717.

ON THE TRIPLE THETA-FUNCTIONS.

[From the Messenger of Mathematics, vol. viI. (1878), pp. 48--50.]

As a specimen of mathematical notation, viz. of the notation which appears to me the easiest to read and also to print, I give the definition and demonstration of the fundamental properties of the triple theta-functions.

Definition.

$$
\mathcal{I}(U, V, W)=\Sigma \exp . \Theta
$$

where

$$
\Theta=(A, B, C, F, G, H)(l, m, n)^{2}+2(U, V, W)(l, m, n)
$$

Σ denoting the sum in regard to all positive and negative integer values from $-\infty$ to $+\infty$ (zero included) of l, m, n respectively.
$\mathcal{Q}(U, V, W)$ is considered as a function of the arguments (U, V, W), and it depends also on the parameters (A, B, C, F, G, H).

First Property. $\quad \mathcal{(}(U, V, W)=0$, for

$$
\begin{aligned}
& U=\frac{1}{2}\{x \pi i+(A, H, G)(\alpha, \beta, \gamma)\}, \\
& V=\frac{1}{2}\{y \pi i+(H, B, F)(\alpha, \beta, \gamma)\}, \\
& W=\frac{1}{2}\{z \pi i+(G, F, C)(\alpha, \beta, \gamma)\},
\end{aligned}
$$

$x, y, z, \alpha, \beta, \gamma$ being any positive or negative integer numbers, such that $\alpha x+\beta y+\gamma z$ $=$ odd number.

Demonstration. It is only necessary to show that to each term of 9 there corresponds a second term, such that the indices of the two exponentials differ by an odd multiple of πi.

Taking l, m, n as the integers which belong to the one term, those belonging to the other term are

$$
-(l+\alpha), \quad-(m+\beta), \quad-(n+\gamma),
$$

(where observe that one at least of the numbers α, β, γ being odd, this system of values is not in any case identical with l, m, n). The two exponents then are

$$
\Theta,=(A, B, C, F, G, H)(l, m, n)^{2}+2(U, V, W)(l, m, n),
$$

and

$$
\Theta^{\prime},=(A, B, C, F, G, H)(l+\alpha, m+\beta, n+\gamma)^{2}-2(U, V, W)(l+\alpha, m+\beta, n+\gamma) ;
$$

viz. the value of Θ^{\prime} is

$$
\begin{aligned}
= & (A, B, C, F, G, H)(l, m, n)^{2}+(A, B, C, F, G, H)(\alpha, \beta, \gamma)^{2} \\
& +2(A, B, C, F, G, H)(l, m, n)(\alpha, \beta, \gamma) \\
& -2(U, V, W)(l+\alpha, m+\beta, n+\gamma)
\end{aligned}
$$

and we then have

$$
\begin{aligned}
\Theta^{\prime}-\Theta= & 2(A, B, C, F, G, H)(l, m, n)(\alpha, \beta, \gamma) \\
& +(A, B, C, F, G, H)(\alpha, \beta, \gamma)^{2} \\
& -2(U, V, W)(2 l+\alpha, 2 m+\beta, 2 n+\gamma)
\end{aligned}
$$

Substituting herein for U, V, W their values, the last term is

$$
\begin{aligned}
= & -\{(2 l+\alpha) x+(2 m+\beta) y+(2 n+\gamma) z\} \\
& -2(A, B, C, F, G, H)(l, m, n)(\alpha, \beta, \gamma) \\
& -(A, B, C, F, G, H)(\alpha, \beta, \gamma)^{2},
\end{aligned}
$$

and thence

$$
\Theta^{\prime}-\Theta=-\{(2 l+\alpha) x+(2 m+\beta) y+(2 n+\gamma) z\} \pi i,
$$

which proves the theorem.
As to the notation, remark that, after (A, B, C, F, G, H) has been once written out in full, we may instead of

$$
\left(A, B, C, F^{\prime}, G, H\right)(l, m, n)^{2}, \& c . \text {., write }(A, \ldots)(l, m, n)^{2}, \& c . \text {., }
$$

and that we may use the like abbreviations

$$
\begin{array}{llll}
(A, \ldots)(l, m, n) \text {, to } & \text { denote }(A, H, G)(l, m, n) & \text { respectively, } \\
(H, \ldots)(l, m, n), & " & (H, B, F)(l, m, n) \\
(G, \ldots)(l, m, n), & " & (G, F, C)(l, m, n)
\end{array}
$$

These are not only abbreviations, but they make the formulæ actually clearer, as bringing them into a smaller compass; and I accordingly use them in the demonstration which follows.

Second Property. If U_{1}, V_{1}, W_{1} denote

$$
\begin{aligned}
& U+x \pi i+(A, H, G)(\alpha, \beta, \gamma), \\
& V+y \pi i+(H, B, F)(\alpha, \beta, \gamma), \\
& W+z \pi i+(G, F, C)(\alpha, \beta, \gamma),
\end{aligned}
$$

respectively, where $x, y, z, \alpha, \beta, \gamma$ are any positive or negative integers (zero values admissible), then
$9\left(U_{1}, V_{1}, W_{1}\right)=\exp .\left\{-(A, B, C, F, G, H)(\alpha, \beta, \gamma)^{2}\right\} \cdot \exp .\{-2(\alpha U+\beta V+\gamma W)\} .9(U, V, W)$, or say

$$
=\exp .\left\{-(A, \ldots)(\alpha, \beta, \gamma)^{2}\right\} \cdot \exp .\{-2(\alpha U+\beta V+\gamma W)\} \cdot 9(U, V, W) .
$$

Demonstration. Writing $\mathcal{Q}\left(U_{1}, V_{1}, W_{1}\right)=\Sigma$. exp. Θ_{1}, then in the expression of Θ_{1} we may in place of l, m, n write $l-\alpha, m-\beta, n-\gamma$; we thus obtain

$$
\begin{aligned}
\Theta_{1}=(A, \ldots)(l-\alpha, m-\beta, n-\gamma)^{2} & +\{(l-\alpha)[U+x \pi i+(A, \ldots)(\alpha, \beta, \gamma)] \\
& +(m-\beta)[V+y \pi i+(H, \ldots)(\alpha, \beta, \gamma)] \\
& +(n-\gamma)[W+z \pi i+(G, \ldots)(\alpha, \beta, \gamma)]\},
\end{aligned}
$$

which is

$$
\begin{aligned}
&=(A, \ldots)(l, m, n)^{2} \\
&+2(l U+m V+n W)+2(l x+m y+n z) \pi i+2(A, \ldots)(l, m, n)(\alpha, \beta, \gamma) \\
&-2(A, \ldots)(l, m, n)(\alpha, \beta, \gamma) \\
&-2(\alpha U+\beta V+\gamma W)-2\left(\alpha x+\beta y+\gamma^{z}\right) \pi i-2(A, \ldots)(\alpha, \beta, \gamma)^{2} \\
&+(A, \ldots)(\alpha, \beta, \gamma)^{2},
\end{aligned}
$$

which is

$$
\begin{aligned}
= & (A, \ldots)(l, m, n)^{2}+2(l U+m V+n W) \\
& -(A, \ldots)(\alpha, \beta, \gamma)^{2}-2(\alpha U+\beta V+\gamma W) \\
& +2[(l-\alpha) x+(m-\beta) y+(n-\gamma) z] \pi i .
\end{aligned}
$$

Hence, rejecting the last line, which (as an even multiple of πi) leaves the exponential unaltered, we see that $\mathcal{Q}\left(U_{1}, V_{1}, W_{1}\right)$ is $=\mathcal{T}(U, V, W)$ multiplied by the factor

$$
\exp .\left\{-(A, \ldots)(\alpha, \beta, \gamma)^{2}\right\} \cdot \exp .\{-2(\alpha U+\beta V+\gamma W)\} \text {, }
$$

which is the theorem in question.
In many cases a formula, which belongs to an indefinite number s of letters, is most easily intelligible when written out for three letters, but it is sometimes convenient to speak of the s letters l, m, \ldots, n, or even the s letters l, \ldots, n, and to write out the formulæ accordingly.

