758.

SOLUTION OF A SENATE-HOUSE PROBLEM.

[From the Messenger of Mathematics, vol. xI. (1882), pp. 23-25.]
Prove that, if $a+b+c=0$ and $x+y+z=0$, then

$$
\begin{aligned}
& 4(a x+b y+c z)^{3} \\
- & 3(a x+b y+c z)\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
- & 2(b-c)(c-a)(a-b)(y-z)(z-x)(x-y) \\
- & 54 a b c x y z=0 .
\end{aligned}
$$

I do not know the origin of this identity, nor do I see any very simple way of proving it: that which seems the most straightforward way is to transform the third line, which, omitting the factor -2 , is

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1, & 1, & 1 \\
a, & b, & c \\
a^{2}, & b^{2}, & c^{2}
\end{array}\right| \cdot\left|\begin{array}{ccc}
1, & 1, & 1 \\
x, & y, & z \\
x^{2}, & y^{2}, & z^{2}
\end{array}\right|, \\
& =\left|\begin{array}{cc}
3, & a+b+c, \\
a^{2}+b^{2}+c^{2} \\
x+y+z, & a x+b y+c z, \\
a^{2} x+b^{2} y+c^{2} z \\
x^{2}+y^{2}+z^{2}, & a x^{2}+b y^{2}+c z^{2}, \\
a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}
\end{array}\right| ;
\end{aligned}
$$

and therefore when $a+b+c=0$ and $x+y+z=0$, is

$$
\begin{aligned}
= & 3(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
& -3\left(a^{2} x+b^{2} y+c^{2} z\right)\left(a x^{2}+b y^{2}+c z^{2}\right) \\
& -(a x+b y+c z)\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)
\end{aligned}
$$

c. XI.
or, as this may be written,

$$
\begin{aligned}
= & 6(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
& -(a x+b y+c z)\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
& -3(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
& -3\left(a^{2} x+b^{2} y+c^{2} z\right)\left(a x^{2}+b y^{2}+c z^{2}\right)
\end{aligned}
$$

Here the third and fourth lines, omitting the factor -3 , are

$$
2\left(a^{3} x^{3}+b^{3} y^{3}+c^{3} z^{3}\right)+\left(a b^{2}+a^{2} b\right)\left(x y^{2}+x^{2} y\right)+\left(a c^{2}+a^{2} c\right)\left(x z^{2}+x^{2} z\right)+\left(b c^{2}+b^{2} c\right)\left(y z^{2}+y^{2} z\right)
$$

where, in virtue of the two relations, each of the last three product-terms is $=a b c x y z$, and the whole is thus

$$
\begin{aligned}
= & 2\left(a^{3} x^{3}+b^{8} y^{3}+c^{3} z^{3}\right) \\
& +3 a b c x y z .
\end{aligned}
$$

The product of the two determinants is thus

$$
\begin{aligned}
= & 6(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
& -(a x+b y+c z)\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
& -6\left(a^{3} x^{3}+b^{3} y^{3}+c^{3} z^{3}\right) \\
& -9 a b c x y z
\end{aligned}
$$

and this being so the identity to be verified is

$$
\begin{aligned}
& 4(a x+b y+c z)^{3} \\
+(-3+2=) & -1(a x+b y+c z)\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
- & 12(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
+ & 12\left(a^{3} x^{3}+b^{3} y^{3}+c^{3} z^{3}\right) \\
+(18-54=) & -36 a b c x y z \quad=0 .
\end{aligned}
$$

We have here the terms

$$
\begin{aligned}
& 12\left(a^{3} x^{3}+b^{3} y^{3}+c^{3} z^{3}-3 a b c x y z\right), \\
= & 12(a x+b y+c z)\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-b c y z-c a z x-a b x y\right),
\end{aligned}
$$

so that the left-hand side is now divisible by $a x+b y+c z$, and throwing out this factor the equation becomes

$$
\begin{aligned}
& 4(a x+b y+c z)^{2} \\
- & \left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
- & 12\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}\right) \\
+ & 12\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-b c y z-c a z x-a b x y\right)=0 ;
\end{aligned}
$$

or, as this may be written,

$$
\begin{aligned}
& 4\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-b c y z-c a z x-a b x y\right) \\
- & \left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right)=0,
\end{aligned}
$$

which under the assumed relations $a+b+c=0, x+y+z=0$ may be verified without difficulty. It may be remarked that we have identically

$$
\begin{gathered}
8\left(a^{2} x^{2}+b^{2} y^{2}+c^{2} z^{2}-b c y z-c a z x-a b x y\right) \\
-2\left(a^{2}+b^{2}+c^{2}\right)\left(x^{2}+y^{2}+z^{2}\right) \\
=(x+y+z)\left\{\begin{array}{r}
x\left(3 a^{2}-b^{2}-c^{2}+2 b c-2 c a-2 a b\right) \\
+y\left(-a^{2}+3 b^{2}-c^{2}-2 b c+2 c a-2 a b\right) \\
+z\left(-a^{2}-b^{2}+3 c^{2}-2 b c-2 c a+2 a b\right)
\end{array}\right\} \\
+(a+b+c)\left\{\begin{array}{r}
a\left(3 x^{2}-y^{2}-z^{2}+2 y z-2 z x-2 x y\right) \\
+b\left(-x^{2}+3 y^{2}-z^{2}-2 y z+2 z x-2 x y\right) \\
+c\left(-x^{2}-y^{2}+3 z^{2}-2 y z-2 z x+2 x y\right)
\end{array}\right\},
\end{gathered}
$$

which is a more complete form of the last-mentioned theorem.

