmax, are chosen so that beyond kmax 

there are no quasi particles since h must tend to zero sufficiently fast as k --. kmax, so 
that all partial densities, f2«, are finite. Further, our choice of miX renders mass equal to 
zero when the particle moves with the signal velocity, IU«1-u11 =a, and equal to infinity 
when at rest relative to the fluid. 

When ex = 1, 2, or 3, the group velocity relative to the fluid vanishes for all k, and 
so does the relative momentum. Thus m« is indeterminate for vorticity and entropy modes, 
but it must remain finite in order that the partial densities be bounded. 

We may now interpret li(w-w0 ) = p2 /2m = ~ miU1-u11
2 as kinetic energy of the 

acoustic mode relative to fluid. Vorticity and entropy modes contribute nothing to quasi­
kinetic energy. Let e = specific kinetic energy of quasi-particles relative to fluid. Then 
ee = li 2 f Wczhdk3

• Note that COo = Umkm, the Doppler frequency shift, contributes no-
0: 

thing to the kinetic energy due to condition (3.2). 

http://rcin.org.pl



812 Cz. P. KJ::NTZER 

Other averages, having the form of statistical correlations and being of major interest 
in the study of turbulence, may be obtained as follows. Recalling that the components 
of the state vector give, except for a common factor, the components of the vector of the 
nondimensionalized perturbations, {e'/eo, u'fc,v'fc, w'fc, T'/(T0 y'y-l)}, we may take, 
e.g., fJ = 1 and write 

{!~ = J C«f/>« 1 exp[F«t+i(xmkm-ro«t)]dk3 

eo 
as the perturbation of density carried by the ex-mode. Thus the total perturbation of density 
is given by e' = 2 e~. Only the real part of e' has a physical meaning and, due to an 

ex 

oscillatory nature of this representation, the time or space average of e' vanishes. Setting 
fJ = 2, 3, 4, 5, we obtain, in turn, corresponding expressions for perturbations in u, v, w, T. 
The averages of squares of pelturbations are, e.g., 

( :: r = _2 f IC.I2 1r/> •• l•exp(2I'.t)dk3 
= 2 f1r/>. 112exp(2F.t)J.dk•, 

ex ex 

and a typical double correlation, (u', v'), is given by 

(u'v') = ~ ~ (J C«,C«,fjJ«,2 4>cx'' 3 exp{(F«'+F«")t+i[xm(k~+k;.:) 
RT0 L.J L.,; ., 

ex' «." 

+ i(ro«' +ro«,)t]} dk' 3dk" 3 

The main contribution to this average will come from those wavenumbers for which 
k~ = -k;,; and rocx,(k~) = -ro«,( -k~). Because the dispersion relation for the acoustic 
waves does not allow for both of these conditions to be satisfied simultaneously, the 
acoustic modes will have a negligible effect on double correlations between different 
components of the state vector. In the random phase approximation one could write 
for the Reynolds stress tensor, m, n = 1, 2, 3, 

-- ot=3 

(~;:) = 2 J f/>«,m+1f/>:,,.+lfrzexp(2F,t)dk3
, 

ot=l 

where the 4>«/1 are the components of the normalized eigenvectors, Eq. (2.10). 
Having defined mass, momentum, and energy of quasi-particles in motion relative 

to fluid, we turn now to the evaluation of transport of mass, momentum, and energy. 

3.2. Equation of change 

Let 'Prz be any function of Xm, km, t, a property of ex-type particle, per unit mass. Multi­
plying the kinetic equation (2.15) by mcx1p11 , integrating over the k-space, and summing 
over all the modes, gives the equation of change 

(3.4) :, e<'P>+ a~. e<U.'P) = n[(a;t) + (u. a~. m'l') + (Fma!m-m'P)+LI,(m'P), 
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where (tp) = ~ ~ J m~~.tp~~.frtdk 3 - mass weighted average, 
ex 

(~) = ! ~ J tp~~.frtdk3 - particle weighted average, 
ex 

L1e(m1p) = ~ f m~~.1p~~. a a; dk 3
- moment of the collision integral. 

ex 

Without summation over modes, Eq. (3.4) becomes a partial equation of change. 
Equation (3.4) has a formal similarity to the Chapman-Enskog equation of change for 
gas mixtures, CHAPMAN & CowLING (1960), with the major difference being the retention 
of variable mass under integral signs in (3.4). 

It should be pointed out that, if 'Pis not a function of k,., then (3.4) yields the trivial 
result, namely that the mass-weighted average of 1p is carried by the fluid, i.e., Eq. (3.4) 
reduces to the product of (tp) times the mass continuity equation. 

3.3. Transport equations 

Allowing for an implicit dependence of frequency w, Eq. (2.9), on space and time 
through the -mean values of u1(x,., t) and a(x,., t), we have the following special cases 
of the equation of change. 

Particle conservation. Let V'« = 1/m«, so that m~~. 'Ptt. = 1. Recalling the definition 
of number density, Eq. (2.16), .and using derivatives of (2.9), we have 

(3.5) o;; + 0!1 
[ntt.(UJ+ad~~.J)] = L1eu(1), 

where d~~.1 , the acoustic particle diffusion vector, is defined as 

d«i = J_!_:-2K
2 

~L[/4 _Is Jdk3 • 
1/t -K2 k n4 n 5 

Equations (3.5), with the source term, L1ecx(1), evaluated for/,, obtained as solutions 
of the kinetic equation (2.15), must be integrated subject to appropriate boundary condi­
tions, so that the distribution functions, /,, may be normalized. If one would define 
1: = fr~/n«, then the collision term in (3.5) could be written as a double sum of terms con­
taining factors such as n«n1, n«n,n,, the summation extended over fJ and y. 

Conservation of mass. Let 'Pu = 1. Then Eq. (3.4) becomes 

0(! a - ~ Jtc [ omcx aw(l amtl. aw(l omcx J dk3 L1 ( ) Tt + OXj (!Uj- L.,; tl -at+ okj OXj - OXj . okj + em. 
ex 

The sum of integrals on the right-hand side represents the time rate of change of mass 
per unit volume, due to the dependence of mcx on xb k1 and t when the quasi-particles 
follow their Hamiltonian trajectories between collisions, and L1e(m) gives the rate of change 
due to collisions. Without additional assumptions on the dependence of m« for vorticity 
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and entropy modes, theintegrals on the right-hand side cannot be evaluated. We shall 
assume, however, that the net effect, summed over all particles and all collisions, is to 
conserve mass of the gas, and write 

ae a 
-+-eu· = o. at ax1 J 

Conservation of momentum. With m«1Jl« = hk1 , where "P« = U«1-u1 , quasi-momentum 
per unit mass relative to fluid, imposing conditions (3.1) and (3.2) and using (2.12) and 
(2.13), one obtains from the equation of change 

where p- thermodynamic pressure- eRT = ea2 fy, and where 

P = !!__ [ V k lf·-J,)dk' - acoustic pressure ratio, 
ea· 1-K2 

li f 1-2K2 k1k1 . 
aiJ =- y k (f4-j5)dk3 -acoustic stress tensor. 

ea 1-K2 

We note that only the acoustic modes contribute explicitly to turbulent momentum 
transport relative to fluid, and that the dependence on the remaining modes is implicit 
through the wave interaction term L1e(hk1). Further, due to condition (3.2), the Eulerian 
derivative, ofot+u1 ofoxb does not appear in the equation of conservation of quasi­
momentum relative to fluid. 

Conservation of energy. With m«1Jl« = hruii one obtains 

1 ar ar 1 a 1 
(1- /2P)at +uj OXj + e OX] [eT(uj+Utarj+aaj)] = Cp(y-1) L1e(hru), 

where T is local thermodynamic temperature - a2 fcP('Y -1), and where 

a 1 = _!:__ J ; -2
K

2 

k1(f4 + / 5) dk3 - acoustic energy diffusion vector. 
ea 1-K2 

In order to display other uses of the equation of change, we shall consider the trans­
port of the entropy functional. 

Entropy generation. Let "Pa. = - k*Iogf« ,. where k* is Boltzmann constant, and take 
the 1Jl11. moment of the kinetic equation. Defining specific entropy as· 

k* ~,f s = - e ~ f11.Iogj11.dk 3
, 

a. 

one obtains from the equation of change 
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The first term on the right-hand side represents entropy of mixing, and the second term 
the entropy source due to wave interactions. The .entropy diffusion vector, s1, is defined 
as 

4. Discussion 

Several comments are in order. Since energy and momentum (eo and k1) are conserved. 
on microscopic scale in resonant wave interactions, it is reasonable to expect that L1e(heo) 
and L1e(lik1), but not L1e(m), Liea.(1), and Lie( -k*logn, vanish identically. Such results 
have been demonstrated rigorously making use of certain symmetries, cf., e.g. p. 355, 
DAVIDSON (1967) and LITVAK (1960). Further, Chapman-Enskog perturbation procedure 
may be used to arrive at an approximate solution of the kinetic equation. It is, therefore, 
reasonable to expect that one may be able to give expressions for the scalar P, the vectors 
da.1 , a1 and s1 , and the tensor lliJ in terms of gradients of average fluid properties with 
transport coefficients defined in terms of fluid properties and "coliision cross-sections" 
defined in terms of the distribution functions fa.. 

In several special cases, e.g. DAVIDSON {1967) and Appendix C of VEDENOV (1968), 
the interaction integral arising from the bilinear terms contains factors of the form 

/2/3 -ft/2 -ft/3 = ftf2f3(f1 1 -f21 -/3 1
) 

in present notation. Consequently, for equilibrium to exist, of/ot = 0, it is sufficient that 
J-1 be a linear combination of the collisional invariants, k1 and eo, corresponding to 
quasi-particle momentum and energy, respectively. Trilinear terms lead to the same con­
clusion. With a, b, and c1 constant, we have for the equilibrium distribution function 

la. = (a+beoa.+c1k1)-t, 
which is a distribution of the Rayleigh-Jeans type. 

The present model of turbulence offers an independent justification of K.RzYWOBLOCKI's 

(1971) characterization of turbulence as "a self-excitable flutter (vibration) phenomenon," 
(p. 384) which "becomes observable above critical Reynolds number but exists every­
where above T = 0," (p. 368). With a five-fold infinity of energy containing states of the 
fluid admitted by the present theory, turbulence "exists" even when energy has an equilib­
rium distribution and the total amount of energy is small. The generally non-linear 
"flutter phenomenon" would appear naturally as a consequence of a balance between 
the tendency of each wave to serve as an almost infinite capacity energy storage and the 
tendency to exchange this energy and to return to equipartition. The balance between 
rates of gaining and loosing energy is governed by the non-linear interaction terms. No 
other external agency is needed to cause self-excitation of fluid waves safe for a right 
combination of the physical quantities which enter into the coefficients of the interaction 
terms. Evidently, that combination of the physical quantities which renders the Reynolds 
number sufficiently high is the experimentally observed "sufficient condition" for the 
"flutter phenomenon" to occur. 

5 Arch. Mcch. Stos. nr 5/74 
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We have not touched in this paper upon the question of boundary conditions for the 
distribution function f(xm, km, t) whic~h solves the kinetic equation (2.15). It is expected 
that boundary conditions may lead to a discrete spectrum, possibly superimposed on 
a continuous spectrum, as a consequence of a possible existence of a discrete set of eigen­
frequencies. It is quite possible that the intermittency of turbulent boundary layer edges 
and Clear Air Turbulence (CAT) in stratified atmosphere may belong to a class of eigen­
value problems for the kinetic equation (2.15). 

It is the sincere hope of the author that the readers will examine critically the premises 
on which this preljminary outline of the theory of turbulence is based, and that improve­
ments, refinements, and generalizations will follow resulting, eventually, in applications 
to technical problems. Ultimately, the test of the theory lies in the correctness of its pre­
dictions and in an agreement with observations·. 
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