740.

ON CERTAIN ALGEBRAICAL IDENTITIES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xvi. (1879), pp. 281, 282.]

If P_{0}, P_{1}, P_{2} are points on a circle, say the circle $x^{2}+y^{2}=1$, then it is possible to find functions of $\left(P_{0}, P_{1}\right)$ and of $\left(P_{1}, P_{2}\right)$ respectively, which are really independent of P_{1}, and consequently functions of only P_{0} and P_{2} : the expression "function of a point or points" being here used to mean algebraical function of the coordinates of the point or points. Thus the functions of $\left(P_{0}, P_{1}\right)$ and of $\left(P_{1}, P_{2}\right)$ being $x_{0} x_{1}+y_{0} y_{1}$, $x_{0} y_{1}-x_{1} y_{0}$, and $x_{1} x_{2}+y_{1} y_{2}, x_{1} y_{2}-x_{2} y_{1}$, we have

$$
\left(x_{1} x_{2}+y_{1} y_{2}\right)\left(x_{0} x_{1}+y_{0} y_{1}\right)+\left(x_{1} y_{2}-x_{2} y_{1}\right)\left(x_{0} y_{1}-x_{1} y_{0}\right)=x_{0} x_{2}+y_{0} y_{2},
$$

and another like equation. This depends obviously on the circumstance that the coordinates of a point of the circle are expressible by means of the functions sin, $\cos , x=\cos u, y=\sin u$; and the identity written down is obtained by expressing the cosine of $u_{2}-u_{0},=\left(u_{2}-u_{1}\right)+\left(u_{1}-u_{0}\right)$, in terms of the cosines and sines of $u_{2}-u_{1}$ and $u_{1}-u_{0}$.

Evidently the like property holds good for a curve, such that the coordinates of any point of it can be expressed by means of "additive" functions of a parameter u; where, by an additive function $f(u)$, is meant a function such that $f(u+v)$ is an algebraical function of $f(u), f(v)$; the sine and cosine are each of them an additive function, because

$$
\sin (u+v)=\sin u \sqrt{ }\left(1-\sin ^{2} v\right)+\sin v \sqrt{ }\left(1-\sin ^{2} u\right),
$$

and, similarly, for the cosine. But it is convenient to consider pairs or groups $f(u)$, $\phi(u), \ldots$, where $f(u+v), \phi(u+v), \ldots$ are each of them an algebraical (rational) function of $f(u), \phi(u), \ldots, f(v), \phi(v), \ldots$; the sine and cosine are such a group, and so also are the elliptic functions $\mathrm{sn}, \mathrm{cn}, \mathrm{dn}$; but the H and Θ, or say the 9 -functions generally, are not additive.

In the case of the elliptic functions, we may consider the quadriquadric curve

$$
y^{2}=1-x^{2}, \quad z^{2}=1-k^{2} x^{2},
$$

so that the coordinates of a point on the curve are $\operatorname{sn} u, \mathrm{cn} u, \mathrm{dn} u$. Taking then P_{0}, P_{1}, P_{2}, points on the curve, and ($\left.x_{0}, y_{0}, z_{0}\right),\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$, the coordinates of these points respectively, we have in the same way, from $u_{2}-u_{0}=\left(u_{2}-u_{1}\right)+\left(u_{1}-u_{0}\right)$, three equations, of which the first is

$$
\frac{x_{2} y_{0} z_{0}-x_{0} y_{2} z_{2}}{1-k_{2}^{2} x_{0} x_{2}^{2} x_{2}^{2}}=\frac{\left(1-k^{2} x_{1}^{2} x_{2}^{2}\right)\left(x_{2} y_{1} z_{1}-x_{1} y_{2} z_{2}\right)\left(y_{0} y_{1}+x_{0} z_{0} x_{1} z_{1}\right)\left(z_{0} z_{1}+k^{2} x_{0} y_{0} x_{1} y_{1}\right)}{\left.\left.\left.\left.\left(1-k^{2} x_{0} x_{0} x_{1} x_{1}^{2}\right)^{2}\right)\left(1-k_{1}^{2} x_{1}^{2} x_{1}^{2} x_{2}^{2}\right)^{2}-k_{1}\right)^{2}\left(k_{1} x_{1} y_{0} z_{0}-x_{1} x_{0} y_{2} z_{1}\right)_{1}\right)^{2}\left(x_{2} y_{1} y_{1} z_{1} x_{1} y_{1} x_{2} y_{2} z_{2}\right)^{2}\right)^{2}} .
$$

The form of the right-hand side is

$$
\frac{A+B x_{1} y_{1} z_{1}}{C+D x_{1} y_{1} z_{1}},
$$

where A, B, C, D are each of them rational as regards x_{1}^{2}; and it is easy to see that the equation can only subsist under the condition that we have separately

$$
\frac{x_{2} y_{0} z_{0}-x_{0} y_{2} z_{2}}{1-k^{2} x_{0} x_{2}^{2} x_{2}^{2}}=\frac{A}{C}=\frac{B}{D}
$$

implying of course the identity $A D-B C=0$. The values of B and D are found without difficulty; we, in fact, have

$$
\begin{aligned}
& B=2 k^{2}\left(x_{2}{ }^{2}-x_{0}{ }^{2}\right)\left(x_{1}{ }^{2} y_{0} z_{0} y_{2} z_{2}+x_{0} x_{2} y_{1}{ }^{2} z_{1}{ }^{2}\right), \\
& D=2 k^{2}\left(x_{2} y_{0} z_{0}+x_{0} y_{2} z_{2}\right)\left(x_{1}{ }^{2} y_{0} z_{0} y_{2} z_{2}+x_{0} x_{2} y_{1}{ }^{2} z_{1}\right),
\end{aligned}
$$

so that, comparing the left-hand side with $B \div D$, we have the identity

$$
x_{2}{ }^{2} y_{0}{ }^{2} z_{0}{ }^{2}-x_{0}{ }^{2} y_{2}{ }^{2} z_{2}{ }^{2}=\left(x_{2}^{2}-x_{0}{ }^{2}\right)\left(1-k^{2} x_{2}^{2} x_{0}^{2}\right),
$$

which is right. The comparison with $A \div C$ would be somewhat more difficult to effect.

