748.

ON THE BITANGENTS OF A QUARTIC.

[From Salmon's Higher Plane Curves, (3rd ed., 1879), pp. 387-389.]
The equations of the 28 bitangents of a quartic curve were obtained in a very elegant form by Riemann in the paper "Zur Theorie der Abel'schen Functionen für den Fall $p=3$," Ges. Werke, Leipzig, 1876, pp. 456-472; and see also Weber's Theorie der Abel'schen Functionen vom Geschlecht 3," Berlin, 1876. Riemann connects the several bitangents with the characteristics of the 28 odd functions, thus obtaining for them an algorithm which it is worth while to explain, but they will be given also with the algorithm employed p. 231 et seq. of the present work*, which is in fact the more simple one. The characteristic of a triple θ-function is a symbol of the form

$$
\begin{aligned}
& \alpha \beta \gamma \\
& \alpha^{\prime} \beta^{\prime} \gamma^{\prime}
\end{aligned}
$$

where each of the letters is $=0$ or 1 ; there are thus in all 64 such symbols, but they are considered as odd or even according as the sum $\alpha \alpha^{\prime}+\beta \beta^{\prime}+\gamma \gamma^{\prime}$ is odd or even; and the numbers of the odd and even characteristics are 28 and 36 respectively; and, as already mentioned, the 28 odd characteristics correspond to the 28 bitangents respectively.

We have x, y, z trilinear coordinates, $\alpha, \beta, \gamma, \alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$ constants chosen at pleasure, and then $\alpha^{\prime \prime}, \beta^{\prime \prime}, \gamma^{\prime \prime}$ determinate constants, such that the equations

$$
\begin{aligned}
& x+y+z+\xi+\eta+\zeta=0 \\
& \alpha x+\beta y+\gamma z+\frac{\xi}{\alpha}+\frac{\eta}{\beta}+\frac{\zeta}{\gamma}=0 \\
& \alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z+\frac{\xi}{\alpha^{\prime}}+\frac{\eta}{\beta^{\prime}}+\frac{\zeta}{\gamma^{\prime}}=0 \\
& \alpha^{\prime \prime} x+\beta^{\prime \prime} y+\gamma^{\prime \prime} z+\frac{\xi}{\alpha^{\prime \prime}}+\frac{\eta}{\beta^{\prime \prime}}+\frac{\zeta}{\gamma^{\prime \prime}}=0
\end{aligned}
$$

[* That is, Salmon's Higher Plane Curves.]
are equivalent to three independent equations; this being so, they determine ξ, η, ζ, each of them as a linear function of (x, y, z); and the equations of the bitangents of the curve $\sqrt{ }(x \xi)+\sqrt{ }(y \eta)+\sqrt{ }(z \xi)=0$ (see Weber, p. 100) are

18	$\begin{aligned} & 111 \\ & 111 \end{aligned}$	$x=0$,
28	$\begin{aligned} & 001 \\ & 011 \end{aligned}$	$y=0$,
38	$\begin{aligned} & 011 \\ & 001 \end{aligned}$	$z=0$,
23	$\begin{aligned} & 010 \\ & 010 \end{aligned}$	$\xi=0$,
13	$\begin{aligned} & 100 \\ & 110 \end{aligned}$	$\eta=0$,
12	$\begin{aligned} & 110 \\ & 100 \end{aligned}$	$\zeta=0$,
48	$\begin{aligned} & 101 \\ & 100 \end{aligned}$	$x+y+z=0$,
14	$\begin{aligned} & 010 \\ & 011 \end{aligned}$	$\xi+y+z=0$,
58	$\begin{aligned} & 100 \\ & 101 \end{aligned}$	$\alpha x+\beta y+\gamma z=0$,
15	$\begin{aligned} & 011 \\ & 010 \end{aligned}$	$\frac{\xi}{\alpha}+\beta y+\gamma z=0$
68	$\begin{aligned} & 110 \\ & 010 \end{aligned}$	$\alpha^{\prime} x+\beta^{\prime} y+\gamma^{\prime} z=0$,
16	$\begin{aligned} & 001 \\ & 101 \end{aligned}$	$\frac{\xi}{\alpha^{\prime}}+\beta^{\prime} y+\gamma^{\prime} z=0$
78	$\begin{aligned} & 010 \\ & 110 \end{aligned}$	$\alpha^{\prime \prime} x+\beta^{\prime \prime} y+\gamma^{\prime \prime} z=0$,
17	$\begin{aligned} & 101 \\ & 001 \end{aligned}$	$\frac{\xi}{\alpha^{\prime \prime}}+\beta^{\prime \prime} y+\gamma^{\prime \prime} z=0$
24	$\begin{aligned} & 100 \\ & 111 \end{aligned}$	$x+\eta+z=0$,
34	$\begin{aligned} & 110 \\ & 101 \end{aligned}$	$x+y+\zeta=0$,
25	$\begin{aligned} & 101 \\ & 110 \end{aligned}$	$\alpha x+\frac{\eta}{\beta}+\gamma z=0,$
35	$\begin{aligned} & 111 \\ & 100 \end{aligned}$	$\alpha x+\beta y+\frac{\zeta}{\gamma}=0$,

26	$\begin{aligned} & 111 \\ & 001 \end{aligned}$	$\alpha^{\prime} x+\frac{\eta}{\beta^{\prime}}+\gamma^{\prime} z=0$
36	$\begin{aligned} & 101 \\ & 011 \end{aligned}$	$\alpha^{\prime} x+\beta^{\prime} y+\frac{\zeta}{\gamma^{\prime}}=0$
27	$\begin{aligned} & 011 \\ & 101 \end{aligned}$	$\alpha^{\prime \prime} x+\frac{\eta}{\beta^{\prime \prime}}+\gamma^{\prime \prime} z=0$,
37	$\begin{aligned} & 001 \\ & 111 \end{aligned}$	$\alpha^{\prime \prime} x+\beta^{\prime \prime} y+\frac{\zeta}{\gamma^{\prime \prime}}=0$
67	$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\frac{x}{1-\beta \gamma}+\frac{y}{1-\gamma^{\alpha}}+\frac{z}{1-\alpha \beta}=0$
57	$\begin{aligned} & 110 \\ & 011 \end{aligned}$	$\frac{x}{1-\beta^{\prime} \gamma^{\prime}}+\frac{y}{1-\gamma^{\prime} \alpha^{\prime}}+\frac{z}{1-\alpha^{\prime} \beta^{\prime}}=0$
56	$\begin{aligned} & 010 \\ & 111 \end{aligned}$	$\frac{x}{1-\beta^{\prime \prime} \gamma^{\prime \prime}}+\frac{y}{1-\gamma^{\prime \prime} \alpha^{\prime \prime}}+\frac{z}{1-\alpha^{\prime \prime} \beta^{\prime \prime}}=0,$
45	$\begin{aligned} & 001 \\ & 001 \end{aligned}$	$\frac{\xi}{\alpha(1-\beta \gamma)}+\frac{\eta}{\beta(1-\gamma \alpha)}+\frac{\zeta}{\gamma(1-\alpha \beta)}=0$
46	$\begin{aligned} & 011 \\ & 110 \end{aligned}$	$\frac{\xi}{\alpha^{\prime}\left(1-\beta^{\prime} \gamma^{\prime}\right)}+\frac{\eta}{\beta^{\prime}\left(1-\gamma^{\prime} \alpha^{\prime}\right)}+\frac{\zeta}{\gamma^{\prime}\left(1-\alpha^{\prime} \beta^{\prime}\right)}=0$
47	$\begin{aligned} & 111 \\ & 010 \end{aligned}$	$\frac{\xi}{\alpha^{\prime \prime}\left(1-\beta^{\prime \prime} \gamma^{\prime \prime}\right)}+\frac{\eta}{\beta^{\prime \prime}\left(1-\gamma^{\prime \prime} \alpha^{\prime \prime}\right)}+\frac{\zeta}{\gamma^{\prime \prime}\left(1-\alpha^{\prime \prime} \beta^{\prime \prime}\right)}=0 .$

The whole number of ways in which the equation of the curve can be expressed in a form such as $\sqrt{ }(x \xi)+\sqrt{ }(y \eta)+\sqrt{ }(z \zeta)=0$ is 1260 ; viz. the three pairs of bitangents entering into the equation of the curve are of one of the types

12.34,	13.24,	14.23	\boxed{N}	No. is 70	
12.34,	13.24,	56.78	$\square\|\mid$	"	630
13.23,	14.24,	15.25	\Leftrightarrow	$"$	$\frac{560}{}$
				1260.	

It may be remarked that, selecting at pleasure any two pairs out of a system of .three pairs, the type is always \square or $|||\mid$, viz. (see p. 233) the four bitangents are such that their points of contact are situate on a conic.

