738.

NOTE ON A HYPERGEOMETRIC SERIES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvi. (1879), pp. 268-270.]

In the memoir on hypergeometric series, Schwarz, "Ueber diejenigen Fälle, \&c.," Crelle, t. Lxxv. (1873), pp. 292-335, the author shows, as part of his general theory, that the equation

$$
\frac{d^{2} y}{d x^{2}}-\frac{\frac{2}{3}-\frac{7}{6} x}{x .1-x} \frac{d y}{d x}+\frac{\frac{1}{48}}{x .1-x} y=0
$$

which belongs to the hypergeometric series $F\left(\frac{1}{4},-\frac{1}{12}, \frac{2}{3}, x\right)$, is algebraically integrable, having in fact the two particular integrals

$$
y^{2}=\sqrt{ }\left(\alpha-\alpha^{5} x^{\frac{1}{3}}\right) \pm \sqrt{ }\left(-\alpha^{5}+\alpha x^{\frac{1}{3}}\right)
$$

where α is a prime sixth root of $-1, \alpha^{6}+1=0$, or say $\alpha^{4}-\alpha^{2}+1=0$ (see p. 326, α being for greater simplicity written instead of δ^{2}, and the form being somewhat simplified).

It is interesting to verify this directly; writing first $y=\sqrt{ }(Y)$ and then $x=X^{3}$, the equation between Y, X is easily found to be

$$
Y \frac{d^{2} Y}{d X^{2}}-\frac{\frac{3}{2} X^{2}}{1-X^{3}} Y \frac{d Y}{d X}-\frac{1}{2}\left(\frac{d Y}{d X}\right)^{2}+\frac{\frac{3}{8} X}{1-X^{3}} Y^{2}=0
$$

and the theorem in effect is that that equation has the two particular integrals

$$
Y=\sqrt{ }(P) \pm \sqrt{ }(Q)
$$

P and Q being linear functions of $X:$ in fact,

$$
\begin{aligned}
& P=\alpha-\alpha^{5} X \\
& Q=-\alpha^{5}+\alpha X
\end{aligned}
$$

Starting say from the equation

$$
Y=\sqrt{ }(P)+\sqrt{ }(Q),
$$

or, as it is convenient to write it,

$$
Y=P^{\frac{1}{2}}+Q^{\frac{1}{2}},
$$

where P and Q are assumed to be linear functions of X, we have

$$
\begin{aligned}
& \frac{d Y}{d X}=\frac{1}{2} P^{-\frac{1}{2}} P^{\prime}+\frac{1}{2} Q^{-\frac{1}{2}} Q^{\prime}, \\
& \frac{d^{2} Y}{d X^{2}}=-\frac{1}{4} P^{-\frac{3}{2}} P^{\prime 2}-\frac{1}{4} Q^{-\frac{3}{2}} Q^{\prime 2},
\end{aligned}
$$

and thence

$$
\begin{aligned}
& Y \frac{d^{2} Y}{d X^{2}}=-\frac{1}{4} P^{-1} P^{\prime 2}-\frac{1}{4} Q^{-1} Q^{\prime 2}-\frac{1}{4} Q^{\frac{1}{2}} P^{-\frac{3}{2}} P^{\prime 2}-\frac{1}{4} P^{\frac{1}{2}} Q^{-\frac{3}{2}} Q^{\prime 2} \\
& Y \frac{d Y}{d X}=\frac{1}{2}\left(P^{\prime}+Q^{\prime}\right) \quad+\frac{1}{2} P^{-\frac{1}{2}} Q^{\frac{1}{2}} P^{\prime}+\frac{1}{2} P^{\frac{1}{2}} Q^{-\frac{1}{2}} Q^{\prime} \\
& \left(\frac{d Y}{d X}\right)^{2}=\frac{1}{4} P^{-1} P^{\prime 2}+\frac{1}{4} Q^{-1} Q^{\prime 2}+\frac{1}{2} P^{-\frac{1}{2}} Q^{-\frac{1}{2}} P^{\prime} Q^{\prime},
\end{aligned}
$$

where P^{\prime}, Q^{\prime} are written to denote the derived functions of P, Q respectively.
Substituting these values, the resulting equation contains on the left-hand side a rational part, and a part with the factor $P^{-\frac{3}{2}} Q^{-\frac{3}{2}}$, and it is clear the equation can only be true if these two parts are separately $=0$. We have thus two equations which ought to be verified; viz. after a slight reduction these are found to be

$$
\begin{gathered}
\frac{1}{P Q}\left(Q P^{\prime 2}+P Q^{\prime 2}\right)+\frac{2 X^{2}}{1-X^{3}}\left(P^{\prime}+Q^{\prime}\right)-\frac{X}{1-X^{3}}(P+Q)=0, \\
P^{2} Q^{\prime 2}+Q^{2} P^{\prime 2}+P Q P^{\prime} Q^{\prime}+\frac{3 X^{2}}{1-X^{3}} P Q\left(P Q^{\prime}+P^{\prime} Q\right)-\frac{3 X}{1-X^{3}} P^{2} Q^{2}=0,
\end{gathered}
$$

and it is very interesting to observe the manner in which these equations are, in fact, verified by the foregoing values of P, Q.

We have

$$
P+Q=\left(\alpha-\alpha^{5}\right)(1+X), \quad P^{\prime}+Q^{\prime}=\alpha-\alpha^{5},
$$

and hence

$$
2 X\left(P^{\prime}+Q^{\prime}\right)-X(P+Q)=-\left(\alpha-\alpha^{5}\right)(1-X)
$$

or, in the first equation, the second part

$$
\frac{2 X^{2}}{1-X^{3}}\left(P^{\prime}+Q^{\prime}\right)-\frac{X}{1-X^{3}}(P+Q)
$$

is

$$
=-\left(\alpha-\alpha^{5}\right) \frac{X(1-X)}{1-X^{3}} ;
$$

viz. this is

$$
=\frac{-\left(\alpha-\alpha^{5}\right) X}{1+X+X^{2}}
$$

We have

$$
\begin{aligned}
& Q P^{\prime 2}+P Q^{\prime 2}=\alpha^{10}\left(-\alpha^{5}+\alpha X\right)+\alpha^{2}\left(\alpha-\alpha^{5} X\right) \\
& \quad=\alpha^{3}-\alpha^{15}-\left(\alpha^{7}-\alpha^{11}\right) X, \quad=\left(\alpha-\alpha^{5}\right) X
\end{aligned}
$$

and

$$
P Q=-\alpha^{6}+\left(\alpha^{2}+\alpha^{10}\right) X-\alpha^{6} X^{2}, \quad=1+X+X^{2}
$$

hence

$$
\frac{1}{P Q}\left(Q P^{\prime 2}+P Q^{\prime 2}\right)=\frac{\left(\alpha-\alpha^{5}\right) X}{1+X+X^{2}}
$$

and the sum of the two parts is $=0$.
Similarly as regards the second equation, the second part

$$
\frac{3 X^{2}}{1-X^{3}} P Q\left(P Q^{\prime}+P^{\prime} Q\right)-\frac{3 X}{1-X^{3}} P^{2} Q^{2}
$$

is

$$
=\frac{3 P Q X}{1-X^{3}}\left\{\left(P Q^{\prime}+P^{\prime} Q\right) X-P Q\right\}
$$

Here $P Q^{\prime}+P^{\prime} Q$ is $\alpha\left(\alpha-\alpha^{5} X\right)-\alpha^{5}\left(-\alpha^{5}+\alpha X\right)$, which is $=1+2 X$; and $P Q$ being $=1+X+X^{2}$, the term in $\}$ is

$$
(1+2 X) X-\left(1+X+X^{2}\right), \quad=-(1-X)(1+X)
$$

hence, outside the $\left\}\right.$ writing for $P Q$ its value $=1+X+X^{2}$, the term is

$$
=\frac{-3 X\left(1+X+X^{2}\right)(1-X)(1+X)}{1-X^{3}},=-3 X(1+X)
$$

which is the value of the second part in question; the first part is

$$
\left(P Q^{\prime}+Q P^{\prime}\right)^{2}-P Q P^{\prime} Q^{\prime}, \quad=(1+2 X)^{2}-\left(1+X+X^{2}\right), \quad=3 X(1+X)
$$

and the sum of the two terms is thus $=0$.

