760.

REDUCTION OF $\int \frac{d x}{\left(1-x^{3}\right)^{3}}$ TO ELLIPTIC INTEGRALS.

[From the Messenger of Mathematics, vol. xi. (1882), pp. 142, 143.]
Writing s, c, d for the sn , cn , and dn of u to a modulus k, which will be determined, and denoting by θ a constant which will also be determined, the formula of reduction is

$$
x=\frac{-1+\theta s c d}{1+\theta s c d} .
$$

To find from this the value of $y,=\sqrt[3]{ }\left(1-x^{3}\right)$, putting for shortness $X=\theta s c d$, the formula is $x=\frac{-1+X}{1+X}$, and we thence have
where

$$
y^{3},=1-x^{3},=\frac{2\left(1+3 X^{2}\right)}{(1+X)^{3}}
$$

$$
\begin{aligned}
1+3 X^{2} & =1+3 \theta^{2} s^{2}\left(1-s^{2}\right)\left(1-k^{2} s^{2}\right) \\
& =1+3 \theta^{2} s^{2}-3 \theta^{2}\left(1+k^{2}\right) s^{4}+3 \theta^{2} k^{2} s^{6},
\end{aligned}
$$

may be put equal to $\left(1+\theta^{2} s^{2}\right)^{3}$, that is,

$$
=1+3 \theta^{2} s^{2}+3 \theta^{4} s^{4} \quad+\theta^{6} s^{6} ;
$$

viz. this will be the case if

$$
3 \theta^{4}=-3 \theta^{2}\left(1+k^{2}\right), \quad \theta^{6}=3 \theta^{2} k^{2} ;
$$

that is,

$$
\theta^{2}=-1-k^{2}, \quad \theta^{4}=3 k^{2} ;
$$

these give

$$
k^{4}-k^{2}+1=0 ;
$$

that is, $k^{2}=\omega$, if $\omega=-\frac{1}{2}+\frac{1}{2} i \sqrt{ } 3$, an imaginary cube root of unity; and then

$$
\theta^{2}=-1+\omega, \quad=\omega^{2}\left(\omega^{2}-\omega\right), \quad=-i \omega^{2} \sqrt{ } 3 ;
$$

that is,

$$
\theta= \pm \frac{(1-\sqrt{ } 3)-i(1+\sqrt{ } 3)}{2 \sqrt{ } 2} \sqrt[4]{ } 3
$$

as may be verified by squaring.
Hence finally, θ and k denoting the values just obtained,

$$
\begin{gathered}
x=\frac{-1+\theta s c d}{1+\theta s c d}, \\
y=\sqrt[3]{\left(1-x^{s}\right)}=\frac{\sqrt[3]{2\left(1+\theta^{2} s^{2}\right)}}{1+\theta s c d} ;
\end{gathered}
$$

or, writing as before, $X=\theta s c d$, we have
whence

$$
d x=\frac{2 d X}{(1+X)^{2}}, \quad y^{2}=\frac{2^{\frac{2}{s}}\left(1+\theta^{2} s^{2}\right)^{2}}{(1+X)^{2}} ;
$$

$$
\frac{d x}{\left(1-x^{3}\right)^{\frac{2}{3}}},=\frac{d x}{y^{2}},=\frac{2^{\frac{1}{3}} d X}{\left(1+\theta^{2} s^{2}\right)^{2}},
$$

and then

$$
d X=\theta\left\{1-2\left(1+k^{2}\right) s^{2}+3 k^{2} s^{4}\right\} d u, \quad=\theta\left(1+\theta^{2} s^{2}\right)^{2} d u ;
$$

that is,

$$
\frac{d x}{\left(1-x^{3}\right)^{\frac{2}{2}}}=2^{\frac{1}{3}} \theta \cdot d u
$$

or say

$$
\int \frac{d x}{\left(1-x^{3}\right)^{\frac{2}{3}}}=2^{\frac{1}{3}} \theta u
$$

the required formula.

