474.

ON THE GEOMETRICAL THEORY OF SOLAR ECLIPSES.

[From the Monthly Notices of the Royal Astronomical Society, vol. xxx. (1869-1870), pp. 164-168.]

The fundamental equation in a solar eclipse is, I think, most readily established as follows:

Take the centre of the Earth for origin, and consider a set of axes fixed in the Earth and moveable with it; viz., the axis of z directed towards the North Pole; those of x, y, in the plane of the Equator; the axis of x directed towards the point longitude 0°; that of y towards the point longitude $90^{\circ} \mathrm{W}$. of Greenwich. Take a, b, c, for the coordinates of the Moon; k for its radius (assuming it to be spherical); $a^{\prime}, b^{\prime}, c^{\prime}$, for the coordinates of the Sun; k^{\prime} for its radius (assuming it to be spherical); then, writing $\theta+\phi=1$, the equation

$$
\left\{\theta(x-a)+\phi\left(x-a^{\prime}\right)\right\}^{2}+\left\{\theta(y-b)+\phi\left(y-b^{\prime}\right)\right\}^{2}+\left\{\theta(z-c)+\phi\left(z-c^{\prime}\right)\right\}^{2}=\left(\theta k \pm \phi k^{\prime}\right)^{2}
$$

is the equation of the surface of the Sun or Moon, according as $\theta, \phi=1,0$ or $=0,1$: and for any values whatever of θ, ϕ, it is that of a variable sphere, such that the whole series of spheres have a common tangent cone. Writing the equation in the form

$$
\begin{aligned}
& \theta^{2}\left\{(x-a)^{2}+(y-b)^{2}+(z-c)^{2}-k^{2}\right\} \\
+ & 2 \theta \phi\left\{(x-a)\left(x-a^{\prime}\right)+(y-b)\left(y-b^{\prime}\right)+(z-c)\left(z-c^{\prime}\right) \mp k k^{\prime}\right\} \\
+\quad & \phi^{2}\left\{\left(x-a^{\prime}\right)^{2}+\left(y-b^{\prime}\right)^{2}+\left(z-c^{\prime}\right)^{2}-k^{\prime 2}\right\}=0,
\end{aligned}
$$

or, putting for shortness,

$$
\begin{aligned}
& \rho=a^{2}+b^{2}+c^{2}-k^{2} \\
& \rho^{\prime}=a^{\prime 2}+b^{\prime^{\prime 2}}+c^{\prime 2}-k^{\prime 2} \\
& \sigma=a a^{\prime}+b b^{\prime}+c c^{\prime} \mp k k^{\prime} \\
& P=a x+b y+c z \\
& P^{\prime}=a^{\prime} x+b^{\prime} y+c^{\prime} z,
\end{aligned}
$$

the equation is

$$
\begin{aligned}
& \theta^{2}\left(x^{2}+y^{2}+z^{2}-2 P+\rho\right) \\
&+2 \theta \phi\left(x^{2}+y^{2}+z^{2}-P-P^{\prime}+\sigma\right) \\
&+\quad \phi^{2}\left(x^{2}+y^{2}+z^{2}-2 P^{\prime}+\rho^{\prime}\right)=0
\end{aligned}
$$

and the equation of the envelope consequently is

$$
\left(x^{2}+y^{2}+z^{2}-2 P+\rho\right)\left(x^{2}+y^{2}+z^{2}-2 P^{\prime}+\rho^{\prime}\right)-\left(x^{2}+y^{2}+z^{2}-P-P^{\prime}+\sigma\right)^{2}=0
$$

that is

$$
\left(x^{2}+y^{2}+z^{2}\right)\left(\rho+\rho^{\prime}-2 \sigma\right)-\left(P-P^{\prime}\right)^{2}-2\left(\rho^{\prime}-\sigma\right) P-2(\rho-\sigma) P^{\prime}+\rho \rho^{\prime}-\sigma^{2}=0
$$

which is the equation of the cone in question.
Observe that one sphere of the series is a point, viz., taking first the upper signs if we have $\theta k+\phi k^{\prime}=0$, that is

$$
\theta=\frac{k^{\prime}}{k^{\prime}-k}, \quad \phi=\frac{-k}{k^{\prime}-k},
$$

then the sphere in question is the point the coordinates whereof are

$$
x=\frac{k^{\prime} a-k a^{\prime}}{k^{\prime}-k}, \quad y=\frac{k^{\prime} b-k b^{\prime}}{k^{\prime}-k}, \quad z=\frac{k^{\prime} c-k c^{\prime}}{k^{\prime}-k},
$$

which point is the vertex of the cone: it hence appears that, taking the upper signs, the cone is the umbral cone, having its vertex on this side of the Moon; and similarly taking the lower signs, then if we have $\theta k-\phi k^{\prime}=0$, that is

$$
\theta=\frac{k^{\prime}}{k^{\prime}+k}, \quad \phi=\frac{k}{k^{\prime}+k}
$$

then the variable sphere will be the point the coordinates of which are

$$
\frac{k^{\prime} a+k a^{\prime}}{k^{\prime}+k}, \quad \frac{k^{\prime} b+k b^{\prime}}{k^{\prime}+k}, \quad \frac{k^{\prime} c+k c^{\prime}}{k^{\prime}+k}
$$

which point is the vertex of the cone; viz. the cone is here the penumbral cone having its vertex between the Sun and Moon.

Taking as unity the Earth's equatorial radius, if p, p^{\prime} are the parallaxes, κ, κ^{\prime} the angular semi-diameters of the Moon and Sun respectively, then the distances are $\frac{1}{\sin p}, \frac{1}{\sin p^{\prime}}$ and the radii are $\frac{\sin \kappa}{\sin p}, \frac{\sin \kappa^{\prime}}{\sin p^{\prime}}$ respectively; hence, if h, h^{\prime} are the hourangles west from Greenwich, Δ, Δ^{\prime} the N.P.D.'s of the Moon and Sun respectively, we have

$$
\begin{array}{ll}
a=\frac{1}{\sin p} \sin \Delta \cos h, & a^{\prime}=\frac{1}{\sin p^{\prime}} \sin \Delta^{\prime} \cos h^{\prime} \\
b=\frac{1}{\sin p} \sin \Delta \sin h, & b^{\prime}=\frac{1}{\sin p^{\prime}} \sin \Delta^{\prime} \sin h^{\prime} \\
c=\frac{1}{\sin p} \cos \Delta & c^{\prime}=\frac{1}{\sin p^{\prime}} \cos \Delta^{\prime} \\
k=\frac{\sin \kappa}{\sin p} & k^{\prime}=\frac{\sin \kappa^{\prime}}{\sin p^{\prime}}
\end{array}
$$

c. VII.
and thence

$$
\begin{aligned}
& \rho=\frac{1}{\sin ^{2} p}\left(1-\sin ^{2} \kappa^{\prime}\right), \\
& \rho^{\prime}=\frac{1}{\sin ^{2} p^{\prime}}\left(1-\sin ^{2} \kappa^{\prime}\right), \\
& \sigma=\frac{1}{\sin p \sin p^{\prime}}\left[\cos \Delta \cos \Delta^{\prime}+\sin \Delta \sin \Delta^{\prime} \cos \left(h^{\prime}-h\right) \mp \sin \kappa \sin \kappa^{\prime}\right], \\
& P=\frac{1}{\sin p} \quad\{\sin \Delta(x \cos h+y \sin h)+z \cos \Delta\}, \\
& P^{\prime}=\frac{1}{\sin p^{\prime}} \quad\left\{\sin \Delta^{\prime}\left(x \cos h^{\prime}+y \sin h^{\prime}\right)+z \cos \Delta^{\prime}\right\} .
\end{aligned}
$$

Moreover, if the right ascensions of the Moon and Sun are α, α^{\prime} respectively, and if the R.A. of the meridian of Greenwich (or sidereal time in angular measure) be $=\Sigma$, then we have

$$
h=\Sigma-\alpha, \quad h^{\prime}=\Sigma-\alpha^{\prime} .
$$

It is to be observed that $h-h^{\prime}, \Delta, \Delta^{\prime}$ are slowly varying quantities, viz., their variation depends upon the variation oi the celestial positions of the Sun and Moon; but h and h^{\prime} depend on the diurnal motion, thus varying about 15° per hour; to put in evidence the rate of variation of the several angles $h, h^{\prime}, \Delta, \Delta^{\prime}$ during the continuance of the eclipse, instead of the foregoing values of h, h^{\prime}, I write

$$
h^{\prime}=\left\{E+\left(1+\frac{E_{1}-E}{24}\right) t\right\} 15^{\circ}
$$

where t is the Greenwich mean time, E, E_{1} are the values (reckoned in parts of an hour) of the Equation of Time at the preceding and following mean noons respectively, taken positively or negatively, so that E, E_{1} are the mean times of the two successive apparent noons respectively; whence also

$$
h=\left\{E+\left(1+\frac{E_{1}-E}{24}\right) t\right\} 15^{\circ}-\alpha+\alpha^{\prime} ;
$$

and moreover

$$
\begin{aligned}
& \alpha=A+m(t-T) \\
& \alpha^{\prime}=A+m^{\prime}(t-T), \\
& \Delta=D+n(t-T), \\
& \Delta^{\prime}=D^{\prime}+n^{\prime}(t-T),
\end{aligned}
$$

if T be the time of conjunction, A, A, D, D^{\prime} the values at that instant of the R.A.'s and N.P.D.'s ; m, m^{\prime} and n, n^{\prime} the horary motions in R.A. and N.P.D. respectively.

It appears to me not impossible but that the foregoing form of equation,

$$
\left(x^{2}+y^{2}+z^{2}\right)\left(\rho+\rho^{\prime}-2 \sigma\right)-\left(P-P^{\prime}\right)^{2}-2\left(\rho^{\prime}-\sigma\right) P-2(\rho-\sigma) P^{\prime}+\rho \rho^{\prime}-\sigma^{2}=0
$$

for the umbral or penumbral cone might present some advantage in reference to the calculation of the phenomena of an eclipse over the Earth generally: but in order to obtain in the most simple manner the equation of the same cone referred to a set of principal axes, I proceed as follows:

Writing

$$
\begin{array}{cc}
\qquad \mathrm{a}=b c^{\prime}-b^{\prime} c, & \mathrm{f}=a-a^{\prime} \\
\mathrm{b}=c a^{\prime}-c^{\prime} a, & \mathrm{~g}=b-b^{\prime} \\
\mathrm{c}=a b^{\prime}-a^{\prime} b, & \mathrm{~h}=c-c^{\prime} \\
\text { (and therefore } & \mathrm{af}+\mathrm{bg}+\mathrm{ch}=0 \text {). }
\end{array}
$$

Then, if

$$
\begin{array}{lc}
X= & \frac{(\mathrm{bh}-\mathrm{cg}) x+(\mathrm{cf}-\mathrm{ah}) y+(\mathrm{ag}-\mathrm{bf}) z}{\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2} \sqrt{\mathrm{f}^{2}+\mathrm{g}^{2}+\mathrm{h}^{2}}}} \begin{array}{l}
\mathrm{a} x+\mathrm{b} y+\mathrm{c} z \\
Y= \\
\sqrt{\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}} \\
Z=
\end{array} \frac{\mathrm{f} x+\mathrm{g} y+\mathrm{h} z}{\sqrt{\mathrm{f}^{2}+\mathrm{g}^{2}+\mathrm{h}^{2}}}
\end{array}
$$

X, Y, Z, will be coordinates referring to a new set of rectangular axes; viz., the origin is, as before, at the centre of the Earth, the axis of Z is parallel to the line joining the centres of the Sun and Moon; the axis of X cuts at right angles the last-mentioned line; and the axis of Y is perpendicular to the plane of the other two axes; or, what is the same thing, to the plane through the centres of the Earth, Sun, and Moon.

The coordinates of the vertex of the cone are therefore X_{0}, Y_{0}, Z_{0}, where these denote what the foregoing values of X, Y, Z, become on substituting therein for x, y, z, the values

$$
\begin{gathered}
k^{\prime} a \mp k a^{\prime} \\
k^{\prime} \mp k
\end{gathered}, \quad \frac{k^{\prime} b \mp k b^{\prime}}{k^{\prime} \mp k}, \quad \frac{k^{\prime} c \mp k c^{\prime}}{k^{\prime} \mp k},
$$

and the equation of the cone therefore is

$$
\left(X-X_{\circ}\right)^{2}+\left(Y-Y_{\circ}\right)^{2}=\tan ^{2} \lambda\left(Z-Z_{\circ}\right)^{2}
$$

where

$$
\sin \lambda=\frac{k^{\prime} \mp k}{G}
$$

if for a moment G denotes the distance between the centres of the Sun and Moon. We have therefore

$$
\tan \lambda=\frac{k^{\prime} \mp k}{\sqrt{G^{2}-\left(k^{\prime} \mp k\right)^{2}}}
$$

or since

$$
G^{2}=\left(a^{\prime}-a\right)^{2}+\left(b^{\prime}-b\right)^{2}+\left(c^{\prime}-c\right)^{2}
$$

this is in fact

$$
\tan \lambda=\frac{k^{\prime} \mp k}{\sqrt{\rho+\rho^{\prime}-2 \sigma}},
$$

where $\rho, \rho^{\prime}, \sigma$ signify as before; and thus $X_{0}, Y_{0}, Z_{0}, \tan \lambda$ are all of them given functions of $a, b, c, k, a^{\prime}, b^{\prime}, c^{\prime}, k^{\prime}$, and consequently of the before-mentioned astronomical data of the problem. The form is substantially the same as Bessel's equation (3), Ast. Nach. No. 321 (1837), (but the direction of the axes of X, Y is not identical with those of his x, y); and it is therefore unnecessary to consider here the application of it to the calculation of the eclipse for a given point on the Earth.

