472 ## NOTE ON LAMBERT'S THEOREM FOR ELLIPTIC MOTION. [From the Monthly Notices of the Royal Astronomical Society, vol. XXIX. (1868—1869), pp. 318—320.] Consider any two positions, A, B, in an elliptic orbit, focus S, and semi-axis major = a; then if ρ , ρ' , c denote the radius vectors SA, SB, and the chord AB respectively, and if P, = $\frac{2\pi a^{\frac{3}{2}}}{\sqrt{\mu}}$, be the periodic time, the time of passage from A to B is given by the formula Time $AB = \frac{P}{2\pi} (\chi - \chi' - \sin \chi + \sin \chi')$ where $$2a\cos\chi = 2a - \rho - \rho' - c$$, $2a\cos\chi' = 2a - \rho - \rho' + c$. To fix the ideas we may consider the time of passage as being in every case positive; and, for Time AB, the motion from A as being towards the apocentre; Time BA will, of course, in like manner denote that the motion from B is towards the apocentre; and we thus have according to the positions of A, B, either Time AB = Time BA; or else Time AB + Time BA = P. This being so (see the *Theoria Motus*, p. 120), χ will be always a positive arc between 0 and 360°; χ' a positive or negative arc between 0 and $\pm 180^\circ$; and moreover χ' will be positive or negative according as the described focal angle is $<180^\circ$ or $>180^\circ$; whence, $\cos\chi'$ being known, the arc χ' is determined without ambiguity. But as noticed in the place referred to, there is when only ρ , ρ' , c, a, are known, a real ambiguity as regards the arc χ ; viz. χ may be either the arc >180° or the arc <180°, having for its cosine the given value of $\cos \chi$. For, given the points S, A, B, and the semi-axis major a, there exist two elliptic orbits determined by these data; and the two values of χ correspond to the times of passage between A and B, in these two orbits respectively. If, however, the actual orbit be given, 49 - 2 there is no longer any real ambiguity; and it must be possible to decide between the two values of χ : the criterion is, in fact, a very simple one, viz. drawing a chord from A through the other focus H of the ellipse, this either separates, or it does not separate, B from the force-focus S; and I say that in the expression of Time AB, in the former case (viz. when chord A is a separator) we have $\chi < 180^{\circ}$; in the latter case (viz. when chord A is not a separator) we have $\chi > 180^{\circ}$. It of course follows that, in the case of transition, when the line AB passes through H, we must have $\chi=180^\circ$: this is at once seen to be so; for $\chi=180^\circ$ gives the condition $4a=\rho+\rho'+c$; but if σ , σ' , are the distances of AB from the focus H, then $2a=\rho+\sigma$, $2a=\rho'+\sigma'$, and the condition becomes $\sigma+\sigma'=c$; that is AB must pass through H. As a verification of the new criterion, I consider the point A as having a fixed position on the orbit, but the point B as having successively different positions; and writing down the two formulæ Time $$AB = \chi - \chi' - \sin \chi + \sin \chi'$$, Time $BA = \omega - \omega' - \sin \omega + \sin \omega'$, (where for simplicity the constant factor $P \div 2\pi$ is omitted) I proceed to compare these for different positions of the point B. We have, in every case, $\cos \omega = \cos \chi$, and $\cos \omega' = \cos \chi'$; whence (χ, ω) being each positive and less than 360°) $\omega = \chi$ or else $\omega + \chi = 360^{\circ}$, viz. the former equation subsists if ω , χ , are each less or each greater than 180° , the latter if the one is greater, the other less than 180° . And again (χ', ω') being each less than $\pm 180^{\circ}$) we have $\omega' = \chi'$, or else $\omega' = -\chi'$, according as ω' , χ' have the same or opposite signs. Now in the figure, suppose that B occupies successively the different positions $B_1, B_2, \ldots B_5$, the criteria for χ , χ' (or ω , ω') give as follows, | | Ch. A. | 1 | therefore | | | $\angle AS \angle BSA$ | | | | | |---|--------|------|--------------------|------------------------|----|------------------------|--------|------------------------------|-------|---| | 1 | sep. | not | $\chi < 180^\circ$ | $\omega > 180^{\circ}$ | or | $\omega + \chi = 2\pi$ | < 180° | $\gamma > 180^{\circ} \chi'$ | =+ 0 | $\omega' = - \text{ or } \omega' = -\chi',$ | | 2 | sep. | sep. | < | < | ,, | $\omega = \chi$ | < | < | + | $+$,, $\omega' = \chi'$, | | 3 | not | not | > | > | ,, | $\omega = \chi$ | > | > | + | $+$,, $\omega' = \chi'$, | | 4 | not | not | > | > | " | $\omega = \chi$ | > | > | the t | $-$,, $\omega' = \chi'$, | | 5 | not | sep. | > | < | ,, | $\omega + \chi = 2\pi$ | > | < | W- on | $- ,, \omega' = -\chi'.$ | Hence substituting for ω , ω' their values in terms of χ , χ' , we have Time $$AB_1 ..._5 = \chi - \chi' - \sin \chi + \sin \chi',$$, $BA_1 = 2\pi - \chi + \chi' + \sin \chi - \sin \chi',$, $BA_2 = \chi - \chi' - \sin \chi + \sin \chi',$, $BA_3 = \chi - \chi' - \sin \chi + \sin \chi',$, $BA_4 = \chi - \chi' - \sin \chi + \sin \chi',$, $BA_5 = 2\pi - \chi + \chi' + \sin \chi - \sin \chi';$ and thence (restoring the omitted factor $P \div 2\pi$) Time $$AB_1 + \text{Time } BA_1 = P$$, " $AB_2 -$ " $BA_2 = 0$, " $AB_3 -$ " $BA_3 = 0$, " $AB_4 -$ " $BA_4 = 0$, " $AB_5 +$ " $BA_5 = P$, which are the relations which in fact subsist between the times AB_1 and BA_1 &c.