754.

ON THE CONNEXION OF CERTAIN FORMULÆ IN ELLIPTIC FUNCTIONS.

[From the Messenger of Mathematics, vol. Ix. (1880), pp. 23-25.]
In reference to a like question in the theory of the double 9 -functions, it is interesting to show that (if not completely, at least very nearly) the single formula

$$
\Pi(u, a)=u \frac{\Theta^{\prime} a}{\Theta a}+\frac{1}{2} \log \frac{\Theta(u-a)}{\Theta(u+a)},
$$

that is,

$$
\int_{0} \frac{k^{2} \operatorname{sn} a \operatorname{cn} a \operatorname{dn} a \operatorname{sn}^{2} u d u}{1-k^{2} \operatorname{sn}^{2} a \operatorname{sn}^{2} u}=u \frac{\Theta^{\prime} a}{\Theta a}+\frac{1}{2} \log \frac{\Theta(u-a)}{\Theta(u+a)},
$$

leads not only to the relation

$$
\log \Theta u=\frac{1}{2} \log \frac{2 k^{\prime} K}{\pi}+\frac{1}{2}\left(1-\frac{E}{K}\right) u^{2}-k^{2} \int_{0} d u \int_{0} d u \operatorname{sn}^{2} u
$$

between the functions Θ, sn, but also to the addition-equation for the function sn .
Writing in the equation a indefinitely small, and assuming only that $\operatorname{sn} a, \operatorname{cn} a$, $\operatorname{dn} a$ then become $a, 1,1$, respectively, the equation is

$$
\begin{aligned}
b^{2} a \int_{0} \operatorname{sn}^{2} u d u & =u \frac{a \Theta^{\prime \prime} 0}{\Theta 0}+\frac{1}{2} \log \frac{\Theta u-a \Theta^{\prime} u}{\Theta u+a \Theta^{\prime} u}, \\
& =u a \frac{\Theta^{\prime \prime} 0}{\Theta 0}-a \frac{\Theta^{\prime} u}{\Theta u},
\end{aligned}
$$

that is,

$$
\frac{\Theta^{\prime} u}{\Theta u}=u \frac{\Theta^{\prime \prime} 0}{\Theta 0}-k^{2} \int_{0} d u \mathrm{sn}^{2} u,
$$

or, integrating from $u=0$, this is

$$
\log \Theta u=C+\frac{1}{2} u^{\frac{\Theta}{}} \frac{\Theta^{\prime \prime} 0}{\Theta 0}-k^{2} \int_{0} d u \int_{0} d u \operatorname{sn}^{2} u
$$

which, except as regards the determination of the constants, is the required equation for $\log \Theta u$.

Next, differentiating twice the equation for $\Pi(u, a)$, and once the equation obtained for $\frac{\Theta^{\prime} u}{\Theta u}$, we have

$$
k^{2} \operatorname{sn} a \operatorname{cn} a \operatorname{dn} a \frac{d}{d u}\left(\frac{\operatorname{sn}^{2} u}{1-k^{2} \operatorname{sn}^{2} a \operatorname{sn}^{2} u}\right)=\frac{1}{2} \frac{\Theta^{\prime \prime} \Theta-\Theta^{\prime 2}}{\Theta^{2}}(u-a)-\frac{1}{2} \frac{\Theta^{\prime \prime} \Theta-\Theta^{\prime 2}}{\Theta^{2}}(u+a),
$$

and

$$
\frac{\Theta^{\prime \prime} \Theta-\Theta^{\prime 2}}{\Theta^{2}} u=\frac{\Theta^{\prime \prime} 0}{\Theta 0}-k^{2} \operatorname{sn}^{2} u,
$$

where, for shortness, $\frac{\Theta^{\prime \prime} \Theta-\Theta^{\prime 2}}{\Theta^{2}} u$ is written to denote $\frac{\Theta^{\prime \prime} u \Theta u-\left(\Theta^{\prime} u\right)^{2}}{\Theta^{2} u}$, and the like in the first equation; the right-hand side of the first equation therefore is

$$
-\frac{1}{2} k^{2}\left\{\mathrm{sn}^{2}(u-a)-\mathrm{sn}^{2}(u+a)\right\},
$$

or the equation becomes

$$
2 \operatorname{sn} a \operatorname{cn} a \operatorname{dn} a \frac{d}{d u} \frac{\operatorname{sn}^{2} u}{1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} a}=\operatorname{sn}^{2}(u+a)-\operatorname{sn}^{2}(u-a),
$$

that is,

$$
\frac{4 \operatorname{sn} u \operatorname{sn}^{\prime} u \operatorname{sn} a \operatorname{cn} a \operatorname{dn} a}{\left(1-k^{2} \operatorname{sn}^{2} u \operatorname{sn}^{2} a\right)^{2}}=\operatorname{sn}^{2}(u+a)-\operatorname{sn}^{2}(u-a) .
$$

The numerator on the left-hand side must be a symmetrical function of u, a, and hence (even if the value of $\operatorname{sn}^{\prime} u$ were unknown) it would appear that $\operatorname{sn}^{\prime} u$ must be a mere constant multiple of $\mathrm{cn} u \mathrm{dn} u$; assuming, however, the actual value, $\operatorname{sn}^{\prime} u=\operatorname{cn} u \operatorname{dn} u$, the formula is

$$
\begin{aligned}
& \frac{4 \operatorname{sn} u \operatorname{cn} u \operatorname{dn} u \operatorname{sn} a \operatorname{cn} a \operatorname{dn} a}{\left(1-k^{2} \mathrm{sn}^{2} u \mathrm{sn}^{2} a\right)^{2}} \\
& \quad=\operatorname{sn}^{2}(u+a)-\operatorname{sn}^{2}(u-a) \\
& \quad=\{\operatorname{sn}(u+a)+\operatorname{sn}(u-a)\}\{\operatorname{sn}(u+a)-\operatorname{sn}(u-a)\} .
\end{aligned}
$$

The factor $\{\mathrm{sn}(u+a)+\mathrm{sn}(u-a)\}$ becomes $=2 \mathrm{sn} u$ for $a=0$, and this suggests that the factor $\operatorname{sn} u$ on the left-hand side is a factor of $\{\operatorname{sn}(u+a)+\operatorname{sn}(u-a)\}$. That cn u is not a factor hereof would follow from the properties of the period K; viz. for $u=K$, cn $u=0$, but $\{\operatorname{sn}(u+a)+\operatorname{sn}(u-a)\},=2 \operatorname{sn}(K+a)$ is not $=0$; and, similarly, that $\mathrm{dn} u$ is not a factor from the properties of the period $i K$; hence, cn u, dn u belong to the other factor $\{\operatorname{sn}(u+a)-\operatorname{sn}(u-a)\}$, and by symmetry $\operatorname{cn} a$, $\mathrm{dn} a$ belong to the first-mentioned factor. And we are thus led to assume

$$
\begin{aligned}
& \operatorname{sn}(u+a)+\operatorname{sn}(u-a)=2 M \operatorname{sn} u \operatorname{cn} a \operatorname{dn} a, \\
& \operatorname{sn}(u+a)-\operatorname{sn}(u-a)=2 M^{\prime} \operatorname{sn} a \operatorname{cn} u \operatorname{dn} u,
\end{aligned}
$$

where

$$
\text { denom. }=1-k^{2} \mathrm{sn}^{2} a \operatorname{sn}^{2} u \text {, }
$$

and $M M^{\prime}=1$. Some further investigation is wanting to show that M and M^{\prime} are constants, but assuming that they are so and each $=1$, the formulæ give at once the ordinary expression for $\operatorname{sn}(u+a)$; that is, we have the addition-equation for the function sn .

