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Steady state fluid flow in viscoelastic tubes. Application to blood flow 
in human arteries 

Y. KIVITY (HAIFA) and R. COLLINS (PARIS) 

A METHOD is outlined for determining the strain-rate dependent viscoelastic properties of the 
great vessels. The method is based on in vitro measurements of the axial distributions of either 
cross-sectional area or intraluminal pressure upon passage of a shock wave into the vessel. 
The corresponding analysis uses a •quasi one-.dimensional model of steady state wave propaga
tion in a non-linear vise0elastic fluid-filled tube in which axial and bending stresses have been 
neglected. An approximate analytic expression is derived for the thickness of the shock transi
tion in terms of the viscoelastic parameters; the shock velocity and the pressure difference across 
the shock. It is predicted on theoretical grounds that the entry length and shock thickness will 
be impractically large for fluids such as blood or water having densities of order one. In order 
to overcome this difficulty, mercury is proposed as the filling fluid. Calculations for mercury 
show that in this unique case, meaningful experiments are feasible using human aortic segments 
of lengths of the order of 15cm. 

Przedstawiono metod~ okreslania zaleinych od pr~dkosci deformacji lepkospr~iystych wlasnosci 
duzych naczyn krwionosnych. Metoda oparta jest na pomiarach przeprowadzonych poza 
organizrnem i dotyc~cych b~dz przekroju poprzecznego, b~dz te:i cisnienia wewn~trznego 
w kanale przy przejsciu fali uderzeniowej. Analiza oparta jest na · quasi-jednowymiarowym 
modelu ustalonej propagacji fali w nieJiniowo lepkospr~iystej rurze wypelnionej ciec~ z po
mini~iem napr~i:en osiowych oraz zginania. Wyprowadzono przyblii:ony wz6r na grubosc 
faJi uderzeniowej w zalei:nosci od parametr6w lepkospr~i:ystych, pr~dkosc jej propagacji oraz 
r6i:ni~ cisnien po obu stronach fali. Z teoretycznych przeslanek wynika, ie grubosc ta wypada 
zbyt wielka dla cerow praktycznych w takich cieczach jak woda lub krew, kt6re maj~ g~tosc 
rz~du jedno8ci. Dla pokonania tej trudnosci zaproponowano ui:ycie rt~ci jako cieczy wypelnia
jllcej przew6d. W tym szczeg61nym przypadku wykazano, i:e moi:na przeprowadzic rozs~tdne 
doswiadczenia na odcinkach aorty o dlugo8ci okolo 15 cm. 

llpe~CTaBJieH MeTO~ onpe~eJielDUI 38BHC.RIIUIX OT CI<OpoCTH ~ecpopMamm, B.R3KOynpyi'HX 
CBOHCTB 6om.IIIBX I<poBeHOCHbiX cocy~oB. Mero.z:. onupaeTCH Ha H3Mepemmx npoH3Be~eHHbiX 
BHe opraHH3Ma u I<&caiOIIUIXCH HJIH nonepetmoro cet~eHIDI, HJIH >Ke BHYTPeHHero )];aBnemm 
B I<aHaJie npu nepeXO)];e y~apHOH BOJIHbl . .AHaJIH3 onupaeTC.R Ha l<Ba3H·O.QHOMepHOH MO)];eJIH 
YCTaHOBHBmeroc.R pacnpOCTpaHeHH.R BOJIHbl B HeJIHHeHHOH B.R3I<Oynpyroii Tpy6e 38TIOJIHeHHOH 
>KH)];l<OCTbiO npu npeHe6pe>KeHHH oceBLIMH HanpH>KeHHJIMu, a TaJOKe H3m60M. BLIBe~eHa 
npu6Jm>KeHHa.R «i>opMyJia ~ mHpHHbl y,QapHOH BOJIHbl B 38BHCHMOCTH OT BR3I<Oynpyrux 
DapaMeTpOB, CI<OpOCTH ee pacnpOCTpa.HeHIDI H pa3HHIU>I )];aBJieHHH no o6oux CTOpOHax BOJIHbl. 
Ha TeOpeTHlleCI<HX npe)];TIOCbiJIOI< CJie)];YeT' liTO :na mupHHa no~eTCJI CJJHIIII<OM 6om.moii 
)1;JUI npai<THtleCI<HX :QeJieH ~ Tai<HX >KH)];I<OCTeH I<a:K BO)];a HJIH I<pOBb, l<OTOpbie HMeiOT TIJIOT· 
HOCTb DOpJml«l e)1;HlDI:Qbi. ,Jlmi npeo,ll;OJieHHH 3TOH Tpy.QHOCTH npe)];JIO>KeHO HCDOJIL30BaHHe 
PTYTH I<a:K .>l<lf):tl<OCTH 3anOJqiHIO~eii Tpy6y. B :noM t~aCTHoM CJIYllae ~OKa3aHO, 't!TO Mo>I<Ho 
npoBo~ pasyMHLie 3I<cnepuMeHTLI Ha OTpe3I<ax cocy~a . c wnmoii npHMepHo B 15 cM. 
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1. Introduction 

IT IS KNOWN that the large vessels, such as the aorta, although elastic at low rates of ex
tension, behave a_s viscoelastic materials of ever-increasing stiffness as the rate of strain 

· to which they are subjected increases FUNG (1970), CoLLINS and Hu (1972). Meaaingful 
calculations of the stresses to which these vessels are exposed depend most critically on 
these dynamic stress-strain-strain rate relationships. Results of acceleration experiments 
performed over a number of years by STAPP (1970) on. young military volunteers indicate 
the surprisingly wide range of forces and accelerations to which the subject may be ex
posed during falls, vehicular collisions, vibrations, impacts and ejection from aircraft, 
in addition to the yet less well documented spectrum of forces encountered during space 
travel. For example, rates of decelerations exceeding 1000 g per -second at levels higher 
than 25 g become progressively more difficult to withstand, even in the backwardfacing 
position, or with pelvic and shoulder girdle restraints, eliciting transient musculo-skeletal or 
visceral pain, changes in vision and perturbations of the cardiac and respiratory functions. 

It is clear that theoretical and experimental investigations of accelerative phenomena 
will require accurate estimates of the dynamic material properties of biological tissues 
in these wide force regimes. Presently, such data are rare or non-existent. For the great 
vessels, material properties have been determined from "jerk-type" experiments, in which 
the vessel is abruptly elongated from its position at r.est. Large strains ·and strain-rates 
occur only after significant stretching of the complete vessel segment, often to levels which 
are physiologically unrealistic. 

In this work, a more practical approach is suggested, based upon the passage of a shock 
front through a liquid-filled · vessel. The specimen is strained significantly and rapidly 
only in the immediate vicinity of the propagating front. In the following sections, a mathe
matical model is formulated for shock propagation in a fluid-filled distensible tube, and 
resulting changes in intraluminal pressure and cross-sectional area are related directly, 
in closed analytical form, to tl\e material properties of the tube wall. Shock experiments 
are then proposed which would . yield the viscoelastic properties of arteries and veins on 
the basis of this analysis. 

2. Shock waves in the greater vessels 

2.1. Basic PJayslcal assmnpticms 

The formation and propagation of shock waves in fluid-filled distensible tubes have 
recently been considered_ by RUDINGER (1970), BEAM (1968), LAMBERT (1958) and ANUKER 
et al. (1971). The formation of a shock wave is a result of the steepening of a finite amplitude 
continuous wave, in an elastic tube having a non-linear pressure-area relation. When no 
mechanism is provided in the mathematical model to smooth rapid changes on the fiow, 
the wave steepens to the level at which a discontinuity eventually forms. 

In the proposed experiments, the tube segment must be sufficiently long for formation 
of a shock front. This length is related to the mechanical properties of the tube, the fluid 
density, and the initial rise-time of the wave (see RuoiNGER (1970) Eq. (12)). The dis-
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persive effects of fluid viscosity and wall viscoelasticity in fact "smear" the mathematical 
shock discontinuity over a finite thickness, the precise form of which then depends upon 
these parameters. For the larger vessels, however, the dispersion depends most critically 
upon the viscoelastic properties of the tube wall rather than of the fluid which is there
fore taken as inviscid in this study. It will subsequently be shown, however, that the fluid 
density plays an important role in determining the entrance length and shock thickness 
and that these can be shortened significantly for heavy fluids. 

In order to simplify the mathematical problem somewhat, it is assumed that the shock 
wave propagates in a tube with uniform mechanical properties and cross-sectional area 
and that a steady state is achieved, i.e., that the flow-field becomes stationary for an 
observer moving with the shock. Under these assumptions, the shock structure is governed 
by an ordinary differential equation, which allows one to study the basic properties of the 
shock transition fairly easily. 

2.2. Mathematical model 

We adopt here a quasi one-dimensional model for the flow of an inviscid jncompressible 
fluid in a viscoelastic tube, based upon the assumptions that (a) the wave length is long 
compared to tube diameter and (b) that the tube is constrained from longitudinal motions· 
Under these assumptions the governing equations of motion may be expressed as 

(2.1) At+(Au);\; = 0 (continuity), 

(2.2) Px O Ur+uux+- = 
(! 

(conservation of momentum). 

Here t denotes the time and xis the distance along the axis of the tube, measured in the 
flow direction, u the fluid velocity (averaged over the cross-section), A the cross-sectional 
area, p the pressure and e the constant density of the fluid. 

To these equations must be added a relation between the pressure and the cross-sectional 
area. For a viscoelastic tube, the pressure depends on the cross-sectional area and its time 
rate of change, 'YJ = oAfot. The strain-rate dependent pressure-area relation may be 
written as: 

(2.3) p = f(A)+g(A, 17); 

where the function (A) corresponds to static loading, and the g-term accounts for the 
viscoelastic properties of the tube wall. g is a monotonically increasing function of 'YJ 

with 

(2.4) g(A, 0) = 0. 

2.3. Stationary flow 

For the analysis of the stationary shock-wave, it is convenient to write the differential 
equations in a coordinate system moving with the shock. 

Assuming that the shock wave is moving to the right with a constant velocity U, we 
employ the transformation 

(2.5) z =X- Ut, 'l' = t. 

12 Arch. Mech. Stos. nr 5/74 
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The differential equations (2.1) a,nd (2.2) become 

(2.6) A.+ (vA)z = 0, 

(2.7) 

where 

(2.8) v = u-U. 

The functional relation (2.3) remains unchanged, but now 'YJ is given by 

(2.9) 
aA aA 

'YJ=--U--ar az . 
The steady state equations are obtained by putting a I ar = 0 in the differential equations 
(2.6) and (2. 7). They then become ordinary differential equations, which after one integra
tion with respect to z give 

(2.10) vA =m,. 

(2.11) 

The pressure-area relation becomes 

(2.12) p = f(A)+g(A, - U ~~ ). 

The shock jump conditions can now be obtained by considering the flow conditions far 
ahead of the shock and far behind the shock. Denoting these states by subscripts 1 and 2 
respectively, one has 

(2.13) 

.., 2 

Vi + !!2_ = ~ + P2 = F, 
2 e 2 e 

(2.14) 

where P1 ; 2 = /(A1 , 2) since dAfdz vanishes at both ends and Eq. (2.4) is noted. The rela
tions for the shock velocity U and the change in the fluid velocity (u2 - u1) follow from 
Eqs. (2.13), (2.14) and (2.8): 

(2.15) 

(2.16) 
u2 -u1 _ 

1 
A1 

U-u
1 

- - A
2 

• 

The set of Eqs. (2.10), (2.11) and (2.12) can be reduced to a single equation by eliminating 
p and v from (2.11) using (2.10) and (2.12). The resulting differential equation for A is 

(2.17) ( dA) ( 1 m
2

) g A, -U dz = e F-2 A2 -f(A). 
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If the constants m and F from Eqs. (2.10) and (2.11) are expressed in terms of the flow 
variables in states 1 and 2, Eq. (2.17) becomes 

Once the functions g and fare known, Eq. (2.18) constitutes a first-order differential 
equation for A(z) which may be integrated by simple quadrature. Alternatively, if A(z) 
is measured, Eq. (2.18) provides a relation between/ and g. If, in addition, the function/ 
is known, then the function g may be determined directly from Eq. (2.18). It is, in fact, 
this approach which forms the basis of the presently proposed method. 

The function f(A), corresponding to the zero strain-rate response, may be measured 
accurately by static loading experiments. The function will have the following property. 
For physically realistic behaviour, the cross-sectional area A increases with pressure p, 
i.e. dffdA > 0. If in addition, a continuous wave travelling in the tube is to steepen into 
a shock front, one also requires that (BEAM, 1968) 

(2.19) 

where 

(2.20) 

and A0 is a reference cross-sectional area. 
This condition can be shown equivalent to the fact that sound speed c in a flexible 

tube generally increases with intraluminal pressure, or more rigorously, (1 +ecdcfdp) > 0, 
as has been verified by the experiments of KING (1947) which were carried out over the 
physiological range of pressure. In fact, recent measurements (CoLLINS and Hu, 1972) 
have corroborated the property (2.19) at higher intraluminal pressures. 

2.4. Particular solutions 

The general relation (2.18) may be solved for specific functional forms of g and f 
From the experiments of COLLINS and Hu (1972) for the aorta, the resulting stress-strain 
relation would indicate that the function g(A, 'Y}) is linear in 'YJ, so that it may be written 
as 

(2.21) g(A, 'YJ) = G(A)'YJ, 

where G(A) > 0 since the stiffness increases with increasing strain-rate. The differential 
equation for the shock structure now becomes 

(2.22) 

12* 

G(A)dA 
dz = U(A 1 , A 2 ) H(A) , 
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where H(A) is given by the right.:.hand side of Eq. (2.18), that is, 

(2.23) H(A) =f(A)-f(A,)- ~~~~1~,) (1- ~n 
and f(A) is known from static measurements. 

For the discussion of the solution of (2.22), it is advantageous to replace 4 by the 
Beam parameter ex [Eq. (2.20)]. Equation (2.22) becomes 

(2.24) 

where 

(2.25) 

(2.26) 

- dex 
dz = U(exh ex2)G(ex) ~(ex) , 

G(ex) = G(A(ex)) _dA(ex) 
dex 

and U is given from Eq. (2.15) as 

(2.27) e[U(ext, ex2)-ut]2 = (. Ao )2 /(ex2)-/(ext) 
At ex2- ext 

It is clear that Eq. (2.24) possesses singularities at the ends of the interval ex1 ~ ex ~ · ex2 
and that a special treatment is required there before numerical integration can be attempted. 

Since ~ vanishes at ex = ex1,2 and also ~"(ex) > 0 in ex1 ~ ex~ ex2, it follows that 

~(ex) =I= 0 for ex1 < ex < ex2. 

Near the ends (ex= ex1,2), ~(ex) approaches zero as B1 , 2(ex-ex1,2), where from Eq. (2.25) 

(2.28) Bt, 2 = dfl - /( ex2)-f ( ext) . 
dex 1<cx"2> ex2 - ex1 

The solution of (2.24) near ex1 and ex2 is therefore 

z+const = U~(a1 '2) lnlex-ex1,2l, for ex---+ ex1,2· 
1,2 

(2.29) 

Since the function ~ < 0 for all a, and behaves as B1,2(ex- ex1,2) near ex = ex1,2, it 
follows that B1 < 0 and B2 > 0. Then z -+ oo when ex ---+ ex1 and z ---+ - oo when ex ---+ ex2, 
which implies that the mathematical shock transition extends from minus infinity to plus 
infinity. However, it will be shown that the principal variations in the flow field occur 
over a finite extent, and this may be considered for all practical purposes as the shock 
"thickness". 

The solution of (2.24) for general functions G{ex) and le ex) can be obtained by quadra
ture with the help of the limiting forms (2.29). 

In a similar way, limiting forms may be derived for the solution of the general case 
embodied in Eq. (2.18). 
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Solutions of Eq. (2.24) may now be derived for polynomial representations of G and f. 
The simplest closed-form solution is obtained for 

(2.30) 

(2.31) G(a) = const = p. 

The parameters Band Tin the function J can be selected so that f(a) closely follows 
the experimentally measured curves. However, the experimental results are usually ex
pressed in the form of a relation between the speed of sound c and the pressure p. From 
the Moens-Korteweg relation for the speed of sound in an elastic tube 

(2.32) 
2 A df 

c = -e dA-, 

which for the form of /(a) given by (2.30), yields 

(2.33) 

and 

(2.34) de I (!Co- = F-1. 
dp p -=Po 

Relations (2.33) and (2.34) serve to determine B and r in the function f(a) of relation 
(2.30) in terms of the measured c0 and dcfdp at p = p0 • 

The differential equation (2.24) becomes 

dz = 2 p.Uda 
ec0 F( a- at)( a.- a2) 

whose solution is 

(2.35) 

where Y is the ratio of the viscoelastic to elastic moduli at the reference area A 0 , 

(2.36) Y = p/ec~. 
An alternate form of Eq. (2.35) which is analogous to the classical relation for the structure 
of weak gas dynamical shocks [see HA YES (1958)] is 

(2.37) 

where 

a* = a2- a1 
- 2 

With this solution for the axial distribution of cross-sectional area through the shock 
transition, one may now proceed to an estimate of the length of the shock transition, 
i.e., the shock thickness over which most of the pressure jump occurs. 



928 Y. KlviTY AND R. CoLLINS 

A general relation between p and A for the stationary flow is given by Eqs. (2.17) 
and (2.3) 

p-p, = ek- ~ ~: ). 
Inserting the expressions for F and m from (2.13) and (2.14), this becomes 

p-p,= e(U-u1)
2 ~ [t-( ~~ }] 

or 

(2.38) p-p 1 = e(U-u,)2
( ~~ r (ex-ex,), 

which shows that the pressure drop is proportional to (ex- ex1). This fact is used to define 
the shock wave· "thickness" ~ as 

(2.39) 
ex2- ex1 

~~~ lmu. 
Using the solution (2.37) one obtains the shock thickness 

(2.40) ~ = · 4vU 
(exl- ex.) r . 

The thickness ~ corresponds to the distance over which three quarters of the total pressure 
jump takes place. 

3. Proposed experimental determination of viscoelastic properties 

The function g(A, 1}) characterizing the viscoelastic material behaviour in the pressure
area relation (2.12) may be determined by a series of careful experiments in which either 
a) the wall profile is measured, giving A = A(x), or b) the axial distribution of pressure 
p = p(x) is recorded for a given position of the shock front. 

A choice between a) and b) might be made purely on the basis of experimental accuracy 
and facility. For alternative a) one uses the measured distributions A = A(z) over a range 
of shocks strengths. Numerical differentiation, carried out as accurately as possible, then 

allows one to evaluate both arguments of g (A, - U ':;: ) in Eq. (2.18) for a range of 

values of dAfdz, so that the surface g may be constructed. The right-hand side of (2.18) 
is evaluated using the function/ determined from the usual static tensile tests. If desired, 
relation (2.12) may then be easily converted to an expression for stress in terms of strain 
and strain rate. 

Method b) requites differentiation of the measured pressure distribution p(z). The 
pressure and its derivative are calculated in terms of cross-sectional area through rela
tions (2.38) and (2.20), and the procedure for method a) outlined above is followed directly. 
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The tube diameter, and hence cross-sectional area, may be measured during passage 
of the uniform shock front by recording, by X-ray cinematography, the motion of two 
fine metallic wjres disposed axially, and diametrically opposite one another, along the outer 
wall surfaces of the tube. If the fluid which fills the tube is radio-opaque, X-ray cine will 
record the instantaneous diameter directly. The pressure may be measured by miniature 
strain-gauge type semi-conductor transducers mounted in a catheter and oriented along 
the axis of the lumen. 

Wave propagation experiments in 10 meter-long water-filled rubber and PVC-tubes 
have been performed by LoRENTZ and ZELLER (1972) for weak shocks which did not 
produce the high rates of strain of interest here. 

Errors in determination of the dynamic material properties in this manner can emanate 
only from inaccuracies in the measurement of diameter (or pressure) and in numerical 
differentiation of these quantities which should be carried out carefully. It is noted that 
azimuthal isotropy is implicit in this quasi one-dimensional formulation. 

The tube must be sufficiently long for formation of a shock front and for its develo.r
ment into an equilibrium profile. The distances that the wave must travel in order to fulfil 
this requirement may be estimated as follows: 

(i) Distance sl for shock formation [RUDINGER, 1970, Eq. (12)]: 
3 S _ (!Co 

1

- dpl ( de)' dt 1+ecoy 
X=Xo 'P 

(3.1) 

where ( 1 + ec0 : ) = r = 3 for measurements of COLLINS and Hu (1972). 

(ii) Distance S2 for the formed shock to reach an equilibrium state, has been calculated 
using the general numerical solution of KIVITY and CoLLINS (1974) for a blood-filled 
viscoelastic tube of uniform cross-section with B = 0.08 s, (} = 1.05gmfcm3 and c0 

= 300cmfs. 
The boundary condition at the proximal end was chosen to simulate the flow pattern 

when the tube is connected to a high pressure reservoir: i.e., the total pressure 

1 
Po = p+ -pu2 

2 

is prescribed as a function of time. The tube is taken sufficiently long to ensure that no 
signals are transmitted back from the distal end. This calculation predicts a shock thick
ness of approximately 22cm and an entrance length of 45-55cm (dependin~ on the rise 
time of the proximal pressure P which varied in the calculations between 2 "' 20ms) 
for a reservoir pressure of 0.66atm. 

For these values of the. parameters, Eq. (3.1) predicts a distance S1 for shock forma
tion of less than 1 cm, which could be disregarded in estimating the required minimum 
lengths of test specimens. However, the distance S2 (entrance length and shock thickness) 
is clearly too long for testing aortic segments of 10 "' 15cm long, corresponding for in
stance, to the human aortic arch, along which the material properties do not vary signi
ficantly. Fortunately, it is possible to reduce the entrance length and shock thickness 
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to acceptable levels by increasing the density of the fluid. This follows from an exact 
scaling law, directly derivable from the equations of motion (2.1), (2.2), (2.3) and rela
tion (2.32), which shows that distances vary inversely as the square root of the fluid density. 
In fact, mercury with a density of 13.6 gmfcc is ideal for this purpose. The calculated 
entrance length and shock thickness .then become 12-15cm and 6cm, respectively. A shock 
thickness of 6cm is quite compatible with a test segment of 15cm in length. Shorter shock 
thicknesses would begin to violate the basic assumption of large wave-length-to-diameter 
ratio. A furled plastic liner introduced into the aorta (cf. COLLINS and Hu (1972) will 
prevent direct contact between the mercury and the intimal layer of the vessel wall. 

4. Conclusions 

A general technique has been described for determining the non-linear viscoelastic 
properties of distensible tubes at high · strain-rates. It has been shown possible to generate 
shocks of acceptable thickness relative to arterial test segments of about 15cm in length 
by the novel use of mercury as the filling fluid. A series of in vitro tests with different 
pressure levels performed on the same biological specimen permits one to trace the visco
elastic function g on the strain-strain rate surface. 

An internal furled plastic liner can be used to isolate the intimal layer of the wall 
segment from direct contact with the mercury to prevent contamination during repeated 
tests. The biological specimen should be preserved in a bath of physiological saline solu
tion maintained at a controlled temperature to ensure that its physical properties do not 
change significantly after excision. 

Separate calculations show that fluid viscosity contributes very little to the stress 
fields in the vessel wall, and may hence be safely neglected. The time for establishment 
of a steady state flow regime may be modified somewhat by slight taper of the tube and 
small material inhomogeneities over a 15cm aortic segment. 

Good accuracy in the determination of the viscoelastic material parameters will be 
achieved if the spatial distributions of pressure and cross-sectional area depend critically 
upon changes in the viscoelasticity-related function g(A, 'YJ). Comparisons by KIVITY 

and CoLLINS (1974) of preliminary calculations with experimental test results performed 
on abruptly decelerated dogs corroborate this high sensitivity. 
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