466.

SECOND NOTE ON THE LUNAR THEORY.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxv. (1864-1865), pp. 203-207.]

THE elliptic values of

are functions of

a, the mean distance,

r, the radius vector,v, the longitude,y, the latitude,

e, the excentricity,

 γ , the tangent of the inclination,

l, the mean longitude,

c, the mean anomaly,

g, the mean distance from node;

see my Note in the last *Monthly Notice*, p. 182, [465], where, for the present purpose, $\frac{a}{r}$ should be written instead of $\frac{1}{r}$; and it is there shown that the disturbed values, attending only to the coefficients independent of *m*, are obtained by affecting *a*, *e*, γ , *c*, *g*, *l*, with the inequalities

ou = 0		
$\delta e = -\frac{5}{8} \gamma^2 e$	cos	2c-2g
$\delta\gamma = + \frac{5}{8} \gamma e^2$	"	2c-2g
$\delta c = + \frac{5}{8} \gamma^2$	\sin	2c-2g
$\delta g = + \frac{5}{8} e^2$	>>	2c-2g
$\delta l = -\frac{5}{16} \gamma^2 e^2$	"	2c - 2g,

368

or, what is the same thing, adding to the elliptic values the inequalities

$\delta \frac{a}{r} = - \frac{5}{4} \gamma^2 e^2$	cos	2g
$-\frac{5}{8}\gamma^2 e$	"	c-2g,
$\delta v = -rac{5}{16}\gamma^2 e^2$	\sin	2c
$-rac{25}{16}\gamma^2 e^2$	"	2g
$+ \frac{5}{4} \gamma^2 e$	"	c-2g
$-rac{5}{16}\gamma^2e^2$	"	2c-2g,
$\delta y = -\frac{5}{8} \gamma e^3 + \frac{5}{8} \gamma^3 e$	\sin	c - g
$+ \frac{5}{8} \gamma e^2$	"	2c - g
$+\frac{5}{8}\gamma e^{3}$	"	3c - g
$+\frac{5}{8}\gamma^{3}e$	"	c-3g.

I propose to show how these results may be obtained by the method of the variation of the elements. For this purpose, treating a, e, γ, c, g, l , as elements, the proper formulæ are obtained very readily from those given in my "Memoir on the Problem of Disturbed Elliptic Motion," *Mem. R. Ast. Soc.*, vol. XXVII. (1859), pp. 1—29, [212]; viz., writing c in place of g, the formulæ, p. 25, give the variations of $a, e, c, \overline{c}, \theta, \phi$; we have then

$$g = c + \mathbf{C}$$
$$l = c + \mathbf{C} + \theta$$
$$\gamma = \tan \phi,$$

and therefore

$$\begin{split} dg &= dc + d\mathbf{\overline{C}} \\ dl &= dc + d\mathbf{\overline{C}} + d\theta \\ d\gamma &= (1 + \gamma^2) \, d\phi, \end{split}$$

which give for the transformation of the differential coefficients of Ω ,

$d\Omega$	$_d\Omega$	$d\Omega$	$d\Omega$
dc	dc	dg	\overline{dl}
$\frac{d\Omega}{d\mathbf{\overline{C}}} =$		$rac{d\Omega}{dg}$ -	$+\frac{d\Omega}{dl}$
$rac{d\Omega}{d heta}$:	=11		$\frac{d\Omega}{dl}$
$\frac{d\Omega}{d\phi}$	= 1	$(1+\gamma^2)$	$(\frac{d\Omega}{d\gamma}) \frac{d\Omega}{d\gamma}$

and the formulæ finally become

$$\begin{aligned} \frac{da}{dt} &= \frac{2}{na} \quad \frac{d\Omega}{dc} + \frac{2}{na} \quad \frac{d\Omega}{dg} + \frac{2}{na} \quad \frac{d\Omega}{dd} + \frac{2}{na} \quad \frac{d\Omega}{dl} ,\\ \frac{de}{dt} &= \frac{1 - e^2}{na^2 e} \quad \frac{d\Omega}{dc} + \frac{1 - e^2 - \sqrt{1 - e^2}}{na^2 e} \quad \frac{d\Omega}{dg} + \frac{1 - e^2 - \sqrt{1 - e^2}}{na^2 e} \quad \frac{d\Omega}{dl} , \end{aligned}$$

www.rcin.org.pl

SECOND NOTE ON THE LUNAR THEORY.

$$\begin{split} \frac{d\gamma}{dt} &= \frac{1+\gamma^2}{na^2\sqrt{1-e^2}\gamma} \quad \frac{d\Omega}{dg} + \frac{(1+\gamma^2)\left(1-\sqrt{1+\gamma^2}\right)}{na^2\sqrt{1-e^2}\gamma} \frac{d\Omega}{dl},\\ \frac{dc}{dt} &= -\frac{2}{na} \frac{d\Omega}{da} - \frac{1-e^2}{na^2e} \quad \frac{d\Omega}{de},\\ \frac{dg}{dt} &= -\frac{2}{na} \frac{d\Omega}{da} - \frac{1-e^2-\sqrt{1-e^2}}{na^2e} \frac{d\Omega}{de} - \frac{1+\gamma^2}{na^2\sqrt{1-e^2}\gamma} \quad \frac{d\Omega}{d\gamma},\\ \frac{dl}{dt} &= -\frac{2}{na} \frac{d\Omega}{da} - \frac{1-e^2-\sqrt{1-e^2}}{na^2e} \frac{d\Omega}{de} - \frac{(1+\gamma^2)\left(1-\sqrt{1+\gamma^2}\right)}{na^2\sqrt{1-e^2}\gamma} \frac{d\Omega}{d\gamma}. \end{split}$$

The disturbing function contains the term

$$m^2 n^2 a^2 \left(+ \frac{15}{16} e^2 \gamma^2 \right) \cos 2c - 2g.$$

If after the differentiations we write for greater simplicity a = 1, n = 1, we have

$$\begin{aligned} \frac{d\Omega}{da} &= \pm \frac{15}{8} m^2 e^2 \gamma^2 \quad \cos \quad 2c - 2g, \\ \frac{d\Omega}{de} &= \pm \frac{15}{8} m^2 e^2 \gamma^2 \quad , \qquad 2c - 2g, \\ \frac{d\Omega}{d\gamma} &= \pm \frac{15}{8} m^2 e^2 \gamma \quad , \qquad 2c - 2g, \\ \frac{d\Omega}{dc} &= -\frac{15}{8} m^2 e^2 \gamma^2 \quad \sin \quad 2c - 2g, \\ \frac{d\Omega}{dg} &= -\frac{15}{8} m^2 e^2 \gamma^2 \quad , \qquad 2c - 2g, \\ \frac{d\Omega}{dg} &= -\frac{15}{8} m^2 e^2 \gamma^2 \quad , \qquad 2c - 2g, \end{aligned}$$

and the formulæ for the variations give

$$\begin{aligned} \frac{da}{dt} &= 2\left(\frac{d\Omega}{dc} + \frac{d\Omega}{dg}\right) &= 0\\ \frac{de}{dt} &= \frac{1}{e} \frac{d\Omega}{dc} &= -\frac{15}{8}m^2e\gamma^2 \sin 2c - 2g,\\ \frac{d\gamma}{dt} &= \frac{1}{\gamma} \frac{d\Omega}{dg} &= -\frac{15}{8}m^2e\gamma , 2c - 2g,\\ \frac{dc}{dt} &= -\frac{1}{e} \frac{d\Omega}{de} &= -\frac{15}{8}m^2\gamma^2 \cos 2c - 2g,\\ \frac{dg}{dt} &= -\frac{1}{\gamma} \frac{d\Omega}{dq} &= -\frac{15}{8}m^2\gamma^2 \cos 2c - 2g,\\ \frac{dg}{dt} &= -\frac{1}{\gamma} \frac{d\Omega}{dq} &= -\frac{15}{8}m^2e^2 , 2c - 2g,\\ \frac{dg}{dt} &= -\frac{1}{2} \frac{d\Omega}{dq} + \frac{1}{2}e\frac{d\Omega}{de} + \frac{1}{2}\gamma \frac{d\Omega}{d\gamma} &= (-\frac{15}{4} + \frac{15}{16} + \frac{15}{16} =) -\frac{15}{8}m^2e^2\gamma^2 , 2c - 2g,\\ \frac{dl}{dt} &= -2 \frac{d\Omega}{da} + \frac{1}{2}e\frac{d\Omega}{de} + \frac{1}{2}\gamma \frac{d\Omega}{d\gamma} &= (-\frac{15}{4} + \frac{15}{16} + \frac{15}{16} =) -\frac{15}{8}m^2e^2\gamma^2 , 2c - 2g,\\ \end{aligned}$$

but this value of $\frac{dl}{dt}$ is, as will presently be seen, incomplete.

C. VII.

www.rcin.org.pl

369

47

466]

SECOND NOTE ON THE LUNAR THEORY.

Writing $a + \delta a$, $e + \delta e$, &c., in place of a, e, &c., and observing that the divisor for the integration of the term in 2c - 2g is 2(c - g), $= -3m^2$, the first five equations give respectively

$$\begin{aligned} \delta a &= 0, \\ \delta e &= -\frac{5}{8} \gamma^2 e & \cos & 2c - 2g, \\ \delta \gamma &= +\frac{5}{8} \gamma e^3 & , & 2c - 2g, \\ \delta c &= +\frac{5}{8} \gamma^2 & \sin & 2c - 2g, \\ \delta g &= +\frac{5}{8} c^2 & , & 2c - 2g. \end{aligned}$$

The constant term in Ω is

 $= m^2 n^2 a^2 \left(\frac{1}{4} + \frac{3}{8} e^2 - \frac{3}{8} \gamma^2 \right),$

and this gives in

$$\frac{dl}{dt}, = -2 \frac{d\Omega}{da} + \frac{1}{2}e \frac{d\Omega}{de} + \frac{1}{2}\gamma \frac{d\Omega}{d\gamma}$$

a term

$$m^2 \left(-1 - rac{3}{2} e^2 + rac{3}{2} \gamma^2
ight. \ + rac{3}{8} e^2 - rac{3}{8} \gamma^2
ight)$$

which is

Substituting for e, γ , their correct values $e + \delta e$, $\gamma + \delta \gamma$, it appears that $\frac{dl}{dt}$ contains the term

 $= m^2 (-1 - \frac{9}{8}e^2 + \frac{9}{8}\gamma^2).$

$$m^2\left(-\frac{9}{4}e\delta e+\frac{9}{4}\gamma\delta\gamma\right),$$

which is

$$= m^{2} \left(\frac{45}{32} + \frac{45}{32} = \right) \frac{45}{16} e^{2} \gamma^{2} \cos 2c - 2g,$$

= $\frac{45}{16} m^{2} e^{2} \gamma^{2} ,, \quad 2c - 2g,$

and joining to this the before-mentioned term

$$=$$
 $-\frac{15}{8}m^2e^2\gamma^2$,, $2c-2g$

we find

$$\frac{dl}{dt} = (\frac{45}{16} - \frac{15}{8} =) \frac{15}{16} m^2 e^2 \gamma^2 \quad , \quad 2c - 2g,$$

whence, writing as above $l + \delta l$ for l, and integrating, we have

$$\delta l = -\frac{5}{16} e^2 \gamma^2 \sin 2c - 2g,$$

and it thus appears that the values of δa , δe , $\delta \gamma$, δc , δg , δl , agree with those obtained in my former Note.

www.rcin.org.pl

370