452.

ON AN ANALYTICAL THEOREM FROM A NEW POINT OF VIEW.

[From the Proceedings of the London Mathematical Society, vol. ill. (1869-1871), pp. 220, 221. Read February 9, 1871.]

The theorem is a well-known one, derived from the equation

$$
\left(a z^{2}+2 b z+c\right) w^{2}+2\left(a^{\prime} z^{2}+2 b^{\prime} z+c^{\prime}\right) w+a^{\prime \prime} z^{2}+2 b^{\prime \prime} z+c^{\prime \prime}=0
$$

viz., considering this equation as establishing a relation between the variables z and w, and writing it in the forms

$$
2 u=A w^{2}+2 B w+C=A^{\prime} z^{2}+2 B^{\prime} z+C^{\prime}=0
$$

(where, of course, A, B, C are quadric functions of z, and $A^{\prime}, B^{\prime}, C^{\prime}$ quadric functions of w,) we have

$$
0=\frac{d u}{d w} d w+\frac{d u}{d z} d z,=(A w+B) d w+\left(A^{\prime} z+B^{\prime}\right) d z
$$

but in virtue of the equation $u=0$, we have $A w+B=\sqrt{B^{2}-A C}$, and $A^{\prime} z+B^{\prime}=\sqrt{B^{\prime 2}}-A^{\prime} C^{\prime}$, and the differential equation thus becomes

$$
\frac{d w}{\sqrt{B^{\prime 2}-A^{\prime} C^{\prime}}}+\frac{d z}{\sqrt{B^{2}-A C}}=0
$$

where $B^{\prime 2}-A^{\prime} C^{\prime}$ and $B^{2}-A C$ are quartic functions of w and z respectively. This is, of course, integrable (viz., the integral is the original equation $u=0$); and it follows, from the theory of elliptic functions, that the two quartic functions must be linearly transformable into each other; viz., they must have the same absolute invariant $I^{3} \div J^{2}$. It is, in fact, easy to verify, not only that this is so, but that the two functions have the same quadrinvariant I, and the same cubinvariant J.

The new point of view is, that we take the coefficients $a, b, \& c$., to be homogeneous functions of (x, y), their degrees being such that the equation $u=0$ is a quartic equation $(* X x, y, z, w)^{4}=0$; viz., this equation now represents a quartic surface having a node (conical point) at the point $(x=0, y=0, z=0)$, and also a node at the point $(x=0, y=0, w=0)$, say, these points are O, O^{\prime} respectively. The equation $B^{\prime 2}-A^{\prime} C^{\prime}=0$ gives the circumscribed sextic cone having O for its vertex, and the equation $B^{2}-A C=0$ the circumscribed sextic cone having O^{\prime} for its vertex; each of these cones has the line $O O^{\prime}(x=0, y=0)$ for a nodal line, as appears geometrically, and also by the equations containing z, w respectively in the degree 4. Considering $B^{\prime 2}-A^{\prime} C^{\prime}$ as a quartic function of z, its quadrinvariant is a function $(x, y)^{8}$, and its cubinvariant a function $(x, y)^{12}$; and similarly, considering $B^{2}-A C$ as a quartic function of w, its invariants are functions $(x, y)^{8}$ and $(x, y)^{12}$. We have thus, between the two cones, a geometrical relation answering to the analytical one of the identity of the invariants; but the nature of this geometrical relation is not obvious; and it presents itself as an interesting subject of investigation.

