461.

ON THE GEOMETRICAL INTERPRETATION OF THE COVARIANTS OF A BINARY CUBIC.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. x. (1870), pp. 148-149.]

Consider the binary cubic $U=(a, b, c, d \gamma x, y)^{3}$, and its covariants, viz. the discriminant (invariant)

$$
\nabla=a^{2} d^{2}-6 a b c d+4 a c^{3}+4 b^{3} d-3 b^{2} c^{2}
$$

the Hessian

$$
H=\left(a c-b^{2}\right) x^{2}+(a d-b c) x y+\left(b d-c^{2}\right) y^{2}
$$

and the cubicovariant

$$
\begin{aligned}
\Phi= & \left(\quad a^{2} d-3 a b c+2 b^{3}\right) x^{3} \\
& -\left(-3 a b d+6 a c^{2}-3 b^{2} c\right) x^{2} y \\
& +\left(-3 a c d+6 b d^{2}-3 b c^{2}\right) x y^{2} \\
& -\left(\quad a d^{2}-3 b c d+2 c^{3}\right) y^{3}
\end{aligned}
$$

connected by the identical equation

$$
\Phi^{2}-\nabla U^{2}=-4 H^{3}
$$

Then if we regard (a, b, c, d) as the coordinates of a point in space, but (x, y) as variable parameters, the equation

$$
\nabla=0
$$

represents a quartic torse, having for its cuspidal curve the skew cubic $a c-b^{2}=0$, $a d-b c=0, b d-c^{2}=0$; the equation

$$
U=0
$$

is that of the tangent plane to the torse along the line $a x^{2}+2 b x y+c y^{2}=0$, $b x^{2}+2 c x y+d y^{2}=0$: this line meets the cuspidal curve in the point whose coordinates are $a: b: c: d=y^{3}:-x y^{2}: x^{2} y:-y^{3}$. The equation

$$
H=0
$$

is that of a quadric cone having the last mentioned point for its vertex, and passing through the cuspidal curve: and the equation

$$
\Phi=0
$$

is that of the cubic surface which is the first polar of the same point in regard to the torse.

The equation $\Phi^{2}-\nabla U^{2}=-4 H^{3}$, writing therein $U=0$, gives $\Phi^{2}=-4 H^{3}$, a result which implies that $U=0, H=0$ is a certain curve repeated twice, and that $U=0$, $\Phi=0$ is the same curve repeated three times. The curve in question is at once seen to be the line of contact $\delta_{x} U=0, \delta_{y} U=0$; it thus appears that the tangent, plane $U=0$ meets the cubic surface $\Phi=0$ in this line taken three times. This can only be the case if the equation $\Phi=0$ be expressible in the form $M U+\left(\delta_{x} U\right)^{3}=0$, or, what is the same thing,

$$
M U+\left(\alpha \delta_{x} U+\beta \delta_{y} U\right)^{3}=0
$$

α and β constants, M a quadric function of (a, b, c, d); that is, Φ must be equal to a function of the form

$$
M U+\left(\alpha \delta_{x} U+\beta \delta_{y} U\right)^{2}
$$

Seeking for this expression of Φ, and writing the symbols out at length, I find that the required identical equation is
$-(\beta x-\alpha y)^{3}\left\{\begin{array}{c}\left(a^{2} d-3 a b c+2 b^{3}\right) x^{3} \\ -\left(-3 a b d+6 a c^{2}-3 b^{2} c\right) x^{2} y \\ +\left(-3 a c d+6 b d^{2}-3 b c^{2}\right) x y^{2} \\ -\left(-a d^{2}-3 b c d+2 c^{3}\right) y^{3}\end{array}\right\}+2\left\{\alpha\left(a x^{2}+2 b x y+c y^{2}\right)+\beta\left(b x^{2}+2 c x y+d y^{2}\right)\right\}^{3}=$
$(a, b, c, d \gamma x, y)^{3} \cdot\left(2 a^{2} \quad, 6 a b \quad, 6 b^{2} \quad,-a d+3 b c\right) \dagger(x, y)^{3}(\alpha, \beta)^{3}$,
$\left|\begin{array}{ccccc}6 a b & , & 12 a c+6 b^{2} & , & 3 a d+15 b c, \\ 6 b^{2} & , & 3 a d+15 b c, & 12 b d+6 c^{2} \\ -a d+3 b c, & 6 c^{2}, & 6 c d \\ -a c d & 6 c d & 2 d^{2}\end{array}\right|$
(where the + indicates that the binomial coefficients are not to be inserted, viz. the function on the right hand is $\left\{2 a^{2} x^{3}+6 a b x^{2} y+6 b^{2} x y^{3}+(-a d+3 b c) y^{3}\right\} c^{3}+\& c$.). As a verification remark that for $x=\alpha, y=\beta$, the equation becomes simply $2 U^{3}=U .2 U^{2}$.

