716.

AN ILLUSTRATION OF THE THEORY OF THE 9 -FUNCTIONS.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 27-32.]
If X be a given quartic function of x, and if u, or for convenience a constant multiple αu, be the value of the integral $\int \frac{d x}{\sqrt{ }(X)}$ taken from a given inferior limit to the superior limit x; then, conversely, x is expressible as a function of u, viz. it is expressible in terms of 9 -functions of u, where $9 u$, or say $9(u, \mathcal{F})(\mathfrak{F}$ a parameter upon which the function depends), is given by definition as the sum of a series of exponentials of u; and it is possible from the assumed equation $\alpha u=\int \frac{d x}{\sqrt{ }(X)}$, and the definition of $9 u$, to obtain by general theory the actual formulæ for the determination of x as such a function of u.

I propose here to obtain these formulæ, in the case where X is a product of real factors, in a less scientific manner, by connecting the function $9 u$ (as given by such definition) with Jacobi's function Θ, and by reducing the integral $\int \frac{d x}{\sqrt{ }(X)}$ by a linear substitution to the form of an elliptic integral; the object being merely to obtain for the case in question the actual formulæ for the expression of x in terms of 9 -functions of u.

The definition of $9 u$ or, when the parameter is expressed, $\mathcal{F}(u, \mathfrak{F})$ is

$$
9 u=\Sigma(-)^{s} e^{-\delta^{8}+2 i s u},
$$

where s has all positive or negative integer values, zero included, from $-\infty$ to $+\infty$ (that is, from $-S$ to $+S, S=\infty$); the parameter \mathfrak{F}, or (if imaginary) its real part, must be positive.
c. XI.

Evidently $9 u$ is an even function: $9(-u)=9 u$. Moreover, it is at once seen that we have

$$
9(u+\pi)=9 u, 9(u+i \mathscr{F})=-e^{\mathcal{Y}-2 i u} 9 u
$$

whence also

$$
9(u+m \pi+n i \mathscr{F}) \text {, }
$$

where m and n are any positive or negative integers, is the product of $9 u$ by an exponential factor, or say simply that it is a multiple of $9 u$.

Writing $u=-\frac{1}{2} i \mathcal{F}$, we have $9\left(-\frac{1}{2} i \mathcal{F}\right)=9\left(\frac{1}{2} i \mathcal{F}\right)$, that is,

$$
\mathcal{F}\left(\frac{1}{2} i \tilde{F}\right)=0,
$$

and therefore also

$$
9\left\{m \pi+\left(n+\frac{1}{2}\right) i \mathscr{F}\right\}=0 .
$$

The above properties are general, but if \mathcal{F} be real, then k, K, K^{\prime}, q being as in Jacobi (consequently k being real, positive, and less than 1 , and K and K^{\prime} real and positive), and assuming $\tilde{\vartheta}=\frac{\pi K^{\prime}}{K}$, or, what is the same thing,

$$
q\left(=e^{-\frac{\pi K^{\prime}}{K}}\right)=e^{-\S}
$$

the function 9 is given in terms of Jacobi's Θ by the equation $9 u=\Theta\left(\frac{2 K u}{\pi}\right)$; or, what is the same thing, $\Theta u=9\left(\frac{\pi u}{2 K}\right)$.

We hence at once obtain expressions of the elliptic functions $\operatorname{sn} u$, cn $u, \operatorname{dn} u$ in terms of 9 , viz. these are

$$
\begin{array}{lll}
\text { sn } u=\frac{-i}{\sqrt{k}} & e^{-\frac{\pi}{4 K}\left(K^{\prime}-2 i u\right)} 9\left(\frac{\pi u}{2 K}+\frac{1}{2} i \mathscr{F}\right) & \div 9\left(\frac{\pi u}{2 K}\right), \\
\text { cn } u=\sqrt{ }\left(\frac{k^{\prime}}{k}\right) e^{-\frac{\pi}{4 K}\left(K^{\prime}-2 i u\right)} 9\left(\frac{\pi u}{2 K}+\frac{1}{2} \pi+\frac{1}{2} i \vartheta\right) \div 9\left(\frac{\pi u}{2 K}\right), \\
\text { dn } u=\sqrt{ } k^{\prime} & 9\left(\frac{\pi u}{2 K}+\frac{1}{2} \pi\right) & \div 9\left(\frac{\pi u}{2 K}\right) .
\end{array}
$$

Consider now the integral

$$
\int_{a} \frac{d x}{\sqrt{\{(-) x-a \cdot x-b \cdot x-c \cdot x-d\}}},=\int_{a} \frac{d x}{\sqrt{ }(X)} \text { suppose, }
$$

where a, b, c, d are taken to be real, and in the order of increasing magnitude, viz. it is assumed that $b-a, c-a, d-a, c-b, d-b, d-c$ are all positive; x considered as the variable under the integral sign is always real; when it is between a and b or between c and d, X is positive, and we assume that $\sqrt{ }(X)$ denotes the positive value of the radical; but if x is between b and c, X is negative, and we assume
that the sign of $\sqrt{ }(X)$ is taken so that $\frac{1}{\sqrt{ }(X)}$ is equal to a positive multiple of i, and this being so the integral is taken from the inferior limit a to the superior limit x, which is real.

Take x a linear function of y, such that for

$$
\begin{aligned}
& x=a, b, c, d \\
& y=0,1, \frac{1}{k^{2}}, \infty, \text { respectively, }
\end{aligned}
$$

so that, x increasing continuously from a to d, y will increase continuously from 0 to ∞. We have

$$
\begin{aligned}
k^{2} & =\frac{b-a \cdot d-c}{d-b \cdot c-a} \\
y & =\frac{b-d}{b-a} \frac{x-a}{x-d} \\
1-y & =\frac{d-a}{b-a} \frac{x-b}{x-d} \\
1-k^{2} y & =\frac{d-a}{c-a} \frac{x-c}{x-d}
\end{aligned}
$$

and, thence,

$$
\sqrt{ }\left(y \cdot 1-y \cdot 1-k^{2} y\right)=\frac{d-a}{c-a} \sqrt{ }\left(\frac{d-b}{c-a}\right) \cdot \frac{\sqrt{ }(X)}{(x-d)^{2}},
$$

where $\sqrt{ }\left(\frac{d-b}{c-a}\right)$ is taken to be positive, and the sign of $\sqrt{ }(X)$ is fixed as above. Then for y between 0 and 1 or $>\frac{1}{k^{2}}, y .1-y .1-k^{2} y$ will be positive, and $\sqrt{ }\left(y .1-y \cdot 1-k^{2} y\right)$ will also be positive; but y being between 1 and $\frac{1}{k^{2}}, y .1-y .1-k^{2} y$ will be negative, and the sign of the radical is such that $\frac{1}{\sqrt{\left(y .1-y .1-k^{2} y\right)}}$ is a positive multiple of i.

We have moreover

$$
d y=\frac{d-a}{b-a}(d-b) \frac{d x}{(x-d)^{2}} ;
$$

and therefore

$$
\frac{d y}{\sqrt{ }\left(y \cdot 1-y \cdot 1-k^{2} y\right)}=\sqrt{ }(d-b \cdot c-a) \frac{d x}{\sqrt{ }(X)},
$$

where $\sqrt{ }(d-b . c-a)$ is positive ; or, say,

$$
\int_{0} \frac{d y}{\sqrt{ }\left(y \cdot 1-y \cdot 1-k^{2} y\right)}=\sqrt{ }(d-b \cdot c-a) \int_{a} \frac{d x}{\sqrt{ }(X)} .
$$

Hence, writing $y=z^{2}=\operatorname{sn}^{2} u$, we have

$$
2 u=\sqrt{ }(d-b \cdot c-a) \int_{a} \frac{d x}{\sqrt{ }(X)},
$$

and it is to be further noticed that to
correspond

$$
x=a, b, c, \quad d,
$$

$$
\operatorname{sn} u=0,1, \frac{1}{k}, \infty,
$$

or we may say

$$
u=0, \quad K, \quad K+i K^{\prime}, \quad 2 K+i K^{\prime} .
$$

Writing for shortness

$$
\frac{2}{\sqrt{ }(d-b \cdot c-a)}=\alpha
$$

we have
and moreover

$$
\begin{aligned}
\alpha u & =\int_{a} \frac{d x}{\sqrt{ }(X)} ; \\
\alpha K & =\int_{a}^{b} \frac{d x}{\sqrt{ }(X)}, \\
\alpha\left(K+i K^{\prime}\right) & =\int_{a}^{e} \frac{d x}{\sqrt{ }(X)}, \\
\alpha\left(2 K+i K^{\prime}\right) & =\int_{a}^{a} \frac{d x}{\sqrt{ }(X)},
\end{aligned}
$$

or if for a moment we write

$$
\int_{0}^{a} \frac{d x}{\sqrt{ }(X)}=A, \& c .,
$$

then these equations are

$$
\begin{aligned}
\alpha K & =B-A, \\
\alpha\left(K+i K^{\prime}\right) & =C-A, \\
\alpha\left(2 K+i K^{\prime}\right) & =D-A .
\end{aligned}
$$

Hence $B+C-2 A=D-A$, that is, $A-B-C+D=0$, or $B-A=D-C$, that is,

$$
\int_{a}^{b} \frac{d x}{\sqrt{ }(X)}=\int_{c}^{d} \frac{d x}{\sqrt{ }(X)^{\prime}}
$$

where observe as before that $x=a$ to $x=b$, or $x=c$ to $x=d, X$ is positive, and the radical $\sqrt{ }(X)$ is taken to be positive.

We have also

$$
\begin{aligned}
& \alpha K=B-A \\
&=\int_{a}^{b} \frac{d x}{\sqrt{ }(X)} \\
& \alpha i K^{\prime}=C-B \\
&=\int_{b}^{c} \frac{d x}{\sqrt{ }(X)}
\end{aligned}
$$

where, as before, from b to c, X is negative, and the sign of the radical is such that $\frac{1}{\sqrt{ }(X)}$ is a positive multiple of i; the last formula may be more conveniently written

$$
\alpha K^{\prime}=\int_{b}^{c} \frac{d x}{\sqrt{(-X)}}
$$

where, from b to $c,-X$ is positive, and $\sqrt{ }(-X)$ is also taken to be positive.
Collecting the results, we have

$$
\int_{a} \frac{d x}{\sqrt{ }(X)}=\alpha u, \quad \alpha=\frac{2}{\sqrt{ }(d-b \cdot c-a)}, \quad k^{2}=\frac{b-a \cdot d-c}{d-b \cdot c-a},
$$

and also

$$
k^{\prime 2}=\frac{d-a \cdot c-b}{d-b \cdot c-a},
$$

and then conversely

$$
x=\frac{a(d-b)+d(b-a) \operatorname{sn}^{2} u}{(d-b)+(b-a) \mathrm{sn}^{2} u} ;
$$

or, what is the same thing,

$$
\begin{aligned}
\operatorname{sn}^{2} u & =\frac{b-d \cdot x-a}{b-a \cdot x-d} \\
\operatorname{cn}^{2} u & =\frac{d-a \cdot x-b}{b-a \cdot x-d} \\
\operatorname{dn}^{2} u & =\frac{d-a \cdot x-c}{c-a \cdot x-d}
\end{aligned}
$$

where, in place of the elliptic functions we are to substitute their 9 -values; it will be recollected that \mathfrak{F}, the parameter of the 9 -functions, has the value

$$
\mathfrak{F}\left(=\frac{\pi K^{\prime}}{K}\right)=\pi \int_{b}^{e} \frac{d x}{\sqrt{ }(-X)} \div \int_{a}^{b} \frac{d x}{\sqrt{ }(X)},
$$

and, as before,

$$
K=\frac{1}{\alpha} \int_{a}^{b} \frac{d x}{\sqrt{ }(X)} .
$$

Hence, finally, $\alpha, k, k^{\prime}, K, \mathcal{F}$ denoting given functions of a, b, c, d, if as above

$$
\int_{a} \frac{d x}{\sqrt{ }(X)}=\alpha u
$$

we have conversely

$$
\begin{aligned}
& \frac{d-a \cdot x-b}{b-a \cdot x-d}=\frac{k^{\prime}}{k} e^{-\frac{1}{2}+\frac{i \pi u}{2 K}} 9^{2}\left(\frac{\pi u}{2 K}+\frac{1}{2} \pi+\frac{1}{2} i \mathcal{F}\right) \div 9^{2} \frac{\pi u}{2 K}, \\
& \frac{d-a \cdot x-c}{c-a \cdot x-d}=k^{\prime} \quad g^{2}\left(\frac{\pi u}{2 K}+\frac{1}{2} \pi\right) \quad \div 9^{2} \frac{\pi u}{2 K},
\end{aligned}
$$

which are the formulæ in question.

The problem is to obtain them (and that in the more general case where a, b, c, d have any given imaginary values) directly from the assumed equation

$$
\int_{a} \frac{d x}{\sqrt{(X)}}=\alpha u
$$

and from the foregoing definition of the function 9.
It may be recalled that the function $9 u$ is a doubly infinite product

$$
9 u=\Pi \Pi\left\{1-\frac{u}{m \pi+\left(n+\frac{1}{2}\right) i \mathscr{\mathscr { F }}}\right\}
$$

m and n positive or negative integers from $-\infty$ to $+\infty$; I purposely omit all further explanations as to limits; or, what is the same thing,

$$
9 \frac{\pi u}{2 K}=\Pi \Pi\left\{1-\frac{u}{2 m K+(2 n+1) i K^{\prime}}\right\}
$$

and consequently that, disregarding constant and exponential factors, the foregoing expressions of

$$
\frac{b-d \cdot x-a}{b-a \cdot x-d}, \quad \frac{d-a \cdot x-b}{b-a \cdot x-d}, \quad \frac{d-a \cdot x-c}{c-a \cdot x-d},
$$

are the squares of the expressions $\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}$, where X, Y, Z, W are respectively of the form

$$
\begin{array}{ll}
u \Pi \Pi\left\{1+\frac{u}{(m, n)}\right\}, & \Pi \Pi\left\{1+\frac{u}{(\bar{m}, n)}\right\}, \\
\Pi \Pi\left\{1+\frac{u}{(\bar{m}, \bar{n})}\right\}, & \Pi \Pi\left\{1+\frac{u}{(m, \bar{n})}\right\},
\end{array}
$$

where $(m, n)=2 m K+2 n i K^{\prime}$, and the stroke over the m or the n denotes that the $2 m$ or the $2 n$ (as the case may be) is to be changed into $2 m+1$ or $2 n+1$. But this is a transformation which has apparently no application to the 9 -functions of more than one variable.

