453.

ON A PROBLEM IN THE CALCULUS OF VARIATIONS.

[From the Proceedings of the London Mathematical Society, vol. III. (1869—1871), pp. 221, 222. Read February 9, 1871.]

The problem is, $z = \frac{1}{3} (3x - y^2) y$, to find y a function of x such that $\int z dx = \max$, or min., subject to a given condition $\int y dx = c$ (the limits of each integral being x_1 , x_0 , where these quantities are each positive, and $x_1 > x_0$). The ordinary method of solution gives $y^2 = x + \lambda$, where $(x_1 + \lambda)^{\frac{3}{2}} - (x_0 + \lambda)^{\frac{3}{2}} = \frac{3}{2}c$; so long as c is not less than $(x_1 - x_0)^{\frac{3}{2}}$, there is a real value of λ , but for a smaller value of c there is no real value. The difficulty arising in this last case is somewhat illustrated by replacing the original problem by a like problem of ordinary maxima and minima; viz., $x_1, x_2 \dots x_n$ being given positive values of x, in the order of increasing magnitude; and if, in general, $z_1 = (3x_1 - y_1^2) y_i$, then the problem is to find y_i a function of x_i , such that $\sum z_i = \max$, or min., subject to the condition $\sum y_i = c$. We have here $y_i^2 = x_i + \lambda$, where λ is to be determined by the condition $\sum y_i = c$; the remainder of the investigation turns on the question of the sign $y_i = +\sqrt{x_i + \lambda}$ or $y_i = -\sqrt{x_i + \lambda}$, to be taken for the several values of i respectively.