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485.

PROBLEMS AND SOLUTIONS.

[From the Mathematical Questions with their Soiutions from the Educational Times,
vols. V. to XII. (1866—1869).]

[Vol. v,, January to July, 1866, p. 17.]

1791. (ProPOSED by Professor CAYLEY.)—Given a quartic curve U=0, to find three
cubic curves P=0, @ =0, R=0, each meeting the quartic in the same six points
1, 2, 8, 4, 5, 6, and such that P=0, R=0 may besides meet the quartic in the same
three points @, b, ¢, and that =0, R=0 may besides meet the quartic in the same
three points a, 38, .

[Vol. v. pp. 25, 26.]
Note on the Problems in regard to a Conic defined by five Conditions of Intersection.

I use the word “intersection ” rather than “contact” because it extends to the
case of a l-pointic intersection, which cannot be termed a contact. The conditions
referred to are that the conic shall have with a given curve, at a point given or
not given, a l-pointic intersection, a 2-pointic intersection (= ordinary -contact), a
3-pointic intersection, &c., as the case may be. It may be noticed that when the
point on the curve is a given point, the condition of a k-pointic intersection is really
only the condition that the conic shall pass through % given points; though from the
circumstance that these are consecutive points on a conic, the formule for a conic
passing through % discrete points require material alteration; for instance, in the two
questions to find the equation of a conic passing through five given points, and to
find the equation of a conic having at a given point of a given curve 5-pointic inter-
section with the curve, the forms of the solutions are very different from each other.

The foregoing remark shows, however, that it is proper to detach the conditions
which relate to intersections at given points; and consequently attending only to the
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485] PROBLEMS AND SOLUTIONS. 547

conditions which relate to intersection at an unascertained point (of course the inter-
sections referred to must be at least 2-pointic, for otherwise there is no condition at
all) we may consider the conics which pass through four points and satisfy one con-
dition; or which pass through three points and satisfy two conditions; or which pass
through two points and satisfy three conditions; or which pass through one point and
satisfy four conditions; or which satisfy five conditions. Considering in particular the
last case, let 1 denote that the conic has 2-pointic intersection, 2 that it has 3-pointic
intersection, ... 5 that it has 6-pointic intersection with a given curve at an unascertained
point.

Then the problems are in the first instance
Biodydls 8,28 81,13 22,15 %1, 1,18 1,1, 1; 1,11,

But the intersections may be intersections with the same given curve or with different
given curves; and we have thus in all 27 problems, viz. these are as given in the
following table, where the colons (:) separate those conditions which refer to different
curves:

I;‘;;)g'f Conditions. I‘{)(;ogf Conditions. kl}l,:bg.f‘ Conditions.
ol RARY R SR )
1 5 10 P o 19 SRR
2 4, 1 11 RGN | ! 20 2421
3 3, 2 12 2 2:1 21 2 1131
4 8L, 'l 13 2 Vg 22 OB R W |
5 | 2,21 14 | 2 1,1:1 23 | 1,1, 1:11
6 & 1 451 15 L T Sl § 24 by bt Bl d
7 7 g ol e 16 4.1y il 25 s b 1 gl
8 4:1 17 I (ol P YRR 28 26 i) S D I |
9 3:2 18 oy Lk By i 27 il il

Thus Problem 1 is to find a conic having 6-pointic intersection with a given curve:
Problem 2 a conic having 5-pointic intersection and also 2-pointic intersection with a
given curve... Problem 7 is to find a conic having five 2-pointic intersections with
(touching at five distinet points) a given curve....Problem 27 is to find a conic having
2-pointic intersection with (touching) each of five given curves. Or we may in each
case take the problem to be merely to find the number of the conics which satisfy
the required conditions. This number is known in Prob. 1, for the case of a curve
of the order m without singularities, viz. the number is =m (12m—27). It is also
known in Problems 25 and 26 in the case where the first curve (that to which the
symbol 2, or 1, 1 relates) is a curve without singularities; and it is known in Prob. 27,
viz. if m, n, p, q, » be the orders and M, N, P, ), R the classes of the five curves
69—2
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548 PROBLEMS AND SOLUTIONS. [485

respectively, then the number is = (M, m) (N, n)(P, p)(Q, ¢) (R, r) {1, 2, 4, 4, 2, 1}, that
is, 1 MNPQR +23ZMNPQr+ &c. The number is not, I believe, known in any other
of the problems. In particular, (Prob. 7) we do not as yet know the number of the
conics which touch a given curve at five points. It would be interesting to obtain this
number ; but (judging from the analogous question of finding the double tangents of a
curve) the problem is probably a very difficult one.

[Vol. v. p. 87.]

1857. (Proposed by Professor CAYLEY.)—If for shortness we put
P=2+y*+2°, Q=y2+y%+22°+2x+ay’+2%, R =axyz
Po=a*+b0°+¢%, Q,=bc+ b +ca*+ca +ab*+a®b, R, = abc;
then (a, B, ) being arbitrary, show that the cubic curves |a, B, ¢ |=0 pass all
J S Y o
P 0> QO) RO
of them through the same nine points, lying six of them upon a conic and three of
them upon a line; and find the equations of the conic and line, and the coordinates

of the nine points of intersection; find also the values of (a : B : ) in order that
the cubic curve may break up into the conic and line.

[Vol. v. p. 37.]

1730. (Proposed by Professor CAYLEY.)—Show that (I) the condition in order that
the roots %, k., &; of the equation

T+ (—g—fat B+ Nk +(—g—fa—3B+i)k-a=0 (A)
may be connected by a relation of the form

leg (Fey — ko) — (fey— Ies) = 0, 1)

and (IT) the result of the elimination of @, b, ¢ from the equations
a*(b+c)=—2a, (2)
B (c+a)= 2B, (3)
c(a +b)=— 2y, (4)
(b-c)(c—a)(a—b)=—4g, (%)

are each
4(B=vy)(y—a)(a—PB) g+ 4 (— 2B + 4Za*B* — 23a°By) 9*
+B=y(v—a)(a=B)g+2(B—y)(y—a)(a—B;=0. (B)
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[Vol. v. pp. 38, 39.]

1834. (Proposed by Professor CAYLEY.)—1. It is required to find on a given cubic
curve three points A, B, C, such that, writing =0, y=0, 2=0 for the equations of
the lines BC, CA, AB respectively, the cubic curve may be transformable into itself by
the inverse substitution (az™, By~ yz™) in place of =, y, z respectively, a, B, y being
disposable constants.

2. In the cubic curve az(y*+ 2%)+ by (2* +a2) +cz (a* + y°) + 2layz =0 the inverse
points (z, y, z) and (27, y!, z7) are corresponding points (that is, the tangents at
these two points meet on the curve).

Solution by the PrRorosER, S. RoBERTS, M.A., and others.

Since the points 4, B, €' are on the curve, the equation is of the form
frz+ g2+ haty+ w2+ jaat+ hay’+2lxyz =0;
hence this equation must be equivalent to

L8, 5% (NS P8, o B0 i O AR L

Yz 2’z z*y yz* 2a° xy zyz
or,
jiz Yz + kéz'-’w+izaﬁy+h gyz*+f§zx2+g1wy2+ 2lzyz =0
B v a v a B i

which will be the case if
.a B ; ; ; '
f=JB-, g=k'7, h=z'ay’ ",=h—’ ]=f§’ k:g%,

This implies fgh=14k; and if this condition be satisfied, then a : 8 : y can be deter-
mined, viz. we have @ : B : y=14f : 4 : hf, which satisfy the remaining equations, so
that the only condition is fgh = k.

Writing in the equation of the curve z=0, we find fy?z + 4y2* =0, that is, the line
#=0 meets the curve in the points (z=0, y=0), (z=0, z=0), and (z=0, fy +1z2=0).
We have thus on the curve the three points

(=0, fy+1z2=0), (y=0,92+j2=0), (z=0, hz+ky=0),

and in virtue of the assumed relation fgh =1jk, these three points lie in a line.
Hence the points A, B, C must be such that BC, CA, AB respectively meet the curve
in points 4’, B, ", which three points lie in a line; that is, we have a quadrilateral
whereof the six angles 4, B, C, 4’, B, ¢’ all lie on the curve. It is well known
that the opposite angles 4 and 4’, B and B, C and C" must be corresponding points,
that is, points the tangents at which meet on the curve. And conversely taking 4, C
any two points on the curve, A’ a corresponding point to A (any one of the four
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550 PROBLEMS AND SOLUTIONS, [485

corresponding points), then AC, A'C will meet the curve in the corresponding points
B, B; and AB, A’B’ will meet on the curve in a point C’ corresponding to C, giving
the inscribed quadrilateral (4, B, €, A', B/, C"); the triangle AB( is therefore constructed.

It is to be remarked that the equation fgh=1jk being satisfied, we may without
any real loss of generality write f=j, g=k, h=7, and therefore a=pB=rv; hence
changing the constants we have the theorem: the inverse points (#, y, 2), (7, ¥y, z7%)
are corresponding points on the curve

ax (¥ + 2°) + by (22 + @°) + cz (2 + 3*) + 2layz =0.

[Vol. v. pp. 57, 58.]

Addition to the Note on the Problems in regard to a Conic defined by five Conditions of
Intersection.

Since writing the Note in question, I have found that a solution of Problem 7
has been given by M. De Jonquieres in the paper “Du Contact des Courbes Planes,
&c.,” Nouvelles Annales de Mathématiques, vol. 111. (1864), pp. 218—222: viz. the number
of conics which touch a curve of the order n in five distinct points is stated to be

n(n—1)(n—2)(n—3)n—4)

T 0 L5 (n® + 15nf — 55m® — 495m2 + 1584n + 15).

There are given also the following results; the number of conics which pass
through two given points and touch a curve of the order n in three distinet points is

n-1)m=2) |
ST s (n* 4+ 6n*—19n 5 12),

and the number of conics which pass through a given point and touch a curve of
the order n in four distinct points is

n(n—1)(n—2)n
1.2.3.4

) (n* + 10n® — 37n? — 118n + 282).

These formule are given without demonstration, and with an expression of doubt as
regards their exactness—(“elles sont exactes, je crois”); they apply, of course, to a
curve of the order n without singularities; but assuming them to be accurate, the
means exist for adapting them to the case of a curve with singularities.

[There is also a paper on the same subject in the Annales for January, 1866
(pp. 17—20), from the Editor’s Note to which we have introduced a. correction (4 15
instead of —35) in the formula given above.]
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[Vol. v. pp. 58, 59.]

1876. (Proposed by R. Barn, M.A)—If three of the roots of the equation
(«, b, ¢, d, eQw, 1)*=0 be in arithmetical progression, show that

55296 H3J — 2304 aH*I* — 16632 a2HIJ + 625 «*I* — 9261 a?J* =0,
where
H=ac—-0, I=ae—4bd+ 3¢ J=uace+ 2bcd— ad?— b%—c’

Solution by PROFESSOr CAYLEY.

Write (a, b, ¢, d, e§x, 1)'=a(z—a)(z—B)(z— ) (z—28); then putting for a moment
B+y+8=p, By+B8+yd=q, Byd=r, and forming the equation

(B+7—28)(B+8—2y)(y+8—28)=0,

this is easily reduced to
—2p* + 9pg — 2Tr=0.
But we have
a(a®—pat+ qu —71) (# —a) =(a, b, ¢, d, eYa, 1),
and hence

Substituting these values of p, g, r, the foregoing equation becomes, after all reductions,
(20a®, 20 b, —16ab*+ 36 a’c, 128 b* — 216 abc + 108 a*d{a, 1) =0,

and from this and the equation (a, b, ¢, d, ea, 1)*=0, eliminating «, we should find
the condition for three roots in arithmetical progression. But it appears from the theory
of invariants that the result of the elimination may be obtained by writing b =0, and
expressing the result so obtained in terms of a, H, I, J. Hence, writing in the two
equations b=0, the first equation contains the factor 4¢? and throwing this out, the
equations become

Sact + 27ca +27d =0, aa*+ 6ea®+ 4da+e=0;

or multiplying the first by a and reducing by means of the second, the two equations

become
a4+ 27ca+27d =0, 3ca®— Tda+ 5e=0,

The result is of the degree 5 in the coefficients, but in order to avoid fractions in
the final result it is proper to multiply it by a; it then becomes

625 ase® — 4050 a’c’e® + 6561 a‘cle — 1890 alced? + 13122 a‘c*d? + 9261 a’d* = 0.
But writing as above b=0, we have

2 3
a=a, c=g, e={—-31-31—, d’=—J+}Lf—£€[;
a g 'a & @
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552 PROBLEMS AND SOLUTIONS. [485

4 6

it b ; ; e
and substituting these values, the result is found to contain the terms I—aI—{—, "3 with

coefficients which vanish; viz. the coefficient of the first of these terms is
+ 16875 424300+ 6561 + 7560 + 18792 — 74088, =0 ;

and the coefficient of the second of the two terms is
— 16875 — 36450 — 19683 — 75168 + 148176, =0.

The remaining terms give

+ 625 =+ 625 a’l®

— 5625 — 4050 — 1890 + 9261 = — 2304 aHI?

+ 1890 — 18522 = —16632*HIJ | =0,
— 18792 + 74088 = + 55296 H*J

+ 9261 =+ 9261 a®)?

which is the required result; a more convenient form of writing it is
(55296 J, —7T68 I, — 5544 1J, 6251+ 9261 J°YH, a)=0.
REMARK. If 7 and J denote as above the two invariants of the form U=(a, b, ¢, d, eQz, 1),
and if we now use H to denote the Hessian of the form, viz.
H=(ac—0>, %(ad—10bc), i (ae+2bd—3c*), % (be—cd), ce—d*Ya, 1),
then it appears by the théory of invariants that the equation of the twelfth order
(55296 J, —T681I%, —55441J, 625I°+9261J°QH, Up=0,

is such that each of its roots forms with some three of the roots of the equation
U=0 a harmonic progression; viz. if the three roots are B3, v, 8, then we have

SRR GO SHERE G ) A
TR T FERRFIMINET S guigiigy T

so that the roots of the equation of the twelfth order are the twelve values of the
last-mentioned function of three roots.

[Vol. v. pp. 65, 66.]
On the Problems wn regard to a Conic defined by five Conditions of Intersection.

There has been recently published in the Comptes Rendus (t. LXIL pp. 177—183,
January, 1866) an extract of a memoir “ Additions to the Theory of Conics,” by
M. H. G. Zeuthen (of Copenhagen). The extract gives the solutions of fourteen pro-
blems, with a brief indication of the method employed for obtaining them. Of these
problems, four relate to intersections at given points, the remaining ten are included
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485] PROBLEMS AND SOLUTIONS. 553

among the twenty-seven problems enumerated in my Note on this subject in the
January Number of the Educational Times (Reprint, vol. v., p. 25); but two of these
ten are the problems 25 and 26 which are in my Note stated to have been solved;
there are, consequently, of the twenty-seven problems, in all twelve which are solved :
viz. these are where it is to be observed that Zeuthen’s soluticns apply to the case

No. of Prob. ( 1, 8,10, 12, 14, 17, 19, 21, 23, 25, 26, 27

Zeuthen’s No. ’ e Eoile: Ay 8818, T 4 6 1, —

of a curve of a-given order with given numbers of double points and cusps. The
problems 25 and 26 had been previously solved only in the case of a curve without
singularities. As to Prob. 27, the solution mentioned in my former Note is in fact
applicable to the general case. The solution for Prob. 1 may also be extended to this
general case, viz. for a curve of the order m with 8 double points and « cusps the
required number is =m (12m — 27) — 248 — 27«; or, if n be the class, then this number
is =12n—15m +9«; so that all the twelve problems are solved in the general case.

The results obtained by M. de Jonquieres, as stated in my Nofe in the March
Number (Reprint, vol. v., p. 57), seem to be all of them erroneous. In fact, for the
number of conics passing through two given points and touching a curve of the order
m in three distinct points (which is a particular case of Prob. 23), Zeuthen’s formula
applied to a curve without singularities gives this

=tm((m — 2)(m*+ 5m® — 17 m? — 49 m + 108)

instead of the value
tm(m—=1)(m-2)(m*+ 6m*—19m — 12)

which is

=tm(m—2)(m*+5m* —25m*+ Tm + 12);
and I have by my own investigation verified Zeuthen’s Number. So for the number
of conics through a given point and touching a curve of the order m in four distinct
points (which is a paltlcular case of Prob. 17) Zeuthen’s formula applled to a curve
without singularities gives this

=gem(m—2)(m — 3) (m® + Im* — 15 m® — 225 m* + 140 m + 1050)
instead of the value

dgm(m—1)(m—2) (m—3)(m*+10 m* — 37 m* — 118 m + 282)
which is
= ggm (m— 2)(m — 3) (m®+ Im* = 47 m? — 81 m* + 400 m — 282),
and it may I think be inferred that the expression obtained for the number of conics

which touch a given curve in five distinct points (Prob. 7), containing as it does the
factor (m —1), is also erroneous.

C. VIL 70
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554 PROBLEMS AND SOLUTIONS. [485

I have obtained for Prob. 2 a solution which I believe to be accurate; viz. the
number of the conics (4, 1), (that is, the conics which have with a given curve a
5-pointic intersection and also a 2-pointic intersection, or ordinary contact), is

=107 +10nm —20m*—130n + 140 m+ 10 k (m+n —9) — 4 [(n — 8) & + (m — 8) ¢]

where ¢ (the number of inflexions) is =3n—3m+«, but I prefer to retain the fore-
going form, without effecting the substitution.

[Vol. v. pp. 88, 89.]

1890. (Proposed by Professor CAYLEY.)—Find the equation of a conic passing
through three given points and having double contact with a given conic.

Solution by the PROPOSER.

Let the given points be the angles of the triangle (=0, y=0, 2=0), and let
the equation of the given conic be U=(q, b, ¢, £, g, h{#, y, 2=0; then the equation
of the required conic is

U=(@ya+ynNb+z4yc)=0,

for this is a conic having double contact with the conic U=0, and, since the terms
in (2% 3% 2% each vanish, it is also a conic passing through the given points.

It is clear that there are four conics satisfying the conditions of the Problem,
viz. putting for shortness

P =zya+yb+zve, Pi= =z a+yb+zc,
P,=zyNa—-ynNb+zic, Py= zna+yvb—2ze,
the four conics are

U=P=0; U=P32=0, U=P#=0, U-=P2=0.

It may be remarked that the conics P, P, have a fourth intersection lying on the
line y4/b+2+4/c=0, and the conics P,, P, a fourth intersection lying on the line
y &b =2z4/c; which two lines are harmonics in regard to the lines y =0, z=0.

Similarly the conics P,, P, have a fourth intersection on the line z+/a+z4/c=0,
and the conics P, P, a fourth intersection on the line z /¢ —z4/c=0; which two lines
are harmonics in regard to the lines 2=0, #=0. And the conics P;, P, have a fourth
intersection on the line @z +/a+y4/b=0, and the conics P, P, a fourth intersection on
the line @#na—ysb=0; which two lines are harmonics in regard to the lines
z=0, y=0. It may further be remarked that the equations of any two of the four
conics may be taken to be

ayz + Bza + yaoy =0, a'yz+ B2z + yay=0.
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The general equation of a conic having double contact with each of these conics then is
nizt = 2n (y& + o' @) yz — 20 (yB' +o/B) 2w — dnyy'wy + [(By = By) # — (yd' =Y yI'= 0,

where n is arbitrary: and, having double contact with this conic, we have (besides
the above-mentioned two conics) two new conics each passing through the angles of
the triangle; viz. writing for greater convenience

< BY = BY) (v¥ =v0)
K — oy ¥

(By = By) (ya' —v'a) ,
q

or K=oy + -

then the equations of the two new conics are
Yayz+yB 2w+ Kay=0, o' yz+o/Baz+ Koy =0.
In fact, writing the equation under the form
[z2+ By = By)z+ (v& — v'a) yT*
=4 (BY = By) (va' = y'a) wy — dnyy'wy
= 2n (By' = B'y) wz — 2n (By + B'y) =z
= 2n(yd' —y'a)yz—2n (yd' +v'a) yz =0,

we ab once see that this is a conic having double contact with the conic y'ayz+yB'ze+ Kay=0,
the equation of the chord of contact being nz+ (By' — B'y)z + (ya —y'a) y=0: and similarly
it has double contact with the conic ya' yz + '8 2z + Kuy = 0, the equation of the chord
of contact being nz — (By —B'y) z — (ya' —y'a) y = 0.

[Vol. v. pp. 99, 100.]

1554. (Proposed by Professor CAYLEY.)—Show that, in the ellipse and its circles
of maximum and minimum curvature respectively, the semi-ordinates through the focus
of the ellipse are

For the circle of maximum curvature 7, =a (1 —e)(1+ 2¢)},

for the ellipse Yo=a(l—e),
; ) ) Wi Lo o 4\ __ 52
for the circle of minimum curvature Yz = ﬂ(l (le + eff)'z‘ -f—} .

and that these values are in the order of increasing magnitude.

[Vol. vi., July to December, 1866, pp. 18, 19.]

1931. (Proposed by Professor CAYLEY.)—Find the stationary tangents (or tangents
at the inflexions) of the nodal cubic :

a(y=2P+y=af+z(—yp=0.

70—2

WWW.rcin.org.pl



556 PROBLEMS AND SOLUTIONS. (485

Solution by the PROPOSER.
The equation may be transformed into the form
(—8z+y+ z)'J“+ (x—8y+z)%+ (a;+3/—8z)§=0,
and it thence follows immediately that the stationary tangents are the lines
—-82+y+2=0, 2—8y+2=0, z+y—8z ;0,

respectively, and that the three points of contact, or inflexions, are the intersections of
these lines with the line z+y +2z=0.

In fact, writing
X=kz+ty+z, Y=a+ky+tz, Z=w+y+ks -
we have identically
X+Y+2pr-21XYZ
=(k+2P(@+y+2P—2T(kz+y+2) (@ +ky+2)(z+y+k2),
= (@+y*+2){(k+2)—27k}
+ 3(y2® + ¥z + 22+ Zw + ayt + ay) (b + 2 -9 (B + k + 1)}
+ B ayz (2(k+2) — 9 (k* + 3k + 2)}
== 12 (k+8)(2®+ 2+ 2°)+3 (k — 10 (y2* + y°z + 2a* + 2%z + wy* + a*y) =3 (b — 1 (Tk + 2) zyz.
Hence, writing k=—38, we have '
X+Y+2p-21XYZ=— §187 Y22+ y*z + 22 + 2°x + xy® + 2y — bayz),
=287 (& (y— 2P +y (¢ —a) + z(z—y)}.
The equation of the given curve is therefore
(X+YV+2r-21XYZ=0, or X}+ V1 2420,
where of course X, Y, Z have the values '

X=-8z+y+2 Y=2—-8y+z Z=x+y—S8a

[Vol. VL pp. 35—39.]

1990. (Proposed by Professor SYLVESTER.)—Prove that the three points in which
a circular cubic is cut by any transversal are the foci of a Cartesian oval passing
through the four foci of the cubic.

Solution by PrOFESSOR CAYLEY.

Some preliminary explanations are required in regard to this remarkable theorem.

1. I call to mind that a circular cubic (or cubic through the two circular points
at infinity) has 16 foci, which lie 4 together on 4 different circles; and that the
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property of 4 concyclic foci is that taking any three of them A, B, C, the distances
of a point P of the curve from these three foci are connected by a linear relation
AMAP+ p.BP +v.CP=0, where A + u+ v=0, or if as is more convenient the distances
are considered as +, then where A+ u+v=0. A circular cubic may be determined
so as to satisfy 7 conditions; having a focus at a given point is 2 conditions; hence
a circular cubic may be determined so as to pass through three given points, and to
have as foci two given points.

2. A Cartesian, or bicircular cuspidal quartic (that is a quartic having a cusp
at each of the circular points at infinity) has nine foci, but of these there are three
which lie in a line with the centre of the Cartesian (or intersection of the cuspidal
tangents), and which are preeminently the foci of the Cartesian. We may, therefore,
say that the Cartesian has three foci, which foci lie in a line, the axis of the
Cartesian. A Cartesian may be determined to satisfy 6 conditions; having a focus at
a given point is 2 conditions; but having for foci three given points on a line is
5 conditions; and hence a Cartesian may be found having for foci three given points
on a line, and passing through a given point; there are in fact two such Cartesians,
intersecting at right angles at the given point. ;

3. The theorem at first sight appears impossible; for take any three points
, H in a line and any other point A ; then, as just remarked, there are, having
. G, H for foci and passing through A4, two Cartesians. And we may draw through
F, G, H, and with A for focus, a circular cubic depending upon two arbitrary
parameters; the position of a second focus of the circular cubic is (on account of
the two arbitrary parameters) primd facie indeterminate; and this is confirmed by the
remark that the circular cubic can actually be so determined as to have for focus an
arbitrary point B; and yet the theorem in effect asserts that the foci coneyclic with A4,

of the circular cubic, lie on one or other of the two Cartesians.

e

4. To explain this, it is to be remarked that the arbitrary point B is a focus
which is either concyclic with 4 or else not concyclic with A. In the latter case,
although B is arbitrary, yet the foci concyclic. with 4 may and in fact do lie on
one of the Cartesians; the difficulty is in the former case if it arises; viz, if we
can describe a cubic through the points F, G, H in a line, and with 4 and B as
concyclic foci; that is, if we can find a third focus (), such that the distances from
A4, B, C of a point P on the curve are connected by a relation N\.AP+pu.BP +v.CP=0,
where A+pu+v=0. It may be shown that this is in a sense possible, but that the
resulting cubic is not a proper circular cubic, but is the cubic made up of the line
FGH taken twice, and of the line infinity. To show this, since the required cubic
passes through the points F, G, H we have

M. AF +u.BF +v.CF =0 and thence | AF, AG, AH, 1 =0,
A AG +p.BG +v.0G =0 BF, ‘BG, BH,.l.|
N.AH+pu. BH+v.CH=0" |16F,-i@G; «CH, 1 |

A + u +v =0
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being two conditions for the determination of the position of the point C'; these give
CG, CH as linear functions of CF; the distances CF, CGF, CH of the point C from
the points F, G, H in the line FGH are connected by a quadratic equation, and hence
substituting for C@, CH their values in terms of CF, we have a quadratic equation
for CF; as the given conditions are satisfied when C coincides with A or with B,
the roots of this equation are CF=AF and CF=BF. But if CF=AF, then the
linear relations give CG=AG and CH= AH, that is, C is a pomt opposite to A4 in
1egard to the line FGH. And similarly if CF= BF, then C is a point opposite to
B in regard to the line FGH. But C' being opposite to ‘A or B, the fourth concyclic
focus D will be opposite to B or A; that is, the pairs 4, B and C, D of concyclic
foci lie symmetrically on opposite SldeS of the line FGH; this’ of course implies that
the four points lie on a circle.

5. Taking ¥ =0 as the equation of the line FGH, a*+y*—1=0 as the equation
of the circle through the fonr points 4, B, C, D, then these lie on a proper cubic

@+y+ e+l +ny2=0

(not passing through the points F, ¢, H) and the four foci are given as the inter-
sections with the circle #*+ 3*—~1=0 of the pair of lines

—2nz=nl=0.
But if we attempt to describe with the same four foci a cubic
@+ y*+ 1)y + Va4 2m'zy + n'y* = 0,
then the foci are given as the intersections with the circle #*+3*—1 =0 of the conic
P4 2mle =20y + m? =l = 0.
In order that these may coincide with the points (4, B, C, D) we must have

(22 =2nz—nl)+ (P + 2m'z =2y + m* =n'l)=a+ = 1;
that is ' :
w=n, =20, =nl¥+nt=nl==1.

The last equation is n'l'=u®+ 1 =nl, which, assuming that nl is not equal to n*+1,
{in this case the cubic (2*+y*+1)z+la®+my’=0 would reduce itself to the line

and conic (z+n) <x2 + 1+ %> =0}, since I'=0, gives #' = o, and therefore the cubic

(@+ 12+ 1) y+ s+ 2m'zy + 0’y =0,
reduces itself to #*=0, that is, the cubic in question reduces itself to the line

FGH twice repeated, and the line infinity.

6. The conclusion is that F, G, H being given points on a line, and 4 and B
being any other given points, there is not any proper cubic passing through F, @, H
and having A, B for concyclic foci: and the primd facie objection to the truth of
the theorem is thus removed.
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7. Considering the points ¥, G, H on a line and the point A as given, it has
been seen that there are two Cartesians through A with the foci F, G, H; and the
theorem asserts that in the circular cubics through F, G, H with the focus A4, the
foci concyclic with A lie on one or other of the two Cartesians: there are consequently
through F, G, H with the focus A two systems of circular cubics corresponding to
the two Cartesians respectively, each system depending upon two arbitrary parameters.
But if we attend only to one of the two Cartesians and to the corresponding system
of cubics, then the Cartesian passes through "the four foci of each cubic, and if
(instead of taking as given the points F, ¢, H and the focus A) we take as given
the four concyclic foci A, B, ¢, D of a cubic, the theorem asserts that we have
through A, B, ¢, D a Cartesian depending on two arbitrary parameters (or having for
its axis an arbitrary line), and such. that the foci of the Cartesian are the points of
intersection F, ¢, H of its axis with the cubic. And I proceed to the proof of the
theorem in this form.

8. The equation of a circular cubic having four foci on the circle a*+3*—~1=0 is
@+ y+ 1) (Pr+ Qy) + la® + 2may + ny*=0:
and this being so, the four foci are the intersections of the circle with the ,conic
(Qe—Pyy+2(—nP+mQ)z+2(mP —1Q)y +m*—nl=0.
9. The general equation of a Cartesian is
(@*+y*+ 242+ 2By + Oy + 2Dz + 2Ey + F =0,

and by assuming for 4, B, C, D, E, F, the following values which contain the two
arbitrary parameters a and 6, viz. by writing ¢

24=06Q, 2B=—-6P, C=a—1, D=—ntP + (m6*— ab) Q,
E =m0+ af) P —16°Q, F=—a®+ 6*(m*—nl),
we have the equation of a system (the selected one out of two systems) of Cartesians

through the four foci; in fact, substituting the foregoing values, the equation of the
Cartesian is

o+ y+ 0 (Qu—Py)+a—1)*= 240 (Qu — Py)
+ 262 (—nP +mQ) z + 262 (mP - 1Q)y — o* + 6*(m> — nl) = 0,

and writing herein #*+y*—1 =0, the equation reduces itself to
& {(Qz— Pyy+2(—nP+mQ)z + 2 (mP —1Q)y + m* — nl} =0,

verifying that the Cartesian passes through the four foci.

The coordinates of the centre of the Cartesian are x=—4, y=— B, and the
equation of its axis is E(z+A4)—D(y+ B)=0; we have therefore to show that the
points of intersection of this line with the cubic are the foci of the Cartesian.

www.rcin.org.pl



560 PROBLEMS AND SOLUTIONS. [485

10. To find where the line in question meets the cubic
(@ + y*+ 1) (Pz + Qy) + la* + 2may + ny*= 0,

writing in this equation

z=—A+DQ, y=-B+EQ,
we have for the determination of Q the equation

{A*+ B+ 1—2(AD + BE) Q + (D*+ E?) O} x
(~AP—BQ+(DP+EQ) 0} +(l, m, nYi— A + DQ, — B 4+ EQ)=0,

or observing that we have AP + BQ =0, this equation becomes

(D*+ E*) (DP + EQ) Q*
+{—=2(AD+ BE)(DP + EQ) + ID*+ 2mDE + nE?} O*
+{ (4*+ B*+1)(DP+EQ) —2lAD - 2m (AE + BD) — 2nBE} Q
+{ lA2 + 2mAB + nB?} = 0.
11. Substituting for 4, B, D, E their values in terms of (P, @, a, 6), we find
DP+ EQ= — 6 (nP? - 2mPQ + 1Q?),
lA*+2mAB+nB* = 16 (nP* — 2mPQ + 1Q?),
lIAD +m (AE + BD)+ nBE = — Yal? (nP? — 2mPQ + 1Q?),
ID*+ 2mDE +nE* = ((nl = m2) 6 + a26) (WP — 2mPQ + IQ?),

and substituting these values in the equation for , the whole equation divides by
6 (nP? — 2mPQ + 1¢?*), and it then becomes

4(D*+E)Q*+4{—2(AD + BE)—(nl —m?) @ —a?} Q*+ 4 {A*+ B*+ 1 - a} Q —1=0,
or, putting for shortness ;
C'=0-4>- B, = a—1—A4*— B,
F'=F—-2(AD+ BE), =-a—6(nl—m*)-2(AD + BE),

the equation in Q is
4 (D*+ £ QP+ 4F'Q*— 40 Q-1 =0,

so that, Q satisfying this equatidn, the intersections of the axis with the cubic are given
by 2=—A+DQ, y=— B+ EQ.

12. The equation of the Cartesian, writing therein #+ A =u and y+ B=v, and
attending to the values of ¢’ and F, is

(w+v*+ 0P+ 2Du+ 2Ev+ F'=0.
And to find the foci, writing in this equation u+p, v+1p in place of u, v, we find
W+ + 0 +2(u+vi)pP+2(D+ Ei)p+2Du+2Ey + F' =0,
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that is
(w4 v*+ Oy +2Du+2Ev+ F' + {2 (u + i) (w2 + v* + C') + D + Kt} 2p + 4 (u+ w) p* = 0.
Expressing that this equation in p has two equal roots, we find
d(u+v)p {(w+ v+ C' )P+ 2Du+ 28v + F'} — {2 (w + v) (w?+ 2+ C') + D + Ei}* =0,
that is
42Du+2Ev+ F')(u+v) — 4 (w4 v* + C) (u + vi) (D + Ei)— (D — Ei) =0,

which equation is in fact the equation of the three tangents from one of the circular
points at infinity. Writing it under the form U+ Vi=0, the nine foci of the
Cartesian are given as the intersections of the two cubics U=0, V'=0. But of these

nine points, three, the foci that we are concerned with, lie on the axis, or line
Eu— Dv=0; in fact, we have

U=4(w—*) (2Du+2Ev+ F') V =8uwv (2Du+ 2Ev+ F’)
—4(uD— k) (v +v*+ (") —4 (ul +vD) (v +v*+ (")
— (D = E?), —2DE;
and hence

2DEU — (D? — E*)V=(Eu— Dv) (8 (Du+ Ev) (2Du+2Ev+ F') — 4 (D*+ E*) (w*+ v*+ C")} =0,

which shows that the nine points lie three of them on the line Eu — Dv=0, and the
remaining six on the conic

2 (Du+ Ev) (2Du+2Ev + F') — (D* + E?) (w*+ v*+ C") = 0.
13. We have thus the three foci given as the intersections of the axis Ku— Dv=0,
with the cubic
U=4w—v*)(2Du+ 2Ev+ F')— 4 (uD —vE) (v* +v*+ C")—(D*— E*)=0;

or, writing in this last equation u=DQ, v=EQ, that is x=-4 + DQ, y=— B+ EQ,
we have

w—vr=(D*— E*)Q, uD—vE=(D*-E*) Q.
The whole equation divides by (D?— E®), and omitting this factor, it is

42D+ E)Q+ F}—4Q {(DP+ E) 02+ 0} —-1=0,
that is :
4(D*+ E*) QP+ 4F'Q*—40'Q — 1 =0,
the same equation as the equation in Q before obtained; that is the intersections of
the cubic with the axis are the three foci of the Cartesian.

[Vol. vi. pp. 57—59.]

1949. (Proposed by Professor CAYLEY.)—Find the conic of five-pointic intersection
at any point of the cuspidal cubic y*=a%.

@V e 71
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Solution by the PROPOSER.

The equation y®=a®z, is satisfied by the values # :y : z=1 : 0 : 6*; and con-
versely, to any given value of the parameter @ there corresponds a point on the cubic
y*=a*2. Consider the five points corresponding to the values (6,, 6,, 6;, 6,, 6;) respec-
tively; the equation of the conic through these five points is

o B, 2, Yz, 2%, DY i=0,
J ]-s 0127 016) 01‘1 913! 01 ;

where the remaining four lines of the determinant are obtained from the second line
by writing therein 6,, 6,, 6,, 65 successively in place of #,. Writing for shortness
¢ 6, 6, 6, 6, 6,) to denote the product of the differences of the quantities

(6,, 6,, 65, 6,, 6;), the equation contains the factor (*(8,, 0., 6;, 0,, 6;), and we may
therefore write it in the simplified form

o 1 | ¥, 2, yz, 2z, ay =)
6, 0,6, 6, 0)| 1, 82 65, 64 63 6,

Hence putting in this equation 6,=C€,=0,=0,=86,=¢, we have the equation of the
conic of five-pointic intersection at the point (¢). The result in its reduced form
may be obtained directly without much difficulty, but it is obtained most easily as
follows: let the function on the left hand of the foregoing equation be represented by

(@, b, ¢ f, g, K%z, y, 2),

then writing z : y : 2=1: 0 : 6°, we have

(a) b) c, f‘a .9, hﬁl) 0’ 03)2
e 1 3,00 R LU b
é’ﬁ (01, 02; 63) 04’ 05) 1, 012, 016, 01‘, 013, 0 f
_(0-6)(0-0)(0—06)(0-0)(0—6) 1, &, &, &, &, 0 |,
C% (0) 61; 02’ 03) 04» 05) ‘ ‘ 1, 012, 616, 014, 013, 01

-

=(0—06)(0—0,)(0—0,)(0—0)(0—6y)(0+6,+0,+06,+6,+6,);

for the determinant, which is a function of the order 16 in the quantities (6, 6,, 6, 6, 8, 6;)
conjointly, divides by ¢t 0, 6,, 0,, 6,, 0,, 6;), which is a function of the order 15; and
as the quotient is a symmetrical function of 6, 6,, 6,, 6,, 6,, 6;, it must be equal,
save to a numerical factor which may be disregarded, to 6+ 6,+ 0,+ 6,+ 6, + 6,.
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Hence if ¢ be the parameter of the given point, writing 6,=6,=6,=6,=06;=¢,
we have

@ b, ¢ £, g WYL, 6, 0F=(0— ¢y (0+5¢)
=(1, 0, —15, +40, —45, + 24, — 576, ¢),
where the left-hand side is
a+b6+cl+ f0+ g0+ 10, ={c, 0, £, g, b,. h, a} (6, 1),
that is we have
c=1, f=—15¢%, g=40¢% b=—45¢%, h=24¢, a=— 5
and the equation of the conic of five-pointic intersection therefore is
(— 5%, —45¢%, 1, — 15¢%, 404", 24¢°Ya, 7, 2)=0,
or, what is the same thing,
— 5Pt — 4Bty + 2 — 154°yz + 40P 2w + 24¢Pay = 0,

which is the required result.

Norte. The condition in order that any six points (6,, 6,, 6;, 6,, 6;, 8;) of the
cubic 3*=a% may lie on a conic, is :

0,+0,+0;,+6,+ 60,4+ 6,=0.

[Vol. vi. p. 65.]
1872. (Proposed by Professor CAYLEY.)—Show that the surfaces
wyz=1, yz+m+zy+x+y+2+3=0,

intersect in two distinct cubic curves; and find the equations of the cubic cones
which have their vertices at the origin and pass through these curves respectively.

[Vol. VL. pp. 67—69.]

1969. (Proposed by Professor SYLVESTER.)—In two given great circles of a sphere
intersecting at O are taken respectively two points P and @, the arc joining which
is of given length: prove that S, H two fixed points, and M a fixed line, in a plane
may be found such that, for all positions of the arc P, a point M in the fixed
line may be found satisfying the equations

SM + HM =sin OP, SM ¥ HM = sin 0Q.

71—2
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Solution by PrOFESSOR CAYLEY.

1. In the spherical triangle OPQ, whereof the sides OP, 0Q, PQ are 6, ¢, B and
cos 8 —cos @ cos ¢
sin 6 sin ¢
hence treating «, B8 as constants, and 6, ¢ as variable angles connected by the fore-
going equation, it is required to show that we can find two fixed points S, H and
a fixed line, such that taking M a variable point in this line and writing SM =7,
HM =s, the relation between 7 and s (or equation of the fixed line in terms of
r, s as coordinates of a point thereof) is obtained by substituting in the foregoing

equation for @ and ¢ the values given by the two equations

the angle O is =a, the relation between these quantities is cosa=

sinf=(r+s), singp=(r—s),
or as, for the sake of homogeneity, it will be more convenient to write these equations,
msin@ =(r+s), msin¢=(r—s).

2. Suppose that the perpendicular distances of S, H from the fixed line are
« and b, and that the distance between the feet of the two perpendiculars is 2c, then
if # denote the distance of the point M from the midway point between the feet of
the two perpendiculars, we have

r=v{c+a) +a}, s=v{lc—a2p+¥,

and (@, b, ¢) being properly determined, the elimination of & from these equations
should give between (r, s) a relation equivalent to that obtained by the elimination
of (0, ¢) from the before-mentioned equations. Or, what is the same thing, the
elimination of (r, s, #) from the equations

msin@=r+s, msing=r—s, r=vict+a)P+a, s=y{(c-az)y+0b
should give between (6, ¢) the relation

cos 3 — cos 0 cos ¢
sinf@sing ’

cos a =

that is, the last-mentioned equation should be obtained by the elimination of # from
the equations

m (sin 0 + sin ) = 2¢/{(c + 2)*+ ¢*}, m (sin @ —sin ¢) = 2y/{(c — x)* + b?}.
3. The equation in (6, ¢) may be written
cos B — cos asin 0 sin ¢ = cos 0 cos ¢,
or, squaring and reducing,
sin? @ + sin® ¢ = sin® B + 2 cos a cos B sin 6 sin ¢ + sin® a sin® O sin® ¢,

that is

. - 1 — cos® a — cos?
sin® 0 + sin® ¢ = S B

COS a cos B)Q

-+ (sin asin @sing+ .
sin o

sin? a
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But from the two equations in #, we have

m? (sin? 0 +sin? ) = 4¢* + 2a* + 2b° + 4a?, m?sin O sin ¢ = dcx + @ — b,

whence
b — a® + m* sin 0 sin ¢
22 = % .

therefore

2 2 2 o _ 2 P > "
sin? @ + sin® ¢ _dc+20° + 20 i (b a* + m? sin @ sin ¢) .

m? 2¢cm
Hence, comparing the two results, we have

1—cosa—cos’B 4¢*+20*°+ 2a® cosacos B _ b*—a? Nl st 84
sin® a m? 4 sin a 2em

2¢’

or, as these may also be written,

£ b2 — qa? b2 S
——, 2cosacos B=— 3
2¢  ° B Ty

F m
sina=—, cos?a+cos?fB~=
2¢
whence

(cos a+ cos B) =

-0 . m
(cosa — cos B)* = o v sma=g;

.’

so that m being put equal to unity, or otherwise assumed at pleasure, @, b, ¢ are
given functions of «, 8. Or conversely, if @, b, ¢ are assumed at pleasure, then a, B, m
are given functions of these quantities.

5. It is to be remarked that (a, B) being real, « and b will be imaginary, and
consequently the points S, H of Professor Sylvester’s theorem are imaginary (*); if, how-
ever, we write —a? —0® in place of a? b* respectively, then the radicals v/{(c + «)*— a?},
V{(c—=z)*—b*} have a real geometrical interpretation. The system of relations between
(a, B, a, b, ¢, m) becomes

a2

DY anns
(005a+008,3)2=c,, (cosa — cos B)* = — sina=.

o 2¢’
and considering (a, b, ¢) as given, we may write

_a+b _a—=b d :
cosa=——, cos,3——20~, m = /{4c* - (@ + by},
viz. we have either this systém or the similar system obrained by writing —b in

place of b.

6. Consider two circles with the radii @, b and having the distance of their
centres =2¢, and to fix the ideas assume that 2c¢>a+b, that is, that the circles are

1 Prof. Sylvester remarks that according as B is less or greater than a, we may find real values of
0, ¢ equal to one another in the one case and supplementary in the other. Hence we must in any case
be able to make r=0 and s=0 indifferently, which shows & priori that the line being supposed real, each
point S, H must be imaginary, but so that the squared distance of either from the line must be a real
negative quantity, conformably to Prof. Cayley’s important observation in the text. W. J. M.
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exterior to each other. The foregoing equations signify that 90° —a, 90°— /3 are the
inclinations to the line of centres of the inverse and the direct common tangents
respectively, and that m is the length of the inverse common tangent. And the
theorem is, that considering two circles as above, and taking M a variable point in

o
X

the line of centres, if r, s denote the tangential distances of M from the two circles
respectively, and if m be the length of the inverse common tangent of the two
circles, then the angles 6, ¢ determined by the equations

msin @=7r+s, msinp=r—s,
are connected by the relation
cos 3= cos 0 cos ¢ +sin @ sin ¢ cos a,
(2, B) being constant angles, determined as above.

7. It is to be remarked that, assuming

_sina _ /{4c*—(a+ D)}
T sinfB T {4t —(a—b)}’

that is, k=inverse common tangent + direct common tangent, then we have

cosa=4/(1 —k%sin?B)= AR,

or the equation in #, ¢ becomes

cos B =cos 0 cos ¢ + sin 0 sin ¢ AR,
which is the algebraical equation connecting the amplitudes of the elliptic functions
in the relation #(0)+ F(é)=F(B).

8. It is very noticeable that the above figure leads to another relation in elliptic
functions, viz. it is the very figure employed for that purpose by Jacobi; in fact,
considering therein Y as a variable tangent meeting the circle 4 in the two points
X and X', then if 2y, 2y’ denote the angles GAX, GAX’ respectively, it is easy to
see geometrically that we have dyr : dy’'=YX : YX’; where

(YX)=(BXp-0, =4c+ a*+ 4accos 29— b°, = (2¢+a)* — b? — Sac sin? ),
Y.

and similarly (YX')?=(2c+ a)* — b*— 8acsin® ', that is, writing 2= (20_1_8%2 , the

differential equation is

i e iy e
V(1 = Esin?y)  A/(1—PBsin?y)
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corresponding to an integral equation
F) - F ) =F (w),
the modulus of the elliptic functions being
S V8ac
T V{(2ctay-0?

In the problem above considered the modulus is

B = Vi4e —(a + b))
T {4t —(a =Dy}’

and it is not very easy to see the connexion between the two results

[Vol. vi. p. 81.]
Theorem : by PROFESSOR CAYLEY.

If (4, 4’), (B, B') are four points (two real and the other two imaginary) related
to each other as foci and antifoci (that is, if the lines AA4’, BB’ intersect at right
angles in a point O in such wise that 04 = 0A’=¢.0B=1.0B'), then the product
of the distances of any point P from the points 4, 4’ is equal to the product of
the distances of the same point P from the points B, B’

In fact, the coordinates of A, A’ may be taken to be (a, 0), (—a, 0), and those
of B, B' to be (0, ai), (0, — az); whence, if (#, y) are the coordinates of P, we have

(APy=(z—ay+y =(z—a+iy)(z—a—1y),
(A'PP=(@+af+y=(@+a+1y) (z+a—1y),
(BP p=a*+(y—iaP = (z+ 1y +2) (¢ — 1y — a),
(BPy=a*+(y+ia)=(z+ 1y — a) (z — iy + a),

from which the theorem is at once seen to be true.

An important application of the theorem consists in the means which it affords
of passing from the foci (4, B, C, D) of a bicircular quartic, to the antifoci (A4, B) and
(C, D); viz. if these are (4, B, C’, D’), then the equation I4/(4)+m/(B)+n/(C)=0
must be transformable into Vy/(A’)+ m'v/(B')+n' /(C’)=0. Writing these respectively
under the forms

PA +m*B —n2C + 2lm A/(AB) =0, [*A’+ m"”B —n"C" + 2I'm’ \/(4'B’) =0,

the two radicals 4/(AB), /(4’B’) are identical; and the remaining terms in the two
equations respectively are rational functions, which when the ratios I' : m’ : n’ are
properly determined will be to each other in the ratio Im : I'm’; the two equations

being thus identical.

www.rcin.org.pl



568 PROBLEMS AND SOLUTIONS. (485

[Vol. vI. p. 99.]

1970. (Proposed by Professor CAYLEY.)—Find the conditions in order that the
conics

U=(a, b, c f g hix, 9y, 2¢=0, U'=(a, ¥, ¢, [, g, W2 9y 2¥=0,

may have double contact.

Solution by the PROPOSER.

The coefficients of the two conics must be so related that for a properly deter-
mined value of @ we shall have identically U—60U’= (\z+ uy+ vz)*; but when this
is so, the inverse coefficients of the quadric function U— 60U’ are each =0; that is,
writing

(A4,B,C,F, G, Hy=(bc—f* ca—g*, ab—k, gh —af, hf— by, fg—ch)

(AI, B’, 01’ FI, G,, H‘/) i (b/c/ _flz, e, glhr Lb a/fl, p .)

A, B,6,F5,6, H)=(>0c +bc—2ff,.. gt +gh—af —d f,..),
then we have the six equations 4 — 63 + 624’ =0, &ec.

Or, eliminating 6, the required conditions are
A0t By G igdlids Qo || 5005
g A’ B JCEIME RS I
bl o0 By A8 L@ O

equivalent to three relations between the two sets of coefficients.

[Vol. viL, January to July, 1867, pp. 17—19.]

2110. (Proposed by Professor CAYLEY.)—Prove that the locus of the foci of the
parabolas which pass through three given points is a unicursal quintic curve passing
through the two circular points at infinity.

Solution by the PROPOSER.

More generally it may be shown that for the conics which pass through three given
points and touch a given line, the locus of the intersection of the tangents drawn
from two fixed points @, @ on this line to each conic of the series is a unicursal
quintic passing through the two points @ and @

Taking the three given points to be the angles of the triangle (z=0, y=0, z=0),
and the points @, @ to be the points (a, B, v) and («/, B, &) respectively, the equation
of a conic through the three points is

Jyz + gza + hay =0,
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which conic will touch the line through the points (2, B, ¥) (4, B, ¥), if
V{f(BY = B} + Vg (v¢ —y'a)} + W {h (48" —dB)} =0.
The equation of the pair of tangents from (2, B, v) to the conic is
(fe g 1, — gh, —If, —bgQyy — Bz, az — vy, Bx — ay): =0,
a* (gy + hB) + y* (hat + fy) + 2 (fB + ga)*
+2yz {2gha* — (ha +fy )(/B +92)}
+ 20 {2hg B — (fB+ g2) (9 +1B)]
+ 2ay (2fgy — (97 +hB) (hx +fy)} =0,
but one of the tangents through (a, .83, ) being
z(By =By +y (¥ —va)+2(af —aB)=0,
it follows that the other tangent is

(gy+ 0By (ha+fy? . (/B+92f _
Ty =By TVl = T ag—dR i

Hence, writing for shortness
A =gy +hB, B=ha +fy, C=fB +ga,
W=gy +1f, B=hd+fy, O'=f8 +g7,

the equations of the tangents from @, @ respectively are

that is

x Cas ] z

‘/- o / + # 7/ 777"/‘ + H T / 74/— -
By~ By ya' —o'a af —d 3

2

0,

’2 £ /s U 172 @
it N e e o L R
By —By o 4498 af’ — a3

and for the coordinates of the intersection of these tangents, we have

A 0,

P e e e LE Co g0 BaCh: (4 0h4Y AR AT
By =By yd—ya aF —dB : '
‘B =BC = F{=fBY =By)+g(y& —ya)+h(af —aB)}
BC’' 4+ B'C =2ghad +f{ f(BY +Bv)+9d +~a)+h(af +dB)}.
To satisfy the equation.

. NIFBY - Byl + {g (v —ya)) + v {h (2B —dB)},
write
a? b* c

AR T =i ’ PIE7EL) / E T 1o
J By — By I=na —ya "Tag -
and therefore a +b+c¢=0; we then have
—f(By = By)+g(yd —ya)+ h(aB —dB), =—a+ b+, =—20c;
¢. VIL 72
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and thence
a2
-— ! e + o — ey +hal_a, = 7 7 —2b0,
=By =By)+9 (v —ya)+ k(2B — o)} B'y—B'y( )

and the equations become

z:y:2=a(BC"+BC):b(CA"+C'A) : ¢c(AB'+ A'B),
where BC’'+BC, CA'+ C’A, AB + A’B, substituting therein for f, g, A the values

a? b? c ; : g

e, ———, ————, are respectively functions of the fourth degree in g, b, c;
By -Bv’ yd—ya’ o —dB P y
hence (a, b, ¢) being connected by the relation a+b+¢=0, @, y, z are proportional

to quintic functions of (@, b, ¢), or what is the same thing, writing a, b, ¢=1, 6§, —1-6,
then @, y, z are proportional to quintic functions of 6, that is, the locus is a unicursal

quintic curve.

That the curve passes through the points («, B, v/) and (a, B, ) appears by con-
sidering the conics fyz + gz + hay =0, which pass through these points respectively.

For the first of these conics we have f:¢g:h=a(By —By): B(yad'—y'a): a(By—B7y);

the equation
z

2 z K ;
At 7 il B2 7 7 02 ’ e O)
BY =By " g =y e —dp
reduces itself to z(By — By)+y(yd —y'a) +2z(af’'—a’/B) =0, and as the other equation

z
4 o R T Y +-B “y 7 +Cl2 7 7 =0)
By B'y e —oa ya —ya

is that of a line through (a, B, ') the two lines meet of course in the point
(o, B, v). And the like for the conic

fig:h=dBy-BYy): B =) : v (B -aR).

If the triangle is equilateral, and (2, y, z) are respectively proportional to the
perpendicular distances from the three sides, then we have for the circular points at

infinity
(@ B MN=1, o, o), (« B, ¥)=(1, o o),
where @ is an imaginary cube root of unity. These values give
By —By=nyd'—ya=af —dB=0'-w
aal=,8,3’=')”)’l=1, B’Y,+B,"Y=')’a/+'Y,a=aBI+a’B="'1;
and the expressions for (z, y, z) take the form
z Yy z=a{20%¢—a*(a*+ b* + ¢*)}
b {2¢%a* — b* (e + b* + ¢®)}
¢ {200 — ¢ (a* + b* + ¢*)},
or, what is the same thing, reducing by means of the relation @ + b +¢=0,

@y z=a(at— 2a%c - 20%) : b (b* — 2b%a — 2¢%?) : ¢ (c* — 2¢%ab — 2a?b?),

www.rcin.org.pl



485] PROBLEMS AND SOLUTIONS. 571

and the equation of the curve is obtained by eliminating (@, b, ¢) from these equations
and the before mentioned equation ¢+ b+ c¢=0.

N.B. The above is a particular case of the following general theorem of M. Chasles:
If the conmics of a system (u, ») all of them touch the line Q', the locus of the
intersection of the tangents through @, @’ to each conic of the series is a curve of
the order § u+ », having a (§ u)-tuple point at the points @, @ respectively.

[Vol. vir. pp. 26, 27.]

2250. (Proposed by Professor CAYLEY.)—From the focal equation a® + y*=(lz + n)’
of a conic, deduce the remaining three focal equations.

Solution by the PROPOSER.
We are to find «, B, L, M, N such that the equation
(v —af +(y —By=(Lx+ My + Ny

may be identical with the given equation. It is at once seen that we must have
M =0 or else L=0; the first supposition gives two solutions, one of which is the
given equation itself, the other is

2ln \? 14072
(=-1-3) +~’/2={‘““”1’?ﬁ}-

The second supposition, L =0, gives two solutions, which only differ by the sign of
1 (=4/ — 1), viz. these are

.

In \? - I\ —(ly £ my
(“3“1_'@) +<~’/+T;72> T e

There is, of course, no difficulty in werifying the identity of each of the three forms
with the given form a°+ 3* = (lz + n)2

. [Vol. vir. pp. 33, 34.]

1991. (Proposed by Professor CAYLEY.)—Given a point and three lines; it is
required to draw through the point a plane meeting the three lines in three points
equidistant from the given point.

Solution by the PROPOSER.

Let O be the given point, OA’=a, OB’ =b, OC'=c the perpendiculars let fall
from O on the given lines respectively. Take € an arbitrary line, and from the points
72—2
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A’, B, C" measure off on the three lines respectively the distances A’A = + +/(6*—a?),
B'B=+ /(0 —-0), C'C =+ (= ¢, or, considering each radical as containing implicitly
the sign 4, what is the same thing, the distances A’A =+ (6*—a?), B'B=(6"—b),
C'C=n(0*—c*), then we have 0A=0B=0C(=6); and consequently the problem is
to determine € in such wise that the plane ABC may pass through the given point
O: for we shall then have through O a plane meeting the three given lines in the
points A, B, C equidistant from O.

The coordinates of A, B, C are linear functions of the radicals /(6> —a?), +/(6*—b?),
V(62 —c*) respectively. Taking O as origin, the condition in order that the plane 4BC
may pass through O is

?xx, Y1, 1|=0,
Zay y2> 1
@yy bty

and substituting for the coordinates their values in terms of 6, this is an equation
linear in each of the three radicals, or say, an equation of the form

V(6 =a®), 1) (W(E =), 1) (V(2=c), 1)=0.
But we may represent any one of the three radicals, say +/(6*—c*) by a single letter s;
and this being so, we have #(?—a®)=4+(s*+c*—a*)=+P suppose, and #(6*—0?
= /(824 ¢* —b?) = y/Q suppose; and it is to be observed that there is no loss of generality
in assuming that the distance C’c=s is measured off from ¢’ in a determinate sense,
for as s passes from — o to + oc, we thus obtain for ¢ every position whatever on the
line in question; whereas the other two distances A’A, B'B, represented by the radicals
VP and /@ respectively, remain each of them with the double sense +. The equation
in s is of the form
(s, VWP, 1)(VQ, 1)=0,
or, what is the same thing, it is of the form
ay(P)+BVP+yvVQ+8=0,
where (a, B, 4, 8) are respectively linear functions of s.
Proceeding to rationalise the equation, we have first
@*PQ + 2a8 y(PQ) + & = B°P +v*Q + 2By v(PQ),
(#PQ—BP —y*Q+ &) =4 (By — ad) PQ,

which, observing that P, @ are each of them of the second order in s, is an equation
of the twelfth order in s; that is, the number of solutions is =12.

and then finally

The solution of the problem is greatly simplified when a=b=¢, that is, when
the three given lines are tangents to a sphere having its centre at the given point.
We have in this case ¥/ P=+s, /Q =+ s, or the equation in s is

(s, (x8 1)(£s 1)=0;
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that is, the equation of the twelfth order breaks up into four equations each of the
third order. The geometrical theory may also be further developed. In fact, assuming
on each of the three lines respectively a certain sense as positive (and thus isolating
a set of three solutions) the construction is, on the three lines, from the points 4’, B’, ¢
respectively, measure off the distances A’A = BB=C(C'C'=s Then the points 4, B,
form on the three lines respectively three homographic series; that is, the lines
BO, CA, AB are respectively generating lines of three hyperboloids, viz. hyperboloids
which pass respectively through the second and third lines, the third and first lines,
and the first and second lines. Taking the given point O as the centre of projection,
and projecting the whole figure on any plane whatever, the projections of the lines
B(' are the tangents of a conic which is the projection of the visible contour of the
hyperboloid generated by the lines BC; and the like for the lines (A and AB.
Hence in the projection, or plane figure, we have a triangle whereof the sides 4’, B, ("
are the projections of the three given lines respectively; inscribed in this triangle we
have a variable triangle ABC, such that the side

BC envelopes a conic, say (4), which touches B’ and (',
CA envelopes a conic, say (B), which touches ¢ and A’,
AB envelopes a conic, say (C), which touches A’ and B.

The conics () (B) (C) have three common tangents, say L, M, N; the eonics

(B) and (C) having besides the common tangent A4’
(C) and (4) having besides the common tangent B,
(4) and (B) having besides the common tangent (',

so that the common tangents of the conics (B) and (C), (C) and (4), (4) and (B) are
the lines A’, B, C' each once, and the lines L, M, N each three times. In the entire
series of triangles AB(C there are three triangles which degenerate into the lines L, M, N
respectively, these being in fact the projections of the triangles ABC of the solid
figure which lie in a plane with O. Or, what is the same thing, the planes of the
required triangles ABC of the solid figure are the planes through O and the three
lines L, M, and NV, respectively.

[Vol. vii. pp. 34—36.]

1993. (Proposed by T. CorrerirLL, M.A))—If P is a point on a circle, in which
A and B are fixed points on a diameter at equal distances from its centre, the curve
envelope of lines cutting harmonically the two circles whose centres are A and B and
radii AP, BP respectively, is independent of the position of P on the circle.

Solution by PROFESSOR CAYLEY.

1. More generally, the problem may be thus stated: If two conics touch at 7, J
the lines O, OJ respectively ; if P be a variable point on the first conic, and OAB
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a fixed line through O meeting the second conic in the points A and B; then con-
sidering the conic which passes through P and touches at I, J the lines AI, AJ
respectively, and also the conic which passes through P and touches at I, J the lines
BI, BJ respectively; the envelope of the lines which cut harmonically the last-mentioned
two conics is & conic independent of the position of P.

2. Taking =0, y=0, z=0 for the equations of the lines OI, JI, and OJ
respectively, the equations of the two given conics are

az—y*=0, kaz—y*=0;
hence the coordinates of P may be taken to be
R e A g gl v
and the coordinates of the points 4 and B may be taken to be
&y e=lcba ket andyw Y =l i =Tka el
The equations of the lines AZ, 4J are
kaz —y=0, z—ay=0;

hence the equation of the conic touching these lines at the points I, J respectively,
and also passing through the point P, is

2

(kaz—y)(z—ay) _y

(ka—8)(0—a) 0’
and similarly the equations of the lines BI, BJ being
kaz+y=0, z+ay=0,

the equation of the conic touching these lines at the points 7, J respectively, and
also passing through the point P, is

(baz +y) (2 +ay) _ o
(ka4 0)(0+a) 6°

or multiplying out and reducing, if the equations of the two conics are represented by

(a, b, C,f; 9, h}[w, 7, z)’-’: 0, ((tl, bl’ O’, f/’ g” IL’EJC, Y, z)2= 0,

respectively, then the values of the coefficients are

=0 a =0,

b =2 (ka+ 6 —Lad), O =2 (= ko — 6 - kad),
¢=0, 8=0]

=4, =6,

g = Oka, g’ = Oka,

h=— 6ka, b = 0ka’.

www.rcin.org.pl



485] PROBLEMS AND SOLUTIONS. 575

Now the tangential equation of the envelope of the line which cuts harmonically the
last-mentioned two conics, is

b +Vc—=2ff".,. g+ g'h—af —df,., . RE n &F;

or substituting for ¢ &c. «’ &c., their values, it is found that the coefficients of this
equation have all of them the common factor 26 and that omitting this factor the
equation is independent of €, viz. the tangential equation of the envelope in question is

(1, —ka, ke, 0, & (2k—1)a, OFE, m, £F=0,

which proves the theorem.

3. In particular, if k=1, that is if the points A, B lie on the conic az —3*=0,
then the tangential-equation of the envelope is

(1, =&, o, 0, &%, 0FE 9, {F=0,
E—dpt + af + 205 =0;

that is

or, what is the same thing, the equation is
(E—an +a’f) (§ + an+ ) =0,
and thus the envelope breaks up into the two points
E—an+a¢=0, E+an+a(=0;

that is, the points (1, —a, &*) and (1, @, &), which are the points 4 and B respectively.
That is, in the problem in its original form, if the points 4 and B are the
extremities of a diameter of a given circle, then the two constructed circles are a
pair of orthotomic circles with the centres A and B respectively; and the theorem is
the very obvious one, that any line through the centre of either circle cuts the two
circles harmonically.

[Vol. vir. pp. 52, 53]

2270. (Proposed by Professor CAYLEY.)—To reduce the equation of a bicircular
quartic into the form SS’—%*L =0, where S=0, S’=0 are the equations of two circles,
L =0 the equation of a line. (See Salmon’s Higher Plane Curves, p. 128.)

Solution by the PROPOSER.
The equation of a bicircular quartic may be taken to be
@+ ) + (u + wo) (@ +y*) + v+ v, 4+ v, =0,

where, and in what follows, the subscript numbers denote the degrees in the coordinates
(@, y) of the several functions to which they are attached.
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Introducing an arbitrary constant 6,, and putting the equation under the form
@+ v+ +u—=0)( @+ )+ 6, (@ + )+ v+ v, +v,=0,
this may be identified with
(@ +Y+ptp) @+ Y+ G+ )+ 1+ 7=0;
viz. the conditions in order to this identity are

PitPot @it qo=1u +u — b,
(Pr+p) (@ + @) + 1 +70=0,(2* + 1) + v + v, + vy,

that is

Pt q=1, Pt go=1u — b,

Pith — 00 (-71'2"' :’/2) + 0, PiQTDPGFTI=0, PGt To= V.

Hence

(p1— Q)= u?® — 4w, — 46, (2* + 1),
where the right-hand side is a quadric function (2, y)?, which, when the discriminant
thereof is put =0, (that is, when 6, is determined as the root of a quadric equation,)
is a perfect square, p,—¢, is then a known linear function, and p,+¢, being equal to
the linear function wu,, we have p, and ¢, as linear functions of (z, y). We may take
for the constants p, and ¢, any values satisfying the equation p,+ g,=u,— 6,; and we
then have

"=V —P1G — PG To= Y — PG>
which completes the determination; the form

@+ +p+p) @+ P+ a+q)+n+r=0

is of course the same as the proposed form SS’— &*L=0.

Cor. A somewhat more convenient form is UU’ -V =0, where U=0, U =0
are the equations of two evanescent circles (pairs of imaginary lines), V=0 the equation
of a circle; in fact the original form SS’—Zi2L=0 may be written (S—a) (S —a)
+ (a8’ +a'S—ad — k*L)= 0, which, when a, «’ are so determined that S—a=0, §"—a'=0
may be evanescent circles, is of the required form UU’—k*V =0. The equation UU’ =0
is that of the two pairs of tangents to the curve at the circular points at infinity
respectively ; in fact, writing U =pq, U’ =p'¢, each of the lines p=0, ¢=0, p'=0, ¢'=0
meets the circle V=0 in one or other of the circular points at infinity, and therefore
only in a single point not at infinity; hence each of these lines meets the curve
UU' -V =0 three times in one of the circular points at infinity, that is, the line
in question is a tangent to one of the two branches through the circular point at
infinity.

[Vol. vi. pp. 87, 88.]
2309. (Proposed by Professor CayLEY.)—Show that for n things

1 — (no. of partitions into 2 parts) + 1.2 (no. of partitions into 3 parts). ...
+1.2.3..(n—1)(no. of partitions into n parts)=0.
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For instance, n =4; partitions of (a, b, ¢, d) into two parts are (a, bed), (b, cda),
(¢, dab), (d, abe), (ab, cd), (ac, db), (ad, bc); no. is =7. Partitions into three parts are
(ab, ¢, d), (ac, b, d), (ad, b, ¢), (be, a, d), (b, d, ac), (cd, @, b); no. is=6. Partition into
4 parts is (@, b, ¢, d); no. is=1. And we have

1-1.7+2.6-6.1=13-13=0.

Solution by the PROPOSER.

Write n=aa+bB+cy+..., where a, B, ... are positive integers all of them
different, and a, (3, ... are positive integers; and consider the partitions wherein we
have a parts each of a things, b parts each of B things, &c. Writing as usual
II(n)=1.2.3...n, the number of partitions of the form in question is

pr— Hn .
ST (T B)% .

whence, putting for shortness a+ B8+ ... = p, the theorem may be written

i O(p—1)IIn
At o1 (Ta)* (TIB)’....

=y

the summation extending to all the partitions n = aa+ b8 +..., as explained above.

Now if the n quantities #, ¥, z,... are the nth roots of unity, we have z+ y+2... =0,
and therefore also (z+ y +2...)"=0, and the general term of the left-hand is

IIn .
(e (TIBy . L% )

where [a®@...] denotes the symmetrical function Za°ye...(a factors) ufeP...(b factors)...
of the roots z, y, z, u, v...of the equation 6"—1=0; where, as above, n=aa+08+....
Now by a formula not, I believe, generally known, but which is given on p. 175 of
the translation of Hirsch’s Algebra (Hirsch’s Collection of Ezamples dc. on the Literal
Calculus and Algebra, translated by the Rev. J. A. Ross, London, 1827), the value of

the sum in question is = (=) %;pn_l)l)n, where p=a+b+..., (the sign +, given

in the formula as quoted, is at once seen to be (—)?7'); whence, substituting and
omitting the factor n, we have

. T(p-1IIn
N 1

2 (" i b .. (Ta) (TR ..

= 0,
which is the required theorem.

OBSERVATION. In Cauchy’s Ewercices d Analyse d&c., t. 1L, p. 173, is given a
formula relating to the same mode of partition of the number n, viz. this is
IIn
2 o T

C. VIL 5
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I have somewhere made the remark that, on the left-hand side, the terms which
belong to the odd and the even values of a+b+...(=p) are equal, and that we have

therefore
IIn

ol | | P g

which is a theorem having a curious analogy with that demonstrated above.

[Vol. viL pp. 99—102.]

2286. (Proposed by W. H. LAVERTY.)—If we have (n—2) sets of n quantities

each, (a, ay... @), (B, Bo-e. Bn)y oo (M, Ag oo Ay), connected with the = quantities
(ry, 75...7,) by 3n(n—1) equations of which the type form is

(@@= )+ (Be— B+ ... M= NP =12 +77;

1 1 1 £ Ty P,
7_'-12+—7§2+.“+:771,2—0 a.nd 7?+;2_2+“.1";2_0,

then show that

where P is any one of the quantities @, B, ...\

Solution by PROFESSOR CAYLEY.

Consider the case n=4; we have between (a,, a,, a3, @,), (81, Bs, Bs; Bi)y+-. (11, T2, T3, Ts)
six equations, such as the equation

(al—%)24'(,81—62)2:7:124'7'22; (12)
and it is in effect required to show that these equations give
?‘11_2 ; Tlg j %2 ; %:(234) . —(341) : (412) : — (123),
(123)y="lua, sl
a, B 1
a, B 1

viz. considering (@, B.), (%, B:), (%, Bs), (a4, Bs) as the rectangular coordinates of four
points in a plane, then (123) is the area (taken with a proper sign) of the triangle

formed by the points 1, 2, 3; and the like for (234) &ec.

where
L &e,

Combining the equations as follows,
(12) + (34) — (13) — (24),
the »’s disappear, and we have an equation

(& — a,) (=) + (B — By) (B — Bs) =0,
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which shows that the lines 14 and 23 intersect at right angles; similarly the lines 12
and 34, and also the lines 13 and 24, intersect at right angles; or starting from the
given points 1, 2, 3, the point 4 is the intersection of the perpendiculars let fall from
the angles 1, 2, 3 of the triangle 123 on the opposite sides respectively.

Again combining the equations as follows,

(12) +(13) — (23),
we obtain

ri=(a—a)(a —a) + (B — B) (Bi— Bs).

The entire system of equations will remain unaltered if we pass from the original axes
to any other system of rectangular axes; hence taking the axes of z in the sense
from 1 to 2 along.the line 12, 8, — 8, becomes =0, and we have

a—oy =12, a;—a,=1(12, 34);

viz. a,—a, is the distance 12 of the points 1 and 2, @y, —a, is the distance 1 (12, 34)
of the point 1 from the point (12, 34) which is the intersection of the lines 12 and

34; we have therefore
mE=12-1 (12,84

But similarly
=21.2(12, 34), =12.(12, 34)2,

(since 21=-12 and 2(12, 34)=— (12, 34)2). And we have therefore

r? o r2=1(12, 34) : (12, 34)2, or ;1—2 : ;1—2=(12, 34)2 : 1(12, 34).
1 2
Write
_(12, 34)2 _1(12, 34)
Iy iR 99

where 1 (12, 34) and (12, 34) 2 are as above the distances from 1 to (12, 34) and from
(12, 34) to 2; and, in the denominators, 12 is the distance from 1 to 2; we have
A+pup=1; the coordinates of (12, 34) are Aa + ua,, A3, +uB,, and the values of A, u
are obtained by writing A& + ua,, M3+ uB:, M+ u for #, y, 1 in the equations

x’y’li=0

: as, BS: 1 !

} a, Bh 1
of the line 34. Making this substitution, we find
A (134) 4+ (234)=0,

where as above

(134) - l al) Bl; 1 ’ &C.,
as, BS: 1

C R P |
73—2
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we have therefore
Aop=(234) 1 — (134)=(234) : —(341),

or, what is the same thing,
(12, 34)2 : 1 (12, 34)=(234) : —(341);
and consequently
1 P =(234) : —(341);

or completing the system by symmetry
| P G |
Sy S

O, o )

; %:(234) .~ (341) : (412) : — (123),

which is the required result.

In the case n=5, we have between

(&, @, @, a, ), (By, B Bsy Bo Bs)y (15 ¥ Yoo Vs W) (11, 72y 75, 74y 75)
ten equations such as the equation
(0 — )+ (B — Bo) + (1 — ) =1 + 17 (12)
We obtain as before the equation

(0 —a) (@ —a5) + (B —By) (B — Ba) + (71— vs) (v — 73) =0,

which, considering (a,, B, v1) &c. as the rectangular coordinates of five points 1, 2, 3, 4, 5
in space, signifies that the line 14 is at right angles to the line 23; the five points
are therefore such that the line joining any two of them is at right angles to the
line joining any other two of them, whence also the line joining any two is at right
angles to the plane through the remaining three points. (The points 1, 2, 3, 4 form
a tetrahedron such that that 12 and 34, also 13 and 42, also 14 and 23 are at right
angles to each other, two of these conditions imply the third; and this being so, if
a further condition be satisfied, the perpendiculars from 1, 2, 3, and 4 on the opposite

faces respectively, will meet in a point 5, and we shall have the system of points
1, 2, 3, 4, 5 related as above.)

We further obtain as before
7? = (o — @) (o, — ag) + (B, — B:) (Bi— Bs) + (')’1 = ')’-z) (')’1 v ')’3),

or taking the axis of # in the sense from 1 to 2 along the line 12, we have
Bi—PB.=0, y,—4,=0, and the equation becomes

re=12.1(12, 345),
and similarly

re=12.(12, 345)2;
whence

| =

; %2:(12, 345) 2 : (12, 345)1.

7
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2.345 1(12, 345
Writing them x=£1_%ﬁ, "='£21’2MO)

by substituting Aey + pas, A3+ pBs, Ayy + wys, N+ p for 2, y, z, 1 in the equation

(and therefore A +ux=1) we find (A, w)

Ry, PiEgE 0 =5 ()

l
gy e vy, il

ah BA: 741 1 i
as, Bs, s 1|

of the plane 345; we have thus
A (1345) + u (2345) =0,

that is
A : o =(2345): — (1345)=(2345) : (3451),
whence
(12, 345)2 : 1(12, 345) = (2345) : (3451),
that 1is
gl = (2343) : (3451)
e 345) : (3451),

or completing by symmetry

Teatediiw 1°5 Jgcidl ’
— === —= 5) : (3451) : (45 (D 1 (1234),
b = Tl (2345) : (3451) : (4512) : (5123) : (1234)

which is the theorem for the case n=5. The general case depends, it is clear, upon
similar reasoning in a (n— 2)dimensional geometry; leading to the conception in this
geometry of a figure of (n—1) points such that the line joining any two of them is
at right angles to the line joining any other two of them.

[Vol. viL. p. 106.]

2331. (Proposed by Professor CAYLEY.)—Show that it is possible to find (X, ¥, Z)
linear functions of the trilinear coordinates (z, y, z) such that the equations zX =y¥V =27
may determine four given points.

[Vol. viir, July to December, 1867, p. 26.]

2321. (Proposed by Professor CAYLEY.)—Given a conic, to find four points such
that all the conics through the four points may have their centres in the given conic.

[Vol. vimL. p. 36.]

2371. (Proposed by Professor CAYLEY.)—(4). If P, @ be two points taken at

random within the triangle ABC, what is the chance that the points 4, B, P, Q may
form a convex quadrangle ?
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[Vol. vir pp. 51, 52.]

Note on Question 1990. By PROFEsSOrR CAYLEY.

The theorem of paragraph 4 (Reprint, vol. vI p. 88), (ascribed by Professor
Sylvester to Mr Crofton), that “if a circle and a straight line be cut by any transversal
in three points, these will be the foci of a system of Cartesian ovals having double
contact with one another at two fixed points,” may be enunciated under a more
complete form, as follows :

If in a given circle the chords PP;,, BC meet in A4, then each of the two
Cartesians, foci 4, B, C, which pass through P, will also pass through P,; and more-
over, if a, a’ be the diametrals of the chord PP, (that is, the extremities of the
diameter at right angles to PP,) then the tangents at P, P, to one of the Cartesians
will be aP, aP, respectively, and to the other of them a'P, o'P, respectively, these
tangents being thus independent of the position of the chord BC'; and thence also thus;

Given the points A, B, C in lined, and the point P;

through P, B, C' draw a circle (4) and let PA meet this in P,
» P7 0; A » (B) » -PB »” P'J:
» P} A; -B » (C) » PC 7y Ps:

then each of the Cartesians, foci 4, B, ¢, which pass through P will also pass through
BBy Py andern

a, @' are the dicmetrals of PP, in circle (4),

ﬁl B/ » PP2 2 (B)7

’Y, ')” » PP.{ » (C),

then (the points of the several pairs being properly selected) the points (a, B, y) and
the points (o, B, ') will each lie in a line through P, viz. the lines PaBy and
Pdo/B'y will be the tangents at P to the two Cartesians respectively.

The two Cartesians meet in the points P, P,, P,, P;, and in the symmetrically
situated points in regard to the axis ABC; the theorem contains as part of itself
the well-known property that the two Cartesians cut at right angles at each of their
points of intersection; it gives moreover the construction of the following problem :—
given the foci A, B, O, and one intersection P of a pair of triconfocal Cartesians, to
find the remaining intersections, and the tangents at each of the intersections.

[Vol. virr. pp. 70—72.]

1911. (Proposed by Professor CAYLEY.)—Given four points, and also the “conic of
centres”—viz. the conic which is the locus of the centres of the several conics which
pass through the four given points; then if a conic through the four given points
has for its centre a given point on the conic of centres, it is required to find a
construction for the asymptotes of this conic.
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Solution by the PROPOSER.

1. Consider four given points, and in connection therewith a given line [J; the
locus of the poles of IJ, in regard to the several conics which pass through the four
points, is a conic, the “conic of poles.” Consider a particular conic ®, through the
four points; the pole of IJ in regard to the conic ® is a point C on the conic of
poles, and the tangents from C to the conic ® meet the conic of poles in two points
H, K; the chord of intersection HK passes through the point II which is the pole
of IJ in regard to the conic of poles. Moreaver, the polars of a point (', in regard
to the several conics through the four points, meet in a point ', the “common
pole” of C’, and in particular if C’ be the point €' on the conic of poles, then the
common pole is a point Q on the line [J; this being so, the line HK passes (as
already mentioned) through II, and the lines HK and IIQ are harmonics in regard
to the conic of poles.

2. Assuming the foregoing properties, then, given the four points, the line 7.,
the conic of poles, and the point C on this conic; we may construct IT the pole of
IJ in regard to the conic of poles; and also Q the common pole of C'; the line HK
is then given as a line passing through II, and harmonic to ITQ in regard to the
conic of poles; this line meets the conic of poles in the points H, K; and then
CH, CK are the tangents from C to a conic ® which passes through the four points.

3. In particular if IJ be the line infinity, then the conic of poles is the conic
of centres; II is the centre of this conic; Q is as before the common pole of C;
HK is given as the diameter of the conic of centres, conjugate to IIQ; H, K are
the extremities of this diameter; and then CH, CK are the asymptotes of the conic
through the four points, which has the point C for its centre; and the asymptotes
are therefore constructed as required If the points H, K are 1magmary, the asymptotes
will be also imaginary; the conic ® is in this case an ellipse.

4. Tt is hardly necessary to remark, in regard to the construction of the point €,
that we have among the conics through the four points, three pairs of lines meeting
in points P, @, R respectively (it is clear that the conic of poles passes through these
three points); the harmonics of COP, CQ, CR in regard to the three pairs of lines
respectively meet in a point, which is the required point Q. In the particular case
where the point C is on the conic of centres, the three harmonics are parallel; it
is therefore sufficient to construct ome of them; and the line HK is then the diameter
of the conic of poles, conjugate to the harmonic so constructed.

I

5. It remains to prove the properties assumed in (1). We may take z=0 for
the equation of the line IJ, #=0, y=0 for the equations of the tangents to the
conic ® at its intersections with the line IJ, so that we have (z=0, y=0) for the
coordinates of the point C'; the equation of the conic ® will be of the form 22— ay=0,
and the four points may then be taken to be the intersections of the conic 22—y =0,
and the arbitrary conic »
(e, b, ¢ f, 9 b=z y, 2P=0
The equation of the conic of centres is found to be

z(azx + hy + gz) — y (ha + by + f2) =0, or az® —by* + gz —hay =0;
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or, as it may also be written,
(22, —2b, 0, —f, 9, 0Y=, 9y, 2)*=0;

and it is convenient to remark that the equation in line coordinates (or condition that
this conic may be touched by the line £z + 9y + {z=0) is

(=f% — 9% —4ab, 2af, 2bg, — f9QE n, {*=0.

The line =0 meets the conic of poles in the point z=0, by+ fz=0, and the line
y=0 meets the same conic in the point ¥ =0, az + gz=0; hence the line HK, which
is the line joining these two points, has for its equation

afz+bgy+fgz=0;
and it only remains to be shown that this line passes through the point II, and is
the harmonic of the line TIQ in regard to the conic of centres. The point IT is
the pole of the line z=0 in regard to the conic of centres, its coordinates are at
once found to be

z:y:2=bg :af : —2ab;

and we thence see that II is a point on the line HK. The point Q is given as the inter-
section of the polars of (' in regard to the conics 22—2y =0, and (a, b, ¢, £, 9, hQ=, ¥, 2)*=0
respectively; that is, as the intersection of the lines z=0, and gz + fy +cz=0; its
coordinates therefore are

z:y:z=—f:9:0
Hence the equation of the line IIQ is

2abg « + 2abf y + (af* + bg*) 2 = 0.

Now, in general, if we have a conic the line-equation whereof is (4, B, C, F, G, HY &, 7, )*=0,
then the condition in order that, in regard thereto, the lines Az + uy +vz=0 and
N+ p'y+1'2=0 may be harmonics, is
(4, B, C, F, G, HYx, u, vQN, p, v)=0;
that is
AN + Bup' + O’ + F (wv’ + pv) + G (v + vA) + H (M’ + M) =0.

Hence, in order that the two lines HK and II may be harmonics in regard to the
conic of centres, we should have

(=f% —g% — 4ab, 2af, 2bg, — fgQaf, by, fo3)2abg, 2abf, af*+ bg*) =0.

But developing, and omitting the common factor abfg, which enters into all the
terms, this equation is

— (2af*) = (2b9°) — 4 (af* + bg®) + {4af* + 2 (af * + bg")} + {4bg® + 2 (af* + bg)} — 2 (af* + bg*) =0,

which is identically true; and the lines HK and IIQ are therefore harmonics in
regard to the conic of centres,
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[Vol viin p. 74.]

2371. (Proposed by Professor CAYLEY.)—If P, @ be two points taken at random
within the triangle ABC, what is the chance that the points 4, B, P, @ may form
a convex quadrangle ?

[Vol. viir. pp. 86, 87.]

2466. (Proposed by H. Murpny.)—If four points A, B, C, D be either in the
same plane or not, and if the three rectangles AB.CD, AC.DB, AD.BC be taken;
the sum of any two of them is greater than the third, except when the points lie on
the circumference of a circle.

Solution by PROFESSOR CAYLEY.

Write for shortness BU=f, CA=g9, AB=h; AD=a, BD=0b, CD=c; then, Lemma,

it » be the radius of the sphere circumscribed about the tetrahedron ABCD, we have
(— a*f? — big® — c*h? —-f{q%*\l
L @) (¢ 41— ) |
|+ (gt + ¢a?) I+ 2 — ) |
U+ (0 + @) (2 +g2 = 1))

4a - = 20°c2g°h* + 2c*a*hi 2 + 200 29 — at f4 — bigt — ol

where the left-hand side is =576V if V be the volume of the tetrahedmn.

Suppose first that the points are not in the same plane, then the left-hand side
(=576 V*r?) is positive; therefore the right-hand side is also positive, or putting for
shortness af =a, bg =8, ch =+, we have

2/3272"' 2')'"'&2-{- 2&23"’— ot _B4_,Y4= +, that iS, 4,[32,),2 H (CI? e, IB‘:_ ,y‘z)z= +,

and thence a< B+v; for if a were equal to or greater than B+, say a=B++y+z,
the left-hand side would be 48%y*— {28y + 2 (B + )=+ «*}*, which vanishes if z=0,
and is negative for z positive. Similarly B<y+a, y<a+3; and the theorem is thus
proved for the case where the four points are not in a plane.

Starting from this general case, if we imagine the point D continually to approach
and ultimately to coincide with the plane ABC, but so as not to be in the circle
ABC, then the expression 28y + 2y + 2a2°3° — a* — 3* — o, which does not vanish in the
limit, is throughout equal to the positive quantity 576 V** (in the limit V is =0
and r=w, but V7r is finite, and of course V?** is positive), that is, the expression in
question is =+, and the theorem follows as before. Of course when the four points
are in a circle, then the expression is =0, and consequently one of the quantities
o, B, v is equal to the sum of the other two.

g 74
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The lemma is at once proved by means of my theorem for the relation between
the distances of five points in space, {Cambridge Mathematical Jowrnal, vol. 1. (1841),
p. 269, [1]} viz. if the point 1 is the centre of the circumscribed sphere, and the points

PROBLEMS AND SOLUTIONS.

2, 8, 4, 5 are the points 4, B, C, D respectively, then the relation in question, viz.

becomes

Multiplying the last line by —# and adding it to the

(L2 08 )2 (AR LD P TS E= 1)
0TS (28)8 (242 (250 il
(32, 0, (343 (353 1
423, (43), 01 @530 1
(52, (33) (54), O el
P T e ey
(G130 5 ot sy ol bl e )
k) b gy K
G TONR A b B
i {0y /et R ol
ko e (ritee a2 A UHe i
i i e Tl L i ¢
first line, this is
= T0RE 20 e 0 SN == O
rdlia0isaithise (g2 S a2l
2l O i Shae il
R o I VR T
et R, B () e |
LR R B LR R B

and then proceeding in the same way with the first and

— 2,

b

T OO O

)

bl

0,
h2,
9%
a’)

1,

0.0 0y
h2’ 92,
L
f2: 0 bl
(/e
1y

0,
a?,

b,

which is in fact the equation of the Lemma.

il
ik
i
1
1
0

See my papers in the Quarterly
Journal of Mathematics, vol. 11 (1859), pp. 275—277, [286], and vol. v. (1861),
pp. 381—384, [297].

last columns the equation is

=)

[485
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Cor.—It appears by the demonstration that for any four points not in the same
plane, the expression

i, a«xfz gy b4gz BN C%e _fzg‘z]ls
i ((1,2f2 =l bacz) (g‘z HE 52 ___fz) S (begz o 02“2) (h‘.’ +f2 & ge) -+ (c:’hs =+ a‘:bs) (fz A ge = hz)
is always positive.

[Vol. viiL pp. 105, 106.]

2472. (Proposed by Professor CAYLEY.)—Through four points on a circle to draw
a conic such that an axis may pass through the centre of the circle.

Solution by the PROPOSER.

Let the equation of the conic be (a, b, ¢, f, g, hQx, y, 1?=0, then if as usual
the inverse coefficients are represented by (4, B, C, F, (G, H), the equation of the two
axes 1s

(a=b0)(Oz—G)(Cy—F)+h[(Cx— G}—(Cy=Fy]=0,
whence if an axis pass through the origin
(a=b)FG + h(G*— F*)=0.

Consider now the circle a*+%*—1=0 and on it the four points in which it is inter-
sected by the conic (a, b, ¢, f, g, Az, y, 1)=0; then for any conics through the four
points we have

(a, b ¢ f, 9, Yz, y, 1)+ A (z*+3y*—1)=0;

so that, taking this for the equation of the required conic, and representihg it by
@, v, ¢, f, o, Wiz vy, 1}=0,
the values of the coefficients are
d=a+N UV=b+nr, =c+N [f'=f, g=9 W=
and we thence have
F=F-\, @=G-Ng, ¢ -bV=a-b I=h
The required relation is

(«/ =) F'G' + W (G*— F"*) =0,
that is

(a =) (F =) (G = Ag) + L {(G—rg) — (F=N)} =0,

a quadric equation in \; and substituting for A each of its two values, we have the
two required conics

(a, b, ¢, f, 9, h{z, y, 1P+ N(*+y*—1)=0,

for each of which an axis passes through the centre of the circle.

74—2
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[Vol. 1x., January to June, 1868, pp. 20, 21.]
Note on Question 2471. By PROFESSOR CAYLEY.

In the singularly beautiful solution which Mr Woolhouse has given of this
question (see Reprint, vol. viiL p. 100), it is important to note what is the analytical
problem solved, and how the solution is obtained. Considering a plane area bounded
by any closed convex curve, and in it three points P, P’, P”, Mr Woolhouse investi-
gates the average area of the triangle PP'P”, viz. this depends on the sextuple integral

/i {wlyll_xlly/+xlly_wyll+wyl_x'y} dxd‘y dx/ dyl dwll dyll,

where the sign + has to be taken so that + { } shall be positive, and where the
integration in respect to each set of coordinates extends over the entire closed area;
the difficulty is as to the mode of dealing with the discontinuous sign. It is remarked
that the integral is

— Gfi {xlyll X mllyl +wlly_w.yll + xyl_wly} dwdydx/ dy/ dﬁ” dyll;

the variables in this last expression being restricted in such wise that #, 2”, 2’ are in
the order of increasing magnitude; the term +{ } is of the form +(2'—2)(y”"—RB),
where B is independent of 7, and where (as is easily seen) if v”, 4” be the upper
and lower ordinate corresponding to the abscissa «”, then B lies between the values
u” and v”. But &’ —z is positive, hence the sign + must be so taken that + (¥’ —pB)

shall be positive, that is, from y”=u" to y’=p the sign is —, and from 3" =8 to
y” =" the sign is +.

Hence for the integration in regard of y” we have

v B
[ro-may = [ +o-Bar+[ -, =40 =+ 4 @-uYs

and the discontinuous sign + is thus got rid of The remaining integrations are then
effected in the order 2”, ¥/, y, «/, #, the limits being for 2” from z to «, for y from
w to o, and for y from u to v (if the upper and lower ordinates corresponding to
the abscissa # and 2’ are v, u and ', «’ respectively) and finally for 2’ from z to the
maximum abscissa, and for # from the minimum to the maximum abscissa. The final
result involves only single definite integrals between the extreme values of , the
functions under the integral sign containing indefinite integrations from the same
arbitrary inferior limit, say #=0; the form of the result (previous to its simplification
by taking the axes to be principal axes through the centre of gravity of the area) is
however somewhat complicated; and it would not be easy to show a posteriori, that
the value is invariantive, that is, independent of the position of the axes: that this
is so is of course apparent from the original form of the integral.
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[Vol. 1x. pp. 38, 39.]
2530. (Proposed by Professor CayLeY.)-—Trace the curve

i ot ke St
Vo W@tiy)  Ne—dy)

where the coordinates @, y, z are the perpendicular distances of the current point P
from the sides of an equilateral triangle, the coordinates being positive for a point
within the triangle.

Solution by the PROPOSER.

The form of the equation shows that the curve is a tricuspidal quartic, having a
real cusp at the point (=0, y =0), and two imaginary cusps at the points (2=0, z 41y = 0)
and (z=0, z—ty=0). The rationalised form of the equation is
(@* + 1) = dow (2 + y*) — d2?y* = 0.
z=0 gives y*(y*— 42°) =0, the point C twice, and two other real points @, a’ on
the line BC.

y=0 gives #*(z—42)=0, the point C three times, and a real point B on the
line CA.

It is easy to find that there is a double tangent z+42z=0, viz. 2 +22=0 gives
(822 —y%)?=0, two points 7, 7" (each twice) on the line in question.

Laying down these points, it appears that the curve must have two real asymptotes,
and that the form is as shown in the figure.

[Vol. 1x. pp. 55, 56.]

2553. (Proposed by Professor CAYLEY.)—Show that the surface y%z*+2%°+2%*—22y2=0
meets the sphere a?+4?+2*=1 in four circles; and explain in a general manner the

WWW.ICil .0rg.pl



590 PROBLEMS AND SOLUTIONS. [485

form of the curve of intersection of the surface by any other sphere having the same
centre, and thence the form of the surface itself (being a particular case of Steiner’s
surface, and which by the homographic transformations w='z, w™'y, w™z for z, y, 2
gives y%2° + 2%* + a*y* — 2wayz =0, the general equation of Steiner’s surface).

Solution by the PROPOSER.

Take X, X', Y, Y’, Z, Z' the intersections of the sphere a?+1*+2°=1 by the
three axes respectively; then we have a*+y*+22=1, 2 +y+2=—1, the equations of
the circle through the points X', ¥’, Z’; and from these two equations we deduce
yz+ze+xy =0, and thence

&0 Y2t + %% + 2y + 2wyz (x +y + 2) =0,
at 1is
Y2 +2%° + 2% — 20yz= 0 ;

so that the circle lies on the quartic surface; and by changing successively the signs
of each two of the three coordinates, we have three other circles lying on the sphere
and also on the quartic surface; viz. we have in all four circles, the above-mentioned
circle through (X’, Y’, Z’), and three other circles through (X', Y, 2), (X, Y', Z),
(X, Y, Z’) respectively, making together a curve of the order 8, the complete inter-
section of the quartic surface by the sphere.

The quartic surface lies entirely in the four octants of space wyz, zy'2, z'yz, a'y'z;
and as to the portion of the surface which lies in the octant @yz this meets the
sphere #*+3*+22=1 in portions of the three circles (X, ¥V, 2) (X, Y, 2) X, ¥, Z’)
constituting a tricuspidal form lying within the octant XYZ as shown in the figure.
The intersection by a sphere, radius <1, projected on the octant XYZ, is a trinodal
form, lying outside the tricuspidal one, as shown by a dotted line in the figure; the
intersection by a sphere radius > 1, projected in the same way, is a trigonoid form
lying inside the tricuspidal one, as also shown by a dotted line in the figure; as the

; y 2 e iRl s
radius approaches to and ultimately becomes =73 this diminishes, and becomes

ultimately a mere point, and when the radius is greater than this value the intersection
i1s imaginary.

Imagine on the solid sphere, radius =1, the four tricuspidal forms lying in
alternate octants as above; cut away down to the centre the portions lying without
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these tricuspidal forms; and build up on the tricuspidal forms, until the greatest

distance from the centre becomes we have a solid figure with four prominences

_— 2 .
= 7§}
situate as the summits of a tetrahedron, the bounding surface whereof is the surface
in question: it is to be added that the axes are nodal lines on the surface, viz. the
portions which lie within the solid figure are the intersections of two real sheets of
the surface, the portions which lie without the solid figure are isolated, or acnodal, lines
on the surface.

[Vol. 1x. pp. 73, T4.]
2573. (Proposed by Professor CavLEY.)—The envelope of a variable circle having
for its diameter the double ordinate of a rectangular cubic is a Cartesian.

(DEFINITION, The expression “a rectangular cubic” is used to express a cubic with
three real asymptotes, having a diameter at right angles to one of the asymptotes and
at an angle of 45° to each of the other two asymptotes, viz. the equation of such a
cubic is ay®=z® + ba®+ cx + d.}

Solution by the PROPOSER.
The equation of the variable circle may be taken to be

24

(2 —0p+1y2=60:—2mb +a+ 0

viz. 6 being the abscissa of the rectangular cubic, the squared ordinate is taken to

be —10(03——21710‘-’+ af+24), or, what is the same thing, the equation of the variable

circle is
w3+y‘~’—a—2(x—m)9—2~04=0.
Hence, taking the derived equation in regard to 6, we have
&—m— :91, =0,
and thence
24+y—a= 4-;4 :
therefore ‘

(@+y—a)p= 1%{1: =164 (z—m);

that is, the equation of the envelope is

@+ y*—a) — 164 (z —m) =0,

which is a known form of the equation of a Cartesian.
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[Vol. 1x. pp. 82, 83.]

2493. (Proposed by Professor CaYLEY.)—1. Given the conic U=0 (but observe
that the function U contains implicitly an arbitrary constant factor which is not given)
and also the conic U+1=0, to construct the conic U+1=0, where I is a given
constant.

2. Given the conics U=0, U+1=0, V=0, V+1=0, and the constants 6, %, to
construct the conic U + 61V + 2k =0.

Solution by the PROPOSER.

1. The conics U=0, U+1=0, U+1l=0 are obviously concentric similar and
similarly situated conics, and if drawing a line in any direction from the centre, the
radius-vectors for the three conics respectively are », #/, R, then it is easy to see that
we have

R=b”+1=1)r
There is no difficulty in constructing geometrically the radius R, and then the conic
U+1=0 is given as the concentric similar and similarly situated conic passing through
the extremity of this radius.

2. To construct the conic U+ 6V +2k=0. By what precedes, we may con-
struct the two conics QU +k=0, 6V +k=0; the four points of intersection of these
lie on the required conic U+ 67V + 2k =0, and also on the conic U -6V =0;
which last conic is consequently given as a conic passing through the four points in
question, and also through the four points of intersection of the given conics U=0, V'=0.
But the conic §U — 87V =0 being constructed, the conic §U+ 67V =0 can also be
constructed ; viz. the tangents of these two conics and of the conics U=0, V=0, at
each of the four intersections U =0, V=0, form a harmonic pencil; and we have thus
the conic QU+ 6V =0 a conic passing through four given points, and having at each
of these a given tangent. And then finally the required conic QU+ 67V +2k=0 is
given as a conic concentric similar and similarly situated with the conic 0U + 67V =0,
and passing through the four given points

OU+k=0, 6*V+k=0.

3. Treating k& as an absolute constant but 6 as a variable parameter, the envelope
of the conic U +67'V +2k=0 is the quartic curve UV—k*=0. This is a curve
used by Pliicker (in the Theorie der algebraischen Curven) for the purpose of showing
that the 28 double tangents of a quartic curve may be all of them real. In fact, if
U=0, V=0 be ellipses intersecting in four real points; and if, moreover, the implicit
constants be such that U is positive for points without the first ellipse, V positive
for points within the second ellipse, then since UV, =£k* is positive for all points of the
curve in question, the curve must be wholly situate in the four closed spaces which
lie outside the one and inside the other of the two ellipses; consisting therefore of
four detached portions. And when k£ is sufficiently small, then the figure of each
portion is that of a concavo-convex lens with its angles rounded off: viz. each such
portion has a real double tangent of its own. Any two portions have obviously four real
double tangents, and hence the total number of real double tangents is 4 + 6 x 4, = 28.
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4. A construction has been given by Aronhold (Berl. Monatsber., July, 1864) by
which, taking any 7 given lines as double tangents of a quartic curve, the remaining
21 double tangents can be constructed, and which, when the seven given lines are real,
leads to a system of 28 real double tangents; but wishing to construct the figure of
the 28 real double tangents, it occurred to me that the easier manner might be to
construct Pliicker’s curve UV —/*=0, as the envelope of the conic U + 62V + 2k =0,
and then to draw the tangents of this curve: the construction is, however, practically
one of considerable difficulty, and I have not yet accomplished it.

[Vol. 1x. p. 87.]

2451. (Proposed by Professor CAYLEY.)—If A, B, 0, D are the intersections of a
conic by a circle, then the antipoints of A, B, and the antipoints of C, D, lie on a
confocal conic.

N.B. If AB, A’B’ intersect at right angles in a point O in such wise that
0A'=0B'=7.04 =1.0B {where v=4+/(—1) as usual}, then 4’, B are the antipoints of
A, B, and conversely.

[Vol. 1x. pp. 101—103.]

25690. (Proposed by Professor CAYLEY.)—It is required to verify Professor Kummer’s
theorem that “if a quartic surface is such that every section by a plane through a
certain fixed point is a pair of conics, the surface is a pair of quadric surfaces (except
only in the case where it is a quartic cone having its vertex at the fixed point).”

Solution by the PROPOSER.

The theorem may be more generally stated as follows; if a surface is such that
every section through a certain fixed point (is or) includes a proper conic, then the
surface (is or) includes a proper quadric surface. In order to the demonstration, I
premise the following Lemma: If a surface is such that every section through a
certain fixed line includes a conic, then the line meets each of these conics in the same
two points.

In fact, if the line meet the surface in any = points, then it is clear that each
of the conics will meet the line in some two of these n points; and as the plane of
the section passes continuously from any one to any other position, the two points of
intersection with the conic cannot pass abruptly from being some two to being some
other two of the n points, that is, they are always the same two points.

Consider now a surface which is such that every section through a fixed point
O includes a conic; and consider three lines za’, yy’, 22’ meeting in the point O. Let
the conics in the planes yz, 2z, 2y be A, B, C respectively; then since the conics
€. VIL 75
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through the line z2’ all pass through the same two points, and since B, C are two
of these conics, B and C meet 2z’ in the same two points X, X'; similarly C' and
A meet yy in the same two points Y, ¥’; and 4, B meet 27 in the same two
points Z, Z'; that is, we have the conics 4, B, C intersecting

B, C in the two points X, X/,
C) A » » Y) Y”
A’ B » » Z’ Z’ ;

hence taking on the conics A, B, C the points a, B, v respectively, and drawing a
quadric surface 3 through the nine points X, X', YV, Y’, Z, Z', a, B, v, this meets the
conic 4 in the five points Y, Y’, Z, Z’, a; that is, it passes through the conic 4,
and similarly it passes through the conic B, and through the conic C.

Consider how any plane whatever through O intersecting the conics 4, B, C' in the
points L and L, M and M, N and N’ respectively; the section of the quadric surface
S by the plane in question is a conic through the six points L, L', M, M', N, N
But the section of the surface includes a conic through these same six points, and which
is consequently the same conic; in fact, the section of the surface by the plane in
question includes a conic, and since every section through the line LL’ includes. a
conic through the same two points, and one of these conics is the conic A which
passes through the points L and L/, the conic in question passes through the points
L and L'; and similarly it passes through the points M and M’, and through the
points N and N’. That is, for any plane whatever through O, the section of the
surface includes the conic which is the section of the quadric surface =, and the
surface thus includes as part of itself the quartic surface X.

The foregoing demonstration ceases, however, to be applicable if O is a point on
the surface, and the conic included in the section fhrough O is always a conic passing
through the point O. In the case where O is a non-singular point of the surface
(that is, where there is at O a unique tangent plane) a like demonstration applies.
Take through O a section, and let this include the conic 4; on A take any point
O’ and through OO" a section including the conic B; we have thus the conics 4, B
intersecting in the points O, (/. Take through O any plane meeting the conics 4, B
in the points X, Y respectively—the section by this plane includes a conic C' passing
through the points O, X, ¥'; and each of the conics A, B, ' touches at O the same
plane, viz. the tangent plane of the surface. Hence, taking on the conic 4 the point &,
consecutive to O, and any other point «; on the conic B the point B, consecutive
to O, and any other point B'; and on the conic ' a point ; we may, through the
nine points O, a, B, O, o, B, X, V, v describe a quadric surface 3; this will touch
at O the tangent plane of the surface, that is, it will touch the conic C, or (what
is the same thing) pass through a point v of this conic consecutive to O. Hence the
quadric surface meets the conic 4 in the five points O, O, a, &, X, that is, it entirely
contains the conic A4 ; similarly it meets the conic B in five points O, 0, B, B, Y,
that is, it entirely contains the conic B; and it meets the conic C in the five points
0, v X, 7Y, o, that is, it entirely contains this conic. And it may then be shown as
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before that the surface will include the quadric surface 2. But there still remains
for consideration the case where O is a conical point on the surface, and I do not
at present see how this is to be treated.

I remark that, taking three lines @z', yy, 22’ which meet in a point O, then if
a surface be such that every section through wa’ includes a conic, every section through
yy' includes a conic, and every section through 2z includes a conic; and if besides
the two points, say X, X’, on the conics through the line a2’ are ordinary points on
the surface, then the surface will include a quadric surface. In fact, if the surface
has at each of the poiuts X, X’ an ordinary tangent plane, then the conics through
az/, and (as conics of the series) the two conics B, C all of them touch the two
tangent planes; hence, constructing as before the quadric surface 2, this also touches
the two tangent planes: and taking through #z’ a plane meeting the conic 4 in the
points L, L/, the section of the surface includes a conic which touches the section of
the quadric surface 3 at the points X, X’, and besides meets it in the points L, L’;
such conic coincides therefore with the section of the quadric surface X; that is, every
section of the surface through the line @’ includes the conic which is the section of

the quadric surface =; and the surface thus includes as part of itself the quadric sur-
face 2.

[Vol. x., July to December, 1868, pp. 17—19.]

2609. (Proposed by Professor CAYLEY.)—Given three conics passing through the
same four points; and on the first a point A, on the second a point B, and on the
third a point . It is required to find, on the first a point A4’, on the second a
point B’, and on the third a point €, such that the intersections of the lines

A'B and AC, A’C’ and AB, lie on the first conic;
B'C" and BA, B'A’ and BC, lie on the second conic;

C’A’ and CB, C'B’ and CA, lie on the third conic.

Solution by the PROPOSER.

Let the six intersections in question be called a, «; B, B'; v, v, respectively;
then BC intersects second conic in @, third conic in y; CA intersects third conic in ¢/,
first conic in a; AB intersects first conic in a’, second conic in B; and we have

A’ the intersection of af’, ya,
B’ the intersection of By, af’,
C’ the intersection of ya/, By’;

and it has to be shown that the points A’, B, C’ so determined lie—A’ on the first
conic, B’ on the second conic, C’ on the third conic.

75—2
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Taking =0, y=0, 2=0 for the equations of the sides of the triangle ABC, the
equations of the three conics may be taken to be U=0, V=0, W=0, where the
functions U, V, W are such that identically U+ V' + W =0; and then observing that

¢
BI %‘4'
X 2
A< ;:EB Za'/ B
CI

the conics pass through the points (y=0, z=0), (2=0, 2=0), (=0, y=0), respectively,
we see that the equations may be taken to be

( 0, =b ¢ fug iz y 2P=0,
¢ ok 0, —¢, fa 92 W2, 9y, 22=0,
(- a, b, 0, fis g5 M@, y, 22=0,
fitfet =0, 1+9:4+9:=0, hi+h+h=0.
The coordinates of the points a, B, v, o, B, ' are at once found to be
[ A 0, —2g); e hGieh a2t )
Bs (= 2h, gt I Vi B 6B 4i BH)
v (0, =2 b)) Qg 0, a);

and hence the equations of By, ya/, a8’ are

where

BY'; ar + 2hy — 2g,2 = 0,
v ; — 2z + by + 2f;2=0,
af’; 29.¢ — 2fay + c¢cz=0.

Hence for the point 4’, which is the intersection of ya’, a8, coordinates are
be + 4f. fi, s g0 + 2¢hy,  4h f, — 2bg,;
and A’ will be on the first conic if only
O, =b, ¢, fi, 91, MQbc+ 4fofs, 4fsgr + 2chy, 4l f, — 2bg,)* =0,

viz. this equation is
— b ( 16f29° +16f;g:hc + 4
+ ¢ ( 16hf?  —16fugilb + 49,°)
+ 2, ( 169k fofs— 89:2fsb  + 8htfsc — 4gihybe)
+ 29, (+ 16k, f2 fs — 8o fofsb+ 4h fibe — 2g,b% )
+ 2y (+ 169, /. fs* + Shyfofsc + 49, sbe + 2hbe* ) = 0,
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viz. this is easily found to be

8 (29,15 + chy) (20 fo — bgy) (fr + [ +13) =0,

which is satisfied in virtue of fy+f,+f;=0; that is, 4’ is on the first conic; and
similarly, in virtue of g¢,+g¢.+¢;=0, B’ is on the second conic; and in virtue of
hy+4-hy+hy=0, C’ is on the third conic. But the same thing appears at once by the
remark that the equations of the three conics are

—y(—=2hz+ by+2fiz)+z( 20¢—2fy+ cz)=0,

—z( 292—-2fy+ c2)+x( ax+2hy—2g:)=0,

—z(  ar+2hy —2¢2) +y(— 2ha + by + 2fy2) =0.
It may be added that, taking (z, ¥, &), (% ¥ 2), (@, Ys, 25), (%s, Ys 2,) as the
coordinates of the four points of intersection of the three conics, the first conic is
given by means of these four points and the fifth point (y=0, 2=0); and similarly

for the other two conics; whence, denoting the determinants formed with any four
columns out of the matrix

wlg, :‘/1", zlg) 3/121 bl 5%y, wlyl l
@ Yl B Yla, 2, LY |

2 2 |

| x?, yf, Z23°  YsZs, 233, XY '

A Ys 27, Y2y, 245, Y,

by 1234, 1235, &c., we easily find the equations of the three conics, viz. these may
be written

9

o R A~ b R YL 20 zy
1456 ( 0 , + 3456, — 2456, 4+ 2356, + 2364, + 2345)=0,
2356 (— 3456, 0 , + 1456, + 3156, + 3164, + 3145)=0,
3456 (2456, — 1456, 0 , +1256, + 1264, + 1245)=0,

the exterior factors 1456, 2356, 3456 being introduced in order to bring the equations
into the above-mentioned form, wherein the sum of the quadric functions is =0.

[Vol. x. pp. 88, 89.]

2743. (Proposed by M. JENKINS, M.A.)—Show that if p be a prime number and
H(mta). o
I (m) I () Y
be obtained by expressing m+n and either m or n in the scale of p; the number of
times that it would be necessary to borrow in subtracting the latter number from the
former being the index of the power of p required.

m and n any positive integers, the highest power of p contained in
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Solution by PROFESSOR CAYLEY.

1. In adding any two numbers, we carry a certain number of times; and it 1s
easy to see that the sum of the digits of the two components, less the sum of the
digits of the sum, is equal to nine times the number of carryings; moreover, that the
number of carryings is equal to the number of borrowings, if either of the components
be subtracted from the sum.

2. The same thing is true in any scale of notation, only, instead of nine, we
have the radix of the scale, less unity: say the theorem is

S(m)+Sm)—S(m+n)=(p—1)a.

3. If p be a prime number, the number of times that the factor p occurs in
II (m) is
B(3)+5(3) () v
p P

where & (;Z) denotes the integer part of 7—;, and similarly & <p> &c. the integer part
of 1») &c.; the series is, of course, finite.

IT (m + n)
11 (m) 11 (n)

e ()-8 (2)- () - #() - ()t

Hence the number of times that the factor p occurs in

4. Hence, expressing m, n, m+n in the scale to the radix p, suppose

m=a+bp+cp+dp}, n=d +Vp+cp+dp,, m+n=a+Bp+yp’+ 5P’

we have

E(p>+E<;’;)+&c =b+cp+dp+c+dp+d=d(p’+p+1)+c(p+1)+0;

and similarly for ) <;—;> + &e., £ (Zn;-_n) + &ec....;

whence

(p-DN= 3 (pP-D+qy(@P-D+B(@-1)
~d (p'-D=ec(pP=D=-b(p=1
—d(@P-1)-c(P-1)=-V(p-1)
= {m+n—8(m+n)f—{m—8(m)}—{n-8m}
=8m)+8(n)=S(m+n), =(p-1)a,
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if # be the number of times of carrying for the sum m+n, or of borrowing for the
difference (m+mn)—m or (m+mn)—n; that is, N=«, the required theorem. I remark
that although the foregoing expression of the number N is a very elegant and
ingenious one, yet the original form of N, as given at the end of (3), is the natural
and proper expression of the number of times that the factor p occurs in the

binomial coefficient ﬁﬁ(;ﬁ)_ﬁ(h )

[Vol. X. p. 98.]

2756. (Proposed by J. GRIF}:‘I;I‘HS, M.A.)—Show that an infinite number of triangles
can be described such that each has the same circumscribing, nine-point, and self-
conjugate circles as a given triangle.

Solution by PROFESSOR CAYLEY.

It is a known theorem that if two triads of points, say 4, B, ¢ and 4’, B, (',
are self-conjugate in regard to a conic S, they lie in a conic 3. Take the conic S
and the points 4, B, (' as given; then 3 will be a conic passing through 4, B, C;
and if on this conic we take any point A’, and then take B’ to be either of the
intersections of the conic % by the polar of 4 in regard to S, and finally construct
(" as the pole of A’B’ in regard to S, then, by what precedes, C’ will be on a conic
through 4, B, C, A’, B, that is, on the conic . Or given the conic S, the triangle
ABC, and the conic X through A4, B, C, we obtain an infinity of triangles A'B'C,
self-conjugate in regard to S and inscribed in =, That is, if S, ¥ are circles, we
have an infinity of triangles self-conjugate in regard to the circle S and inscribed in
the circle 3; and inasmuch as the nine-points circle can be constructed by means of
the two circles S, X alone, the triangles have all of them the same nine-points circle.

[Vol. x. p. 108.]

2737. (Proposed by Professor CAYLEY.)—Find in solido the locus of a point P,
such that from it two given points 4, €, and two given points B, D, subtend equal
angles.
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[Vol. x1., January to June, 1869, pp. 33—38.]

2718. (Proposed by Professor CAYLEY.)—Find 4n plano the locus of a point P,
such that from it two given points A4, C, and two given points B, D, subtend equal
angles.

2757. (Proposed by Professor CAYLEY.)—If

22+ y2=1, and lm, e W=t
i+ yt=1, | Ly Yore L ‘
i PR B
show that each of the equations
@ (v —x) + b (y 2 Yol 2 @* (2 — o) + b (y — y)? ’ 1)
(wzy + yyo — 1) (@z, + yy, — 1)
@* (2 — @) + U (y — yo)? @ (z— ) + 0 (y — ) (2)

(xyo — 2y — (2 — )’ — (Y — W)? = (wy, — 2y) — (2 — @) — (y — )’

represents the right line L =0 and a cubic curve.

1819. (Proposed by C. TAyLor, M.A.)—From two fixed points on a given conic
pairs of tangents are drawn to a variable confocal conic, and with the fixed points
as foci a conic is described passing through any one of the four points of intersection.
Show that its tangent or normal at that point passes through a fixed point.

Solution of the above Problems by PROFESSOR CAYLEY.

1. It is easy to see that drawing through the points 4, C' a circle, and through
B, D a circle, such that the radii of the two circles are proportional to the lengths
AC, BD, then that the required locus is that of the intersections of the two variable
circles.

Take AC=2l, MO perpendicular to it at its middle point M, and =p; a, b the

coordinates of M, and N the inclination of p to the axis of #; then

coordinates of O are a+pcosh, b+ psin},

coordinates of 4, C are a +1 sinA, b F ! cosA,
and hence the equation of a circle, centre O and passing through 4, O, is
(z—a—pcosh)+ (y—b—psin\y =1+ p;
or, what is the same thing,

(x—a)+(y—0r—0=2p[(z—a)cosk + (y—b) sinr].
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If 2m, q, ¢, d, p refer in like manner to the points B, D, then the equation of a
circle, centre say @, and passing through B, D, is

(z—clP+(y—dp—m*=2q[(z—c)cos p+ (y —d) sin u];

and the condition as to the radii is 24 p* : m*+¢*=10° : m? that is, p* : ¢*=1 : m?,
or p:q=410:m And we thus have for the equation of the required locus

My =aP+(y=by-<¥ ! (@—cf+(y—dy—-m

(# —a) cos A + (y — b) sin A =tn (x—c)cosp+(y—d)sinp’

viz. the locus is composed of two cubics, which are at once seen to be circular cubics.
One of these will however belong (at least for some positions of the four points) to
the case of the subtended angles being equal, the other to that of the subtended
angles being supplementary; and we may say that the required locus is a circular
cubic.

2. If two of the points coincide, suppose C, D at 7'; then, taking 7' as the
origin, we may write
@=L RN 0=~ ] " Cod N,

c=—msinu, d= mcospy,

[}

and the equation becomes

2+ 2+ 20 (zsin A —y cos\) +7 + 9+ 2m (z sin p — ycos,u)
Z CoS A+ sin A m Z cos pw—+ 1y Sin p

viz. this is
(=*+ y?) [m(wcbsM+ysinp)$ L(z cos A+ ysinN)] — 20m {(zsin A — y cos N) (z cos pu + y sin w)
+ (xsiri,u.—ycos,u,)(a: cos A+ ysin\)} =
Taking the lower signs, the term in { } is (2®+ 3*)sin(A —pu), and the equation is
(@ + ) {m (z cos pu + y sin w) + L (@ cos A + y sin X) — 2lm sin (A — p)} =0,

viz. this is 2°+%*=0, and a line which is readily seen to be the line AB; and in
fact from any point whatever of this line the points 4, 7 and the points B, 7
subtend supplementary angles.

C. VIL 76
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Taking the upper signs, the equation is

(@ + y?) [m (zcos p+ ysin w) — I (zcos A + ysin\)]
— 20m {(#* — y*) sin (A + p) — &y cos (N + p)} =0,

which is the locus for equal angles, a circular cubic as in the case of the four distinct
points.

3. The question is connected with Question 1819, which is given above. In fact,
taking A, B for the fixed points on the given conic, and P for the intersection of
any two of the tangents, if in the conic (foci 4, B) which passes through P, the
tangent or normal at P passes through a fixed point 7', then it is clear that at P
the points A, 7 and B, T subtend equal angles, and consequently the locus of P
should be a circular cubic as above. The theorem will therefore be proved if it be
shown that the locus of P considered as the intersection of tangents from A4, B to
the variable confocal conic is in fact the foregoing circular cubic. I remark that the
fixed point 7' is in fact the intersection of the tangents AT, BT to the given conic
at the points 4, B respectively.

4. Consider the points A, B, (which we may in the first instance take to be

arbitrary points, but we shall afterwards suppose them to be situate on the conic
2

- +B;_1,) and from each of them draw a pair of tangents to the confocal conic
x2 y2 " ; X 5 : 3
(L”Iﬁ+5*+ h_l. Take (2, y,) for the coordinates of A, and (a, y,) for those of B;

then the equation of the pair of tangents from A is

wo"i Wyo‘z N ? K ) (xwo Yo )
(a2+h+b2TE 1><a~+h+b2+h . a2+h+b2+h i

or, what is the same thing,

(@Yo — 2y)* (‘7’ -L'o_) Y =¥ %) 2
(@+h)y(B*+h)  a+h b+ h 0,
that is
(zyo — 2y > — (> + 1) (2 — 2> — (@* + ) (y — y,)* =0,

or as this may also be written
(2o — @) — b (v — &) — a* (y = o)’ = h [(@ — @) + (y — 9] 5
and similarly for the tangents from B we have
(wy — 2y — b (@ — @) — a*(y —pf =h[(z — &) + (y — »)];
in which equations the points (zy, ¥), (#, %) are in fact any two points whatever.
5. Eliminating h, we have as the locus of the intersection of the tangents

(ayo— 2y = b* (=) — @* (y — yo)* _ (@ — 2yl —b* (@ — @) — @* (y — )
(@ — @) + (¥ — %)’ (@ — @, +(y — o)

‘3
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which is apparently a quartic curve; but it is obvious & priort that the locus includes
as part of itself the line AB which joins the two given points. In fact, there is in
the series of confocal conics one conic which touches the line in question, and since
for this conic one of the tangents from A and also one of the tangents from B is
the line AB, we see that every point of the line AB belongs to the required locus.
The locus is thus made up of the line in question and of the cubic curve.

6. To effect the reduction it will be convenient to write az, by in the place of
z, y, (az,, by, ax,, by, in place of z, ¥, @, y,) and thus consider the equation under
the form i
@ @—a)f+bY-y)  _ @@—ml+0(y—y)r
(@Yo —ay) — (@ — @) —(y —yf (2 — @y — (@ — @) — (Y- p)*’

it is to be shown that this equation represents the line L =0, and a cubic curve.

Writing for a moment &, =z + &, Yo=y+m, and z,=z+§&, y=y+m, the equation
becomes
aefo‘: 4 b2’702 = azflz = b-:,,hz
(@no—gy&) — &' —m® (am—yE ) —E—n?’

and hence, multiplying out, the equation is at once seen to contain the factor
Em— Em, (which is in fact the determinant just mentioned), and when divested of
this factor the equation is

a?[(2* — 1) (o + Emo) — 2zyé,8] = 0* [(y* = 1) (Eom + Emo) — 22y nem].
Writing herein for &, 5,, &, . their values, and consequently
E& = — (% + @) + 2021,
N =Y =Y (Yo + 1) + Yol
Eo"h o+ El'ﬂo e 2“'3/ —& (3/0 +y1) =1 (2 + x)+ T + 210,
and arranging the terms, the equation is found to be
(@22 + b2) [ & (31 + yo) — y (@) ] + (@*2* + b*) (@ + @) — 22y [0 (1 + 20my) — U (1 + o)
+ (@2 =) [z (v, + y0) + ¥ (21 + @) — (2o + 1Y) ] = 0

which is the required cubic curve.

7. Restoring the original coordinates, or writing —

Linds
a ibr

%", &c. in place of z, y, @, &c.,
we have
(@ +9) [ (g + 30) + Y (22 + @) + (@ — §°) (@ + @) — 2wy (@ =+ @ot2 = Yoify)

+ (@2 =) [ (g2 + 30) + ¥ (2 + 20) — (@ + 2300)] = 0,
which is a circular cubic the locus of the intersections of the bangents from the
arbitrary points (@, %), (@, 1) to the series of confocal conics a_,——}; + e 1; the

origin of the coordinates is at the centre of the conics.

www.rcin.org.pl



604 PROBLEMS AND SOLUTIONS. [485

8. Supposing that the points (z,, ¥,), (2, %) are on the conic af b2 =1, and that
Yo, o o y
E —+ =1, the equations of the tangents at these

we have consequently a—+ e ?)7

points respectively are + y;/;’ =1 yg; =1; and hence, writing for shortness
a’a bR 8

o0=Yo— Y1, B=a,— %, v=2ad — Y, we find z=— ~7 , Yy=— as the coordinates of

the point of intersection 7, of the twe tangents; and in order to transform to this

a*a b*B

point as origin, we must in place of z, y write #——, y — - respectively. Or what
4 6
is more convenient, we may in the equation at the end of (6), in which it is to be
now assumed that z2+y?2=1, @+ y°>=1, write P y y—é for «, y, and then restore
i

yxo B

the original coordinates by writing a:’ i &e., for. @, ¥,. z,  &e.,, and b’ =, b for

a, B, v, these quantities throughout signifying a=y,— vy, B=a, —x, v=2ZY— &Y.
I however obtained the equation referred to the point 7' as origin by a different
process, as follows :

9. Starting from the equation at the commencement of (5), I found that the

points (@, ¥o), (#, 1) being on the conic —+ =1, the equation could be transformed

bz

oxy  YYo _ 1\’ oz Yh
( a? B b2 1) ik < ¥ b 1)
@—z)l+Hy—y) (@—a)+y-—n)?’

an equation which (not, as the original one, for all values of (z,, ¥,), (@, y), but) for

into the form

yo_l +J1

values of (z,, %), (#, %) such that _+7 - 1, breaks up into the line 4B

and a cubic curve.

10. To simplify the transformation, write as before az, by, ax,, &ec., for =z, y, z,, &ec.
We have thus to consider the equation

P@—af+ Py —y) o' @—2)+ 8y —g)
@, + s~ 17 (a+ =17

:

where z2+y2=1, #?+ y*=1, and which equaﬁinn, I say, breaks up into the line L =0,
and into a cubic.

Write for shortness a=y,—1, B=a,—a, y=ay, —xy,, so that the equation of
the last-mentioned line is az + By +vy=0. Then it may be verified that, in virtue of
the relations between (z,, ¥,), (#:, ), we have identically

o+1

(= @) (xmy + yip — 1)+ (2 — @) (22, + YYo — 1) = (az + By + )" (yz + a),

(w—ﬂ«“o)(mx+3/yx—1)—(w—wz)(mo+y3/o—1)=/3w2—awy—'ry-8;
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and, similarly,

@ =90 @4 9= 1)+ (=) (@ + = )= (e + By + ) V52 (g + )

¥ — o) @0 +yy — 1) = (y — y) (@2 + ygo— 1) = Bay —ay* + 92 +
11. The equation in question may be written a’P +0*Q =0, where
P = (2 — &) (a2 + yp — 17 — (2 — @) (22 + yyo — 1)}
Q =(y— o) (o + 35 — 1) = (y — ) (@ + y3 — 1)’,

values which are given by means of the formule just obtained; there is a common

factor az+ By -+ which is to be thrown out; and we have also, as is at once
Yot th _ %t @

B a

obtain the cubic equation

@ (v + a) (B2 — azy —qy — B) + b* (vy + B) (Bzy — ay* + yz + a) = 0.

verified, , so that these equal factors may be thrown out. We thus

This is simplified by writin, z=2 for x, —‘§ for y. It thus becomes
p y g py Y y Y

@’z [(ya — ) (Bz —ay) — v’y + by [(vy — B) (Bx — ay) + y'2] =0;
or, what is the same thing,

@’z [yz (Bz — ay) — aBz + (& — ) y] + by [vy (Bz — ay) — (B — v’) 2+ aBy] = 0;
that is

y (@2t + By?) (B — ay) +*[= 2B + (o = ) ] + I [~ (8= o) oy + o] = 0.

12. Restoring 2, %’, %‘ for », x,, x, and %, %, %‘ for vy, ¥, ; writing
consequently g, ’g, alb in place of a, B, v, if a, B, v are still used to denote a=y,—y,,

B=az, —z,, ¥=a— %Y, the equation becomes

v (@ + y) "Bz — a*ay] + a? [— baBa? + (wa? — ) ay] + b [— (BB — o) wy + a*aBy*] = 0,

e : g ,? § ; A g
where now, as originally, %”—2+% =1, é*%‘k 1; viz. this is the equation, referred to

the point 7' as origin, of the locus of the point P considered as the intersection
of tangents from A, B to the variable confocal conic; and it is consequently the
equation which would be obtained as indicated in (8). The locus is thus a circular
cubic; the equation is identical in form with that obtained (2) for the locus of the
point at which A4, 7T and B, T subtend equal angles, and the complete identification
of the two equations may be effected without difficulty.

13. I may remark that M. Chasles has given (Comptes Rendus, tom. 58, February,
1864) the theorem that the locus of the intersections of the tangents drawn from a
fixed conic to the conmics of a system (u, v) is a curve of the order 3». The confocal
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conics, qud conics touching four fixed lines, are a system (0, 1); hence, taking for the
fixed conic the two points A, B, we have, as a very particular case, the foregoing
theorem, that the locus of the intersections of the fangents drawn from two fixed
points to a variable confocal conic is a cubic curve.

[Vol. x1. p. 49.]

Note on Question 2740. By PROFESSOR CAYLEY.

The envelope of the curve
A cos 204+ Bsin 20 + (Y cos 8 + Dsin 8 + E =0,

(where 4, B, C, D, E are any functions of the coordinates, and 6 is a variable
parameter,) is obtained in the particular case E'=0 (Salmon’s Higher Plane Curves,
p. 116), and the same process is applicable in the general case where £ is not =0.
From the great variety of the problems which depend upon the determination of such
an envelope, the result is an important one, and ought to be familiarly Jnown to
students of analytical geometry. We have only to write z=cos@+isinf, the trigo-
nometrical functions are then given as rational functions of 2z and the equation is
converted into a quartic equation in z; the result is therefore obtained by equating
to zero the discriminant of a quartic function. The equation, in fact, becomes
A1<z2+1.,>+B71.<z‘2—l,)+0§<z+l)+Dl<z—1)+E=O,

2 2 21 2%/ 2 z 21 z
that is

A2 +1)—Bi(*— 1)+ C(*+2)— Di(2*—2) + 2E2°=0;

or, multiplying by 12 to avoid fractions, this is
(D56, d,5e0z, d)t =0,

where
a=12(4A — Bt), b=38(C—Di), c=4E,

=12 (4 +Br), d=3(C+ Dr);
and substituting in

(ae — 4bd + 3c?)* — 27 (ace — ad? — b% + 2bed — ¢*)* = 0,
the equation divides by 1728, and the final result is
{12 (4> + B*) — 3 (C*+ D?) + 4 B*}?
—{27TA (C* = D?) + 54BCD — [72 (4* + B) + 9(C* + D*)] E 4+ 8E** = 0.
It is to be noticed, that in developing the equation according to the powers of K,
the terms in £° E* each disappear, so that the highest power is £*; the degree in

the coordinates, or order of the curve, is on this account sometimes lower than it
would otherwise have been. i
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[Vol. xir., July to December, 1869, p. 69.]

2920. (Proposed by Professor CAYLEY.)—Imagine a tetrahedron BB'CC’ in which
the opposite sides BB, (C” are at right angles to each other and to the line joining
their middle points M, N; and in which moreover ON24 NM:+ MB*=0, (or, what is
the same thmg, the sides CB, OB, C'B, ("B are each =0; the tetrahedron is of
course imaginary; viz. the lines CC’, BB’ and points M, N may be real; but the
distances MB =MB and NC=NC" may be one real and the other imaginary, or
both imaginary, but they cannot be both real) the points B, B’ and C, (" are said to be
“skew antipoints.” Then it is required to prove that

1. A given system of skew antipoints may be taken to be the nodes (conical
points) of a tetranodal cubic surface, passing through the circle at infinity, and which
is in fact a Parabolic Cyclide.

2. The equation of the surface may be expressed in the form
@ (z+B) (@ +y)+(@+B)y+ (z+vy) 22 =0.

3. The section through either of the lines (y=0, z+y=0) and (2=0, z+ B8=0)
is made up of this line and a circle; the two systems of circles being the curves of
curvature of the surface; it is required to verify this & posteriori; viz. by means of
the equation of the surface to transform the differential equation of the curves of
curvature in such manner that the transformed equation shall have the integrals

y=C(x+vy), z=C(z+p).

In the following Contents, the Problems are veferred to each by its No. and the
Proposer’s name, and the Subject is briefly indicated. ~An asterisk shows that no solution
was given. A line shows that there is no No.

PAGE
*1791 Cayley Quartic and three Cubics . y " 4 . 3 ; 546
_— ) Conic defined by five Conditions : : : . : ib.
*1857 2 Ternary Cubic Form . g 3 ) ) : 548
*1730 o Relation between roots of Cubic Equatlon ! : ! 3 ib.
1834 e Points on Cubic Curve ; : : A . ! 549
— k! Conic defined by five CODdlthn‘; 550
1876 Ball Roots of Quartic Equation . 2 ; : : : 551
—— Cayley Conic defined by five Conditions A : 552
1890 o Conic through three Points and with double Contact 554
*1554 ) Ellipse and Circles of maximum and minimum Curvature. 555
1931 U Nodal Cubic . : L g ; : : : ib.
1990 Sylvester  Cartesian Curves and Cubic Culve g ; : : ! 556
1949 Cayley Cuspidal Cubic . : ) : ) 3 : : ; 561
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