-NOTES AND REFERENCES.

$445,4551,454$. We have the two papers by K. Rohn, "Die Flächen vierter Ordnung hinsichtlich ihrer Knotenpunkte und ihrer Gestalten," Preisschr. der F. J. Gesell. zu Leipzig (Leipzig, 1886, pp. 1-58), and same title Math. Ann. t. xxix. (1887), pp. 81-97. I have not been able, to examine the conclusions arrived at in these papers with as much care as would have been desirable.

I call to mind that for a k-nodal quartic surface the tangent cone from any node is a sextic cone with $(k-1)$ nodal lines, breaking up it may be into cones of lower orders-see table p. 265: and that we distinguish the quartic surfaces according to the forms of the sextic cones corresponding to the k nodes respectively. It will be recollected that (6) denotes a sextic cone, (6_{1}) a sextic cone with one nodal line, $\left(5_{1}, 1\right)$ a sextic cone breaking up into a quintic cone with one nodal line and a plane; and so in other cases.

There is a sort of break in the theory; in fact when the number of nodes is not greater than 7 these may be any given points whatever, and taking the 7 points at pleasure we have surfaces with 8 nodes, and 9 nodes, but not with any greater number of nodes, viz. for a surface with 10 or more nodes, it is not permissible to take 7 of these as points at pleasure, so that the theory of the surfaces with 10 or more nodes is so to speak separated off from that of the surfaces with a smaller number of nodes. For the case of 10 nodes we have the symmetroid $10(3,3)$ and other forms, for 11 nodes Rohn finds 3 or ? 4 forms; for 12 nodes he has four forms, viz. my 3 forms and a fourth form 12_{d}; for 13 nodes he has two forms, 13_{b} agreeing with my 13_{a}, and 13_{a} which replaces my non-existent form 13_{β}; for 14 nodes, 15 nodes and 16 nodes he has in each case a single form, agreeing with my results. Without endeavouring to complete the theory, I write down a table as follows:

No. of Nodes		Form of Cones.	Remarks
16		$16(1,1,1,1,1,1)$	
15		$15(2,1,1,1,1)$	
14	$8\left(3_{1}, 1,1,1\right)+6(2,2,1,1)$		
13	$13_{b}=13_{a}$	$3\left(4_{3}, 1,1\right)+1(3,1,1,1)+9\left(3_{1}, 2,1\right)$	
$"$	13_{a}	$1(2,2,2)+12\left(4_{3}, 1,1\right)$	13_{a} replaces my non-existent
12	$12_{b}=12_{a}$	$12\left(4_{3}, 2\right)$	
$12_{a}=12_{\beta}$	$2\left(5_{6}, 1\right)+6\left(3_{1}, 3_{1}\right)+4(3,2,1)$		

C. VII.

Table continued.

No. of Nodes		Form of Cones	Remarks
12	$12_{c}=12_{\gamma}$	$12\left(4_{2}, 1,1\right)$	$12_{c}=12_{\gamma}$ is a peculiarly simple
"	12_{d}	$2\left(4_{2}, 1,1\right)+8\left(5_{6}, 1\right)+2\left(4_{3}, 2\right)$	tion is $A^{2}-x y z w=0$, where
11	$11_{a}=11_{\alpha}$	$1\left(6_{10}\right)+10\left(3_{1}, 3_{1}\right)$	A is a quadric function of the coordinates.
"	11_{b}	$8\left(6_{10}\right)+3\left(4_{2}, 2\right)$	
"	$11{ }_{c}$	$6\left(5_{5}, 1\right)+5\left(6_{10}\right)$	
"	11_{d}	?	
10		$10(3,3)$	The quartic surface is here the
9			
8			
7			
6			
5		$5\left(6_{4}\right)$	
4		$4\left(6_{3}\right)$	
3		$3\left(6{ }_{2}\right)$	
2		$2\left(6{ }_{1}\right)$	
1		1 (6)	

The suffixes a, b, c, d refer to Rohn's forms, the suffixes α, β, γ to my forms. The form 11_{d} is given in the first but not in the second of Rohn's two memoirs, and I am not sure as to the intended character of the sextic cones. I have not attempted to fill up the third column of the table for the Nos. of nodes $9,8,7,6$, as there may be particular cases which I have not considered. For the Nos. 5, 4, 3, 2, 1, the cone is a sextic cone with at most 4 nodal lines, and consequently in each case a proper sextic cone not breaking up into cones of inferior orders.

END OF VOL. VII.

CAMBRIDGE:

PRINTED BY C. J. CLAY, M.A. AND SONS, at the university press.

