483.

ON A PAIR OF DIFFERENTIAL EQUATIONS IN THE LUNAR THEORY.
[From the Monthly Notices of the Royal Astronomical Society, vol. xxxir. (1871-72), pp. 201-206.]

I consider the differential equations

$$
\begin{aligned}
& \frac{d}{d t} \frac{d \rho}{d t}-\rho\left(\frac{d v}{d t}\right)^{2}+\frac{1}{\rho^{2}}
\end{aligned}=\operatorname{km}^{2} \rho\left\{\frac{1}{2}+\frac{3}{2} \cos (2 v-2 m t)\right\}, ~ \begin{array}{ll}
\frac{d}{d t}\left(\rho^{2} \frac{d v}{d t}\right) & =j m^{2} \rho^{2}\left\{-\frac{3}{2} \sin (2 v-2 m t)\right\}
\end{array}
$$

which when $j=k=1$ give the following equations in the lunar theory ($D=t-m t$):

$$
\begin{aligned}
\frac{1}{\rho}=1 & +\frac{1}{6} m^{2}-\frac{179}{288} m^{4}-\frac{97}{48} m^{5}-\frac{757}{162} m^{6}-\frac{4039}{432} m^{7}-\frac{34751189}{1990656} m^{8}-\frac{155067635}{4976640} m^{9} \\
& +\cos 2 D\left[m^{2}+\frac{19}{6} m^{3}+\frac{131}{18} m^{4}+\frac{383}{27} m^{5}+\frac{5105655}{20736} m^{6}+\frac{23140781}{6220800} m^{7}\right. \\
& \left.+\frac{355021217}{9331200} m^{8}+\frac{27888590059}{34992000} m^{9}\right] \\
& +\cos 4 D\left[\frac{7}{8} m^{4}+\frac{2737}{480} m^{5}+\frac{162869}{7200} m^{6}+\frac{7554833}{108000} m^{7}+\frac{2389416723}{12060000} m^{8}+\frac{2335230125283}{5433200000} m^{9}\right] \\
& +\cos 6 D\left[\frac{219}{256} m^{6}+\frac{151339}{17920} m^{7}+\frac{29888443}{627200} m^{8}+\frac{9897882357}{444520000} m^{9}\right] \\
& +\cos 8 D\left[\frac{2701}{3072} m^{8}+\frac{7033633}{6021120} m^{9}\right]
\end{aligned}
$$

or as far as m^{7},

$$
\begin{aligned}
\rho=1 & -\frac{1}{6} m^{2}+\frac{331}{288} m^{4}+\frac{83}{16} m^{5}+\frac{42775}{2592} m^{6}+\frac{4787}{108} m^{7} \\
& +\cos 2 D\left[-m^{2}-\frac{19}{6} m^{3}-\frac{125}{18} m^{4}-\frac{709}{54} m^{5}-\frac{485173}{20736} m^{6}-\frac{24487949}{622085} m^{7}\right] \\
& +\cos 4 D\left[-\frac{3}{8} m^{4}-\frac{1217}{480} m^{5}-\frac{74069}{7200} m^{6}-\frac{1749779}{54000} m^{7}\right] \\
& +\cos 6 D\left[-\frac{59}{256} m^{6}-\frac{126193}{58760} m^{7}\right],
\end{aligned}
$$

c. VII.
$\left(\frac{1}{\rho}\right.$ is given by M. Delaunay only as far as m^{5}, the additional terms of $\frac{1}{\rho}$ and expression for ρ were kindly communicated to me by Prof. Adams); and

$$
\begin{aligned}
& n=t \\
& +\sin 2 D\left(\frac{11}{8} m^{2}+\frac{59}{12} m^{3}+\frac{893}{72} m^{4}+\frac{2855}{108} m^{5}+\frac{8304449}{165888} m^{6}\right. \\
& \left.+\frac{102859909}{1244160} m^{7}+\frac{7596006727}{74649600} m^{8}-\frac{8051418161}{111974400} m^{9}\right) \\
& +\sin 4 D\left(\frac{201}{256} m^{4}+\frac{649}{120} m^{5}+\frac{647623}{28800} m^{6}+\frac{31363361}{432000} m^{7}+\frac{123030377303}{414720000} m^{8}\right) \\
& +\sin 6 D\left(\frac{3715}{6144} m^{6}+\frac{664571}{107520} m^{7}\right)
\end{aligned}
$$

(Delaunay, t. II. pp. 815, 836, 845).
To integrate the original equations write

$$
\begin{aligned}
& \rho=1+\rho_{1}+\rho_{2}+\ldots \\
& v=t+v_{1}+v_{2}+\ldots
\end{aligned}
$$

where the suffixes indicate the degrees in the coefficients k, j conjointly: the equations for ρ_{n}, v_{n} take the form

$$
\begin{aligned}
& \frac{d}{d t} \frac{d \rho_{n}}{d t}-3 \rho_{n}-2 \frac{d v_{n}}{d t}+V_{n}=Q_{n} \\
& \frac{d}{d t}\left(\frac{d v_{n}}{d t}+2 \rho_{n}+U_{n}\right) \quad=P_{n},
\end{aligned}
$$

where $V_{n}, U_{n}, P_{n}, Q_{n}$ do not contain ρ_{n} or v_{n}. From the second equation we have

$$
\frac{d v_{n}}{d t}+2 \rho_{n}+U_{n}=\Omega_{n}+\int P_{n} d t
$$

where Ω_{n} is a constant of integration, the integral $\int P_{n} d t$ containing only periodic terms; and then adding twice this to the first equation we have

$$
\frac{d}{d t} \frac{d \rho_{n}}{d t}+\rho_{n}+V_{n}+2 U_{n}=2 \Omega_{n}+Q_{n}+2 \int P_{n} d t
$$

which determines ρ_{n}; and substituting its value in the other equation we have $\frac{d v_{n}}{d t}$, and thence v_{n}; the constant Ω_{n} is determined so that $\frac{d v_{n}}{d t}$ may contain no constant term. We have

$$
\begin{aligned}
V_{1}= & 0 \\
V_{2}= & -\left(\frac{d v_{1}}{d t}\right)^{2}-2 \rho_{1} \frac{d v_{1}}{d t}+3 \rho_{1}^{2} \\
V_{3}= & -2 \frac{d v_{1}}{d t} \frac{d v_{2}}{d t}-2 \rho_{1} \frac{d v_{2}}{d t}-\rho_{1}\left(\frac{d v_{1}}{d t}\right)^{2} \\
& -2 \rho_{2} \frac{d v_{2}}{d t}+6 \rho_{1} \rho_{2}-4 \rho_{1}^{3}
\end{aligned}
$$

\&c.

$$
\begin{aligned}
& U_{1}=0 \\
& U_{2}=2 \rho_{1} \frac{d v_{1}}{d t}+\rho_{1}^{3} \\
& U_{3}=2 \rho_{1} \frac{d v_{2}}{d t}+\left(2 \rho_{2}+\rho_{1}^{2}\right)^{2} \frac{d v_{1}}{d t}+2 \rho_{1} \rho_{3}
\end{aligned}
$$

$\& c$.

$$
\begin{aligned}
& Q_{1}=k m^{2}\left(\frac{1}{2}+\frac{3}{2} \cos 2 D\right), \\
& \begin{aligned}
& Q_{2}=k m^{2}\left\{3 v_{1} \sin 2 D+\rho_{1}\left(\frac{1}{2}+\frac{3}{2} \cos 2 D\right)\right\}, \\
& Q_{3}=k m^{2}\{ \left\{3 v_{2} \sin 2 D-3 v_{1}^{2} \cos 2 D\right. \\
&+\rho_{1} v_{1} \cdot 3 \sin 2 D \\
&\left.+\rho_{2}\left(\frac{1}{2}+\frac{3}{2} \cos 2 D\right)\right\},
\end{aligned}
\end{aligned}
$$

\&c.

$$
\begin{aligned}
& P_{1}=j m^{2}\left(-\frac{3}{2} \sin 2 D\right), \\
& P_{2}=j m^{2}\left(-3 v_{1} \cos D-3 \rho_{1} \sin 2 D\right), \\
& P_{3}=j m^{2}\left\{-3 v_{2} \cos 2 D+3 v_{1}^{2} \sin 2 D\right. \\
&-6 \rho_{1} v_{1} \cos 2 D \\
&\left.+\left(2 \rho_{2}+\rho_{1}^{2}\right) \cdot-\frac{3}{2} \sin 2 D\right\},
\end{aligned}
$$

\&c.

In particular attending to the values of P_{1}, Q_{1} the equations for ρ_{1}, v_{1} are in their original form

$$
\begin{aligned}
& \frac{d}{d t} \frac{d \rho_{1}}{d t}-3 \rho_{1}+2 \frac{d v_{1}}{d t}=k m^{2}\left(\frac{1}{2}+\frac{3}{2} \cos 2 D\right), \\
& \frac{d}{d t}\left(\frac{d v_{1}}{d t}+2 \rho_{1}\right) \quad=j m^{2}\left(-\frac{3}{2} \sin 2 D\right),
\end{aligned}
$$

whence in the transformed form they are

$$
\frac{d v_{1}}{d t}+2 \rho_{1}=\Omega_{1}+\frac{3 j m^{2}}{4(1-m)} \cos 2 D
$$

and

$$
\frac{d^{2} \rho_{1}}{d t^{2}}+\rho_{1}=2 \Omega_{1}+k m^{2}\left(\frac{1}{2}+\frac{3}{2} \cos 2 D\right)+\frac{\frac{3}{2} j m^{2}}{1-m} \cos 2 D
$$

Thus the constant term of ρ_{1} is $2 \Omega_{1}+\frac{1}{2} k m^{2}$, giving in $\frac{d v_{1}}{d t}$ a constant term $-3 \Omega_{1}-k m^{2}$ this must vanish, or we have $\Omega_{1}=-\frac{1}{3} \mathrm{~km}^{2}$; and the equations thus become

$$
\left.\begin{array}{l}
\frac{d v_{1}}{d t}+2 \rho_{1}=-\frac{1}{3} k m^{2}+\frac{3 j m^{2}}{4(1-m)} \cos 2 D, \\
\frac{d^{2} \rho_{1}}{d t^{2}}+\rho_{1}=-\frac{1}{6} k m^{2}+\left(\frac{3}{2} k m^{2}+\frac{3}{2} j m^{2}\right. \\
1-m
\end{array}\right) \cos 2 D, ~ \$, ~
$$

and then completing the integration

$$
\begin{aligned}
& \rho_{1}=-\frac{1}{6} k m^{2}+\left\{\frac{-\frac{3}{2} k m^{2}}{3-8 m+4 m^{2}}+\frac{-\frac{3}{2} j m^{2}}{(1-m)\left(3-8 m+4 m^{2}\right)}\right\} \cos 2 D, \\
& v_{1}=\quad\left\{\begin{array}{c}
\frac{3}{2} k m^{2} \\
(1-m)\left(3-8 m+4 m^{2}\right)
\end{array}+\frac{\frac{3}{8} j m^{2}\left(7-8 m+4 m^{2}\right)}{(1-m)^{2}\left(3-8 m+4 m^{2}\right)}\right\} \sin 2 D,
\end{aligned}
$$

which are the accurate values of ρ_{1} and v_{1}.
Expanding as far as m^{6} we have
which for $j=k$ is

$$
\begin{array}{ll}
\rho_{1}=k\left(-\frac{1}{6} m^{2}\right)+\cos 2 D\{ & k\left(-\frac{1}{2} m^{2}-\frac{4}{3} m^{3}-\frac{26}{9} m^{4}-\frac{160}{27} m^{5}-\frac{968}{81} m^{6}\right) \\
& \left.+j\left(-\frac{1}{2} m^{2}-\frac{11}{6} m^{3}-\frac{85}{18} m^{4}-\frac{575}{54} m^{5}-\frac{3661}{162} m^{6}\right)\right\}, \\
j=k \text { is } & =k\left(-m^{2}-\frac{19}{6} m^{3}-\frac{137}{18} m^{4}-\frac{895}{54} m^{5}-\frac{5597}{162} m^{6}\right),
\end{array}
$$

$$
68-2
$$

and
which for $j=k$ is

$$
\begin{array}{ll}
\begin{array}{ll}
v_{1}= & \sin 2 D\{
\end{array} \quad k\left(\frac{1}{2} m^{2}+\frac{11}{6} m^{3}+\frac{85}{18} m^{4}+\frac{575}{54} m^{5}+\frac{3661}{162} m^{6}\right) \\
& \left.+j\left(\frac{7}{8} m^{2}+\frac{37}{12} m^{3}+\frac{589}{62} m^{4}+\frac{1337}{54} m^{5}+\frac{27331}{648} m^{6}\right)\right\}, \\
j=k \text { is } & =k\left(\frac{11}{8} m^{2}+\frac{59}{12} m^{3}+\frac{929}{72} m^{4}+\frac{\frac{996}{27}}{25} m^{5}+\frac{41975}{648} m^{6}\right) .
\end{array}
$$

I have, not in general, but for the value $j=k$, calculated ρ_{2} and v_{2} as far as m^{6} : I have not made the calculation for ρ_{3} and v_{3}, but their values may be deduced from the foregoing values of ρ, v; the final expressions (when $j=k$) of $\rho,=1+\rho_{1}+\rho_{2}+\rho_{3}+\ldots$ and $v,=t+v_{1}+v_{2}+v_{3} \ldots$ are

$$
\left.\begin{array}{rlr}
\rho=1 & & \\
& +k\left(-\frac{1}{6} m^{2}\right. & \\
& +h^{2}(& \left.\frac{331}{285} m^{4}+\frac{83}{16} m^{5}+\frac{513}{288} m^{6}\right) \\
& +k^{3}(& \left.-\frac{1621}{1296} m^{6}\right)
\end{array}\right\}
$$

and

$$
\begin{aligned}
& v=t \\
& +\sin 2 D\left\{k\left(\frac{11}{8} m^{2}+\frac{59}{12} m^{3}+\frac{929}{72} m^{4}+\frac{896}{27} m^{5}+\frac{41975}{648} m^{6}\right)\right. \\
& +k^{2}\left(\quad-\frac{1}{2} m^{4}=\frac{41}{12} m^{5}-\frac{43}{3} \quad m^{6}\right) \\
& \left.+k^{3}\left(\quad-\frac{783}{2048} \quad m^{6}\right)\right\} \\
& +\sin 4 D\left\{k^{2}\left(\quad \frac{201}{256} m^{4}+\frac{649}{120} m^{5}+\frac{665263}{28800} m^{6}\right)\right. \\
& +k^{3}(\\
& +\sin 6 D\left\{h^{3}\left(\quad+\frac{3715}{6144} m^{6}\right)\right\} \text {; }
\end{aligned}
$$

which for $k=1$ agree with the foregoing formulæ (verifying them as far as m^{5}); the present formulæ exhibit the manner in which the expressions depend on the several powers of the disturbing force.

