763.

ON THE THEOREMS OF THE 2, 4, 8, AND 16 SQUARES.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. XVII. (1881), pp. 258-276.]

A SUM of 2 squares multiplied by a sum of 2 squares is a sum of 2 squares; a sum of 4 squares multiplied by a sum of 4 squares is a sum of 4 squares; a sum of 8 squares multiplied by a sum of 8 squares is a sum of 8 squares; but a sum of 16 squares multiplied by a sum of 16 squares is not a sum of 16 squares. These theorems were considered in the paper, Young, "On an extension of a theorem of Euler, with a determination of the limit beyond which it fails," Trans. R. I. A., t. XXI. (1848), pp. 311-341; and the later history of the question is given in the paper by Mr S. Roberts, "On the Impossibility of the general Extension of Euler's Theorem &c.," Quart. Math. Jour. t. XVI. (1879), pp. 159-170; as regards the 16-question, it has been throughout assumed that there is only one type of synthematic arrangement (what this means will appear presently); but as regards this type, it is, I think, well shown that the signs cannot be determined. It will appear in the sequel, that there are in fact four types (the last three of them possibly equivalent) of synthematic arrangement; and for a complete proof, it is necessary to show in regard to each of these types that the signs cannot be determined. The existence of the four types has not (so far as I am aware) been hitherto noticed; and it hence follows, that no complete proof of the non-existence of the 16-square theorem has hitherto been given.

For the 2 squares the theorem is of course

 $(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1y_1 + x_2y_2)^2 + (x_1y_2 - x_2y_1)^2.$

For the 4 squares (for which the nature of the theorem is better seen) it is

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 + x_4^2) \left(y_1^2 + y_2^2 + y_3^2 + y_4^2 \right) &= & (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)^2 \\ &+ (x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3)^2 \\ &+ (x_1y_3 - x_3y_1 - x_2y_4 + x_4y_2)^2 \\ &+ (x_1y_4 - x_4y_1 + x_3y_3 - x_3y_3)^2 \end{aligned}$$

or, as this may be written,

$$\begin{aligned} x_1^2 + x_2^2 + x_3^2 + x_4^2) \left(y_1^2 + y_2^2 + y_3^2 + y_4^2 \right) &- (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)^2 \\ &= (12 + 34)^2 \\ &+ (13 - 24)^2 \\ &+ (14 + 23)^2; \end{aligned}$$

where 12 is used to denote $x_1y_2 - x_2y_1$, &c., and the truth of the theorem depends on the identity 12.34 - 13.24 + 14.23 = 0. Clearly, the first step for forming the equation is to arrange the duads in a synthematic form

> 12.34 13.24 14.23,

and then to determine the signs: such an arrangement exists in the case of 8, and the signs can be determined; it exists also in the case of 16, but the signs *cannot* be determined to satisfy all the necessary relations.

In the case of 8, we have the synthematic arrangement

12.34.56.78 13.24.57.68 14.23.58.67 15.26.37.48 16.25.38.47 17.28.35.46 18.27.36.45,

being the only type of synthematic arrangement. This is, in fact, important as regards the 16-question, and it will appear that the case is so; but in the 8-question, starting from this arrangement, we have to show that there exists an equation which, for convenience, I write as follows:

$$\begin{aligned} (x_1^2 + \ldots + x_8^2) & (y_1^2 + \ldots + y_8^2) - (x_1y_1 + \ldots + x_8y_8)^2 \\ &= (12 + 34 + 56 + 78)^2 \\ &+ (13 + 24 + 57 + 68)^2 \\ &+ (14 + 23 + 58 + 67)^2 \\ &+ (15 + 26 + 37 + 48)^2 \\ &+ (16 + 25 + 38 + 47)^2 \\ &+ (17 + 28 + 35 + 46)^2 \\ &+ (18 + 27 + 36 + 45)^2, \end{aligned}$$

296

but in which it is to be understood that each duad is affected by a factor ± 1 which is to be determined; say the factor of 12 is ϵ_{12} , that of 34, ϵ_{34} ; and so in other cases. It is however assumed that ϵ_{12} , ϵ_{34} , ϵ_{56} , ϵ_{78} ; ϵ_{13} , ϵ_{14} , ϵ_{15} , ϵ_{16} , ϵ_{17} , ϵ_{18} are each = +1.

We have then on the right-hand side triads of terms such as, 2 into

$$\epsilon_{12}\epsilon_{34}$$
 12.34 + $\epsilon_{13}\epsilon_{24}$ 13.24 + $\epsilon_{14}\epsilon_{23}$ 14.23,

which triad ought to vanish identically, as reducing itself to a multiple of

12.34 - 13.24 + 14.23;

viz. we ought to have

$$\epsilon_{12}\epsilon_{34} = - \epsilon_{13}\epsilon_{24} = \epsilon_{14}\epsilon_{23};$$

or, using now and henceforward when occasion requires, 12, 34, &c. to denote ϵ_{12} , ϵ_{34} , &c. respectively, we have

 $12 \cdot 34 = +k,$ $13 \cdot 24 = -k,$ $14 \cdot 23 = +k,$

where $k_1 = \pm 1$, has to be determined (in the actual case we have 12 = +1, 34 = +1, 13 = 1, 14 = 1; and therefore the first equation gives k = 1, and the other two then give 24 = -1, 23 = +1).

We have in this way triads of values corresponding to the different tetrads

which can be formed with the several lines of the formula. Thus we have from the first line 1234, 1256, 1278; then from the second line (not 1324 which in the form 1234 has been taken already) 1357, 1368, ...; and finally from the last line 5678.

We might consider each line as giving 6 tetrads, but the tetrads would then be obtained 3 times over; the number of tetrads is thus $6 \times 7 \div 3$, =14 as above. And observe, that the systems of values for the coefficients $\epsilon = \pm 1$ are obtained directly from the tetrads, without the employment of any other formula.

We thus obtain the system of signs as follows:

12	+1	
13	+1	
14	+1	
15	+1	
16	+1	
17	+1	
18	+1	
23	+1	
24	-1	
25	+1	
26	-1	
27	+1	
28	-1	
34	+1	
35	a	- 6
36	Ъ	6
37	-a	6
38	- b	- 6
45	с	6
46	d	6
47	-d	- 6
48	- c	- 6
56	+1	
57	a	- 6
58	С	6
67	d	6
68	Ь	6
78	+1	ndi-

viz. the original assumptions 12 = +1, &c., and the tetrads 1234, 1256, 1278 give all the signs ± 1 up to 34 = +1; from the tetrad 1357 we have

that is, 35 = a, 37 = -a, 57 = a, where a, $= \pm 1$, is still undetermined; and similarly, the tetrads 1368, 1458, 1467 give the remaining signs b, c, d. The tetrad 2358 then gives

23.58 + 1 c, 25.38 - 1 - b,28.35 + -1 a,

that is, -a = b = c; and similarly the tetrads 2367, 2457, 2468 give -a = b = d, -a = c = d, b = c = d respectively; the four tetrads thus give -a = b = c = d, say each of these $= \theta$. But retaining for the moment a, b, c, d, the tetrad 3456 then gives

that is, 1 = -ad = bc, and similarly the last two tetrads 3478 and 5678 give 1 = -ac = bd and 1 = -ab = cd respectively; substituting the values in terms of θ , the several equations give only $\theta^2 = 1$, that is, $\theta = \pm 1$ at pleasure; and the series of signs for the 8-formula, containing this one arbitrary sign $\theta = \pm 1$, is thus determined.

Passing to the case of 16, we have in like manner to form a synthematic arrangement of the numbers 1, 2, ..., 16 in 15 lines, each containing the 16 numbers in 8 duads (no duad twice repeated), and this containing all the 120 duads. And, using for the moment letters instead of numbers, the necessary condition is, that ab.cd occurring in one line, ac.bd must occur in another line, and ad.bc in a third line. Observe that as well the order of the letters in a duad as the order of the duads is thus far immaterial; so that a line containing bd.ca may be considered as containing ac.bd.

Considering any such combination ab.cd, the line which contains it may be taken to be the first line; and the line which contains ac.bd may be taken to be the second line. And then writing 1, 2, 3, 4 in place of a, b, c, d respectively, the first line will contain 12.34, and the second line will contain 13.24. Let e be any other symbol occurring in the first line, say in the duad ef, and in the second line say in the duad eg; then g must occur in the first line in some duad gh, or the first line will contain ef.gh, and then the second line as containing eg will contain

also fh, that is, it will contain eg.fh. And then writing 5, 6, 7, 8 in place of e, f, g, h respectively, the first line will contain 56.78 and the second line will contain 57.68. And continuing the like reasoning, it appears that the first line and the second line may be taken to be

and

1 2.34.56.78.910.11 12.13 14.15 16,

1 3. 2 4. 5 7. 6 8. 9 11. 10 12. 13 15. 14 16,

respectively. There will then be a line containing 1 4 which may be taken for the third line, a line containing 1 5 which may be taken for the fourth line, and so on; viz. the successive lines may be taken to begin with 1 2, 1 3, 1 4, ..., 1 16 respectively.

Proceeding to form the synthematic arrangement, and starting with the first and second lines and first column as above, it appears that in each of the remaining lines there are three duads which occur of necessity, and putting these in the second, third, and fourth places (the order of the duads in any line being immaterial), it is seen that the second, third, and fourth columns can be filled up in one, and only one way; see the annexed first-half:

1	2	3	4	5	6	7	8
1	3	2	4	5	7	6	8
1	4	2	3	5	8	6	7
1	5	2	6	3	7	4	8
1	6	2	5	3	8	4	7
1	7	2	8	3	5	4	6
1	8	2	7	3	6	4	5
1	9	2	10	3	11	4	12
1	10	2	9	3	12	4	11
1	11	2	12	3	9	4	10
1	12	2	11	3	10	4	9
1	13	2	14	3	15	4	16
1	14	2	13	3	16	4	15
1	15	2	16	3	13	4	14
1	16	2	15	3	14	4	13

First-half common to all.

38 - 2

Four forms of second-half.

mil	datt	I.	Sen di s
11	12	13	14
10	12	13	15
10	11	13	16
10	14	11	15

Ī	-			10	10			7.0
	9	10	11	12	13	14	15	16
	9	11	10	12	13	15	14,	16
	9	12	10	11	13	16	14	15
	9	14	10	13	11	16	12	15
	9	13	10	14	11	15	12	16
	9	16	10	15	11	14	12	13
	9	15	10	16	11	13	12	14
	5	14	6	13	7	16	8	15
	5	13	6	14	7	15	8	16
	5	16	6	15	7	14	8	13
	5	15	6	16	7	13	8	14
	5	10	6	9	7	12	8	11
	5	9	6	10	7	11	8	12
	5	12	6	11	7	10	8	9
	5	11	6	12	7	9	8	10
							1. 1. 1. 1.	

II.

III.

-		
т	\mathbf{T}	
	V	

9	10	11	12	13	14	15	16		9	10	11	12	13	14	15	16
9	11	10	12	13	15	14	16		9	11	10	12	13	15	14	16
9	12	10	11	13	16	14	15		9	12	10	11	13	16	14	15
9	15	10	16	11	13	12	14		9	16	10	15	11	14	12	13
9	16	10	15	11	14	12	13	1	9	15	10	16	11	13	12	14
9	13	10	14	11	15	12	16	19 11 1	9	14	10	13	11	16	12	15
9	14	10	13	11	16	12	15	28	.9	13	10	14	11	15	12	16
5	15	6	16	7	13	8	14		5	16	6	15	7	14	8	13
5	16	6	15	7	14	8	13		5	15	6	16	7	13	8	14
5	13	6	14	7	15	8	16		5	14	6	13	7	16	8	15
5	14	6	13	7	16	8	15		5	13	6	14	7	15	8	16
5	11	6	12	7	9	8	10	1. 1.	5	12	6	11	7	10	8	9
5	12	6	11	7	10	8	9	7	5	11	6	12	7	9	8	10
5	9	6	10	7	11	8	12		5	10	6	9	7	12	8	11
5	10	6	9	7	12	8	11	1	5	9	6	10	7	11	8	12
									12					-		

And it is to be noticed that in this first-half the upper part, or first seven lines, give in fact the synthematic arrangement for the 8-question; so that (as remarked above) in this 8-question there is but one form of synthematic arrangement.

Proceeding to fill up the remaining columns, the duad 59 cannot be placed in any line which contains a 5 or a 9; that is, it must be placed in some one of the

last 4 lines; and placing it successively in each of these, it appears that the columns can be filled up in one, and only one, way; we have thus the above "four forms of second-half," each of which, taken in conjunction with the common first-half, gives a synthematic arrangement of the 16 numbers.

Each of these synthematic arrangements may be converted into a square, the first line of which is formed with the numbers 1 to 16 in order, and the other fifteen lines of which are derived from the fifteen lines of the synthematic arrangement respectively: thus the line

1 2. 3 4. 5 6. 7 8. 9 10. 11 12. 13 14. 15 16

gives the second line of

1 2. 3 4. 5 6. 7 8. 9 10. 11 12. 13 14. 15 16, 2 1. 4 3. 6 5. 8 7. 10 9. 12 11. 14 13. 16 15,

and so in other cases. And conversely, by comparing with the first line of the square each of the other fifteen lines respectively, we have the fifteen lines of the synthematic arrangement; we thus obtain the four squares presently given. These squares are not required in the sequel, but they serve to put in a clearer light the construction of the synthematic arrangements; by converting in like manner into a square the formula p. 332 of Young's paper, it appears that his arrangement is in fact the first of the foregoing four arrangements. The squares are

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
3	4	1	2	7	8	5	6	11	12	9	10	15	16	13	14
4	3	2	1	8	7	6	5	12	11	10	9	16	15	14	13
5	6	7	8	1	2	3	4	13	14	15	16	9	10	11	12
6	5	8	7	2	1	4	3	14	13	16	15	10	9	12	11
7	8	5	6	3	4	1	2	15	16	13	14	11	12	9	10
. 8	7	6	5	4	3	2	1	16	15	14	13	12	11	10	9
9	10	11	12	13	14	15	16	1	2	3	4	5	6	7	8
10	9	12	11	14	13	16	15	2	1	4	3	6	5	8	7
11	12	9	10	15	16	13	14	3	4	1	2	7	8	5	6
12	11	10	9	16	15	14	13	4	3	2	1	8	7	6	5
13	14	15	16	9	10	11	12	5	6	7	8	1	2	3	4
14	13	16	15	10	9	12	11	6	5	8	7	2	1	4	3
15	16	13	14	11	12	9	10	7	8	5	6	3	4	1	2
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

I.

1000			ARCE	1.1.2			_	in the second	the second second	13.147					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	3	6	5	8	7	.10	9	12	11	14	13	16	15
3	4	1	2	7	8	5	6	11	12	9	10	15	16	13	14
4	3	2	1	8	7	6	5	12	11	10	9	16	15	14	13
5	6	7	8	1	2	3	4	14	13	16	15	10	9	12	11
6	5	8	7	2	1	4	3	13	14	15	16	9	10	11	12
7	8	5	6	3	4	1.	2	16	15	14	13	12	11	10	9
8	7	6	5	4	3	2	1	15	16	13	14	11	12	9	10
9	10	. 11	12	14	13	16	15	1	2	3	4	6	5	8	7
10	9	12	11	13	14	15	16	2	1	4	3	5	6	7	8
11	12	9	10	16	15	14	13	3	4	1	2	8	7	6	5
12	11	10	9	15	16	13	14	4	3	2	1	7	8	5	6
13	14	15	16	10	9	12	11	6	5	8	7	1	2	3	4
14	13	16	15	9	10	11	12	5	6	7	8	2	1	4	. 3
15	16	13	14	12	11	10	9	8	7	6	5	3	4	1	2
16	15	14	13	11	12	9	10	7	8	5	6	4	3	2	1
							II	I.				14.3.8			

										-					
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
3	4	1	2	7	8	5	6	11	12	9	10	15	16	13	14
4	3	2	1	8	7	6	5	12	11	10	9	16	15	14	13
5	6	7	8	1	2	3	4	15	16	13	14	11	12	9	10
6	5	8	7	2	1	4	3	16	15	14	13	12	11	10	9
7	8	5	6	3	4	1	2	13	14	15	16	9	10	11	12
8	7	6	5	4	3	2	1	14	13	16	15	10	9	12	11
9	10	11	12	15	16	13	14	1	2	3	4	7	8	5	6
10	9	12	11	16	15	14	13	2	1	4	3	8	7	6	5
11	12	9	10	13	14	15	16	3	4	1	2	5	6	7	8
12	11	10	9	14	13	16	15	4	3	2	1	6	5	8	7
13	14	15	16	11	12	9	10	.7	8	5	6	1	2	3	4
14	13	16	15	12	11	10	.9	8	7	6	5	2	1	4	3
15	16	13	14	9	10	11	12	5	6	7	8	3	4	1	2
16	15	14	13	10	9	12	11	6	5	8	7	4	3	2	1

[763

т	T 7	
	V	
-		•

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
2	1	4	3	6	5	8	7	10	9	12	11	14	13	16	15
3	4	1	2	7	8	5	6	11	12	9	10	15	16	13	14
4	3	2	1	8	7	6	5	12	11	10	9	16	15	14	13
5	6	7	8	1	2	3	4	16	15	14	13	12	11	10	9
6	5	8	7	2	1	4	3	15	16	13	14	11	12	9	10
7	8	5	6	3	4	1	2	14	13	16	15	10	9	12	11
8	7	6	5	4	3	2	1	13	14	15	16	9	10	11	12
.9	10	11	12	16	15	14	13	1	2	3	4	8	7	6	5
10	9	12	11	15	16	13	14	2	1	4	3	7	8	5	6
11	12	9	10	14	13	16	15	3	4	1	2	6	5	8	7
12	11	10	9	13	14	15	16	4	3	2	1	5	6	7	8
13	14	15	16	12	11	10	9	8	7	6	5	1	2	3	4
14	13	16	15	11	12	9	10	7	8	5	6	2	1	4	3
15	16	13	14	10	9	12	11	6	5	8	7	3	4	1	2
16	15	14	13	9	10	11	12	5	6	7	8	4	3	2	1

The foregoing investigation of the synthematic arrangements is exhaustive: it thereby appears that there are at most four types, viz. that every synthematic arrangement is of the type of one or other of the four arrangements above written down. The real nature of these is perhaps more clearly seen by means of the corresponding squares; and it will be observed, that there is in the first square a repetition of parts without transposition, which does not occur in the other three squares; this seems to suggest, that while the first square (and therefore the first synthematic arrangement) is really of a distinct type, the other three squares (or synthematic arrangements) may possibly belong to one and the same type. If this were so, it would be sufficient to prove the 16-theorem (viz. the non-existence of the 16-square formula) for the first and for any one of the other three synthematic arrangements; but I provisionally assume that the four types are really distinct, and propose therefore to prove the theorem for each of the four arrangements separately.

The process is the same as for the 8-theorem; we require the tetrads 1234, &c., contained in the synthematic arrangements. In any one of these, each line gives $\frac{1}{2}8.7$, =28 tetrads, and the 15 lines give therefore 15.28, =420 tetrads: but we thus obtain each tetrad 3 times, or the number of the tetrads is $420 \div 3$, =140.

For the four arrangements respectively, these are as follows: the word "same" means same as in column I.

www.rcin.org.pl

304

ON THE THEOREMS OF THE 2, 4, 8, AND 16 SQUARES.

	-	I.]	II.	-	11-	I	II.			I	v.	
1	2	3	4		sa	me			sa	me			sa	me	
		5	6					-							
		7 9	8									10-11			
		9	$\frac{10}{12}$					1							
		13	12	1											
		15	14	82								i.			
		19	10	115								-			
1	3	5	7	101								11			
		6	8	0 I								1.1			
		9	11					3				52			
		10	12	1											
		13	15												
		14	16					1							
								2							
1	4	5	8												
		6	7												
		9	12									No.			
		10	11												
		13	16												
		14	15												
120	-	-				10.10				10				-	
1	5	9	13	1	5	9	14	1	5	9	15	1	5	9	16
		10	14	TUR		10	13			10	16	10.14		10	15
		11	15			11	16			11	13	array.		11	14
		12	16			12	15	212		12	14			12	13
1	6	9	14	1	6	9	13	1	6	9	16	1	6	9	15
		10	13			10	14	16 1		10	15	1.1		10	16
		11	16			11	15	nola		11	14			11	13
		12	15			12	16	. oth		12	13			12	14
	-		1.	1		0	10		_						
1	7	9	15	1	7	9	16	1	7	9	13	1	7	9	14
		10	16			10	15	101		10	14	11		10	13
,		11	13			11	14			11	15			11	16
		12	14			12	13			12	16			12	15
1	8	9	16	1	8	9	15	1	8	9	14	1	8	9	13
		10	15			10	16	- stevile		10	13	topati		10	14
		11	14			11	13			11	16			11	15
		12	13			12	14	Lagin		12	15	aginid		12	16
												master			

www.rcin.org.pl

[763

		I.			-	II.				III.	-	33	I	v.	
2	3	5	8	1	Sa	ame		1.	SE	ame		1 ar	sa	me	8
		6	7	14				har?				26			
		9	12	81				1.5				2.1			
		10	11	2.5				87				01			
		13	16	1											
		14	15									2			
				-					1				IL		
2	4	5	7		Sa	me		10.1 -	sa	me		14.1	sa	me	
		6 9	8	3.4				1							
		9 10	$\frac{11}{12}$	33								1.5			
		13	12									ar			
		14	16					3				101			
		14	10			1									-
2	5	9	14	2	5	9	13	2	5	9	16	2	5	9	15
		10	13			10	14	art		10	15	16		10	16
		11	16			11	15	100		11	14	51		11	13
		12	15			12	16			12	13			12	14
	-					0	*		8	6	-	16	11	8	1
2	6	9	13	2	6	9	14	2	6	9	15	2	6	9	16
		10	14			10	13			10	16	-		10	15
		11	15			11	16			11	13			11	.14
		12	16			12	15	ar		12	14	a:		12	13
2	7	9	16	2	7	9	15	2	7	9	14		-	0	1.9
-	1	10	15	-		10	16	4	'	10	14	2	7	9	13
		11	14			11	13			10	16			10	14
		12	13			12	14			12	15	11		11	15
	01	1-	10	61	5	12		-	01	12	10	24	10	12	16
2	8	9	15	2	8	9	16	2	8	9	13	2	8	9	14
		10	16			10	15			10	14			10	13
		11	13			11	14			11	15	F2 .		11	16
		12	14			12	13			12	16			12	15
3	4	5	6	1	88	me			89	me				mo	
		7	8										sai	me	
		9	10									1			
		11	12												
		13	14					-							
		15	16									-			

C. XI.

ON THE THEOREMS OF THE 2, 4, 8, AND 16 SQUARES.

[763

		I.			I	T.		-	I	[].			IV		
3	5	9	15	3	5	9	16	3	5	9	13	3	5	9	14
		10	16			10	15			10	14			10	13
		11	13			11	14			11	15			11	16
		12	14			12	13			12	16			12	15
3	6	9	16	3	6	9	15	3	6	9	14	3	6	9	13
		10	15			10	16			10	13			10	14
		11	14			11	13			11	16			11	15
		12	13			12	14			12	15			12	16
3	7	9	13	3	7	9	14	3	7	9	15	3	7	9	16
		10	14			10	13	5		10	16	4.		10	15
		11	15	1		11	16			11	13			11	14
		12	16			12	15			12	14		1	12	13
3	8	9	14	3	8	9	13	3	8	9	16	3	8	9	15
		10	13			10	14	1		10	15	198.5		10	16
		11	16			11	15			11	14	1200		11	13
-		12	15			12	16			12	13			12	14
4	5	9	16	4	5	9	15	4	5	9	14	4	5	9	13
		10	15	-		10	16	1		10	13	23		10	14
		11	14	3.8		11	13			11	16			11	15
		12	13		11	12	14	inf 1		12	15	11	11	12	16
4	6	9	15	4	6	9	16	4	6	9	13	4	6	9	14
		10	16	-		10	15			10	14	-		10	13
		11	13	13		11	14			11	15			11	16
1	14	12	14	-		12	13	-		12	16			12	15
4	7	9	14	4	7	9	13	4	7	9	16	4	7	9	15
		10	13			10	14			10	15			10	16
		11	16			11	15			11	14			11	13
-		12	15			12	16	-		12	13	-	-	12	14
4	8	9	13	4	8	9	14	4	8	9	15	4	8	9	16
		10	14	al.		10	13	2			16			10	15
		11	15			11					13	and in the		11	14
		12	16		-	12	15		- 3110	12	14	2		12	13
5	6	7	8		sa	me			sai	ne			sa	me	
		9	10												
		11	12												
		13	14												
		15	16												
				1				1							

5 7 9 11 10 12 13 15 14 16 5 8 9 12 10 11 13 16 14 15 6 7 9 12 10 11 13 16 14 15 6 8 9 11 10 12 13 16 14 15 6 8 9 10 10 12 13 15 14 16 14 15 9 10 11 12 13 14 16 9 11 13 16 14 15 16 9 12 13 16 14 15 16 10 11 13 16 14 15 16 11 12 13 14			I.		II.	III.	IV.
13 15 14 16 5 8 9 12 10 11 13 16 14 15 6 7 9 12 10 11 13 16 14 15 6 8 9 11 10 12 13 16 14 15 6 8 9 10 12 13 14 15 16 9 10 11 13 14 15 16 9 10 11 14 16 10 11 13 14 16 11 12 13 14 16 11 12 13 11 12 13 12 13 14 14 16 15 16	5	7	9	11	same	same	same
14 16 5 8 9 12 10 11 13 16 14 15 16 14 6 7 9 12 10 11 13 16 14 15 16 14 6 8 9 11 10 12 13 15 14 16 11 12 13 14 16 7 8 9 10 11 12 13 14 15 16 14 9 10 11 12 13 14 15 10 11 13 16 11 13 16 11 12 13 14 10 12 13 14 11 12 13 14 12 13 14 14 16 14 11 12 13 14 <tr< td=""><td></td><td></td><td></td><td></td><td>man and the second</td><td>an node ban : e</td><td>much to the augie and</td></tr<>					man and the second	an node ban : e	much to the augie and
5 8 9 12 10 11 13 16 14 15 6 7 9 12 10 11 13 13 16 14 15 6 8 9 11 10 12 13 15 7 8 9 10 11 13 14 16 7 8 9 10 11 12 13 14 15 16 14 9 10 11 12 13 14 16 9 12 13 16 14 15 16 9 12 13 16 14 15 16 10 11 13 16 14 15 16 11 12 13 14 15 16 14 11 12 13 14							
10 11 13 16 14 15 6 7 9 12 10 11 13 16 14 15 6 8 9 10 12 13 16 14 16 7 8 9 11 12 13 14 15 16 9 10 11 13 14 15 16 9 10 11 13 14 15 16 9 12 13 14 16 9 12 13 14 16 14 15 10 11 13 14 16 11 12 13 14 16 11 12 13 14 16		2	14	16	L DI LUI (L+DI	· · · · · · · · · · · · · · · · · · ·	1+21
13 16 14 15 6 7 9 12 10 11 13 16 14 15 6 8 9 11 10 12 13 15 14 16 7 8 9 10 11 12 13 14 15 16 9 10 11 13 14 15 16 9 10 11 13 14 15 16 9 12 13 14 15 10 11 13 14 15 10 12 13 14 16 11 12 13 14 16 11 12 13 14 15 16	5	8			p annuine span a	w . Al taids and m	with the line steepin with
14 15 6 7 9 12 10 11 13 16 14 15 6 8 9 10 12 13 15 14 16 7 8 9 11 12 13 14 15 16 9 10 11 13 14 15 16 9 10 11 13 14 15 16 9 10 11 13 14 15 16 9 12 13 14 15 10 11 13 14 16 11 12 13 14 16 11 12 13 14 16						N. H. Y. H. Z. L. I	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14	15		10.00 median page 11	and a second of
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	7	9	12		F 10 1 61 1	0 (9 1 7 1 . 0 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			14	15		the sol more strong	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	8	9	11			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					A set of the set of th	- 4 - 4 - 6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					in the second	second ladores	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					A BIT S AL AN	ensisting threads	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	8			hispingerschan is	To the said the same	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						10 10 12 10 10 10 10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1 K 2 1 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			10	10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	10	11	12			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	16		tak seeds whe	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	11	13	15	L'angle becking	and the million	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1	a sing and in	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	10		10		and the second second	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	12					1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			14	10		20.21 2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	11			1 2 12 11 12	2 minnam edit	
14 16 11 12 13 14 15 16 16			14	15	interest free of main	it and a series	
14 16 11 12 13 14 15 16 16	10	12	13	15	mind there want is	In the stores with	
11 12 13 14 15 16		c			fivelancionalicae in	it to ensure at h	
15 16		10			ody net strand	a madre Mar	
		12			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	a was separately	
13 14 15 16			15	16	the said of	standering shall a shill	
	13	14	15	16			

ON THE THEOREMS OF THE 2, 4, 8, AND 16 SQUARES.

As regards the signs, observe that the first line may always be written

$$ab + cd + ef + \&c.,$$

with the signs all of them +; and then writing $a, b, c, \ldots = 1, 2, 3, \ldots, 16$ respectively, the first line will be

$$1 \ 2+3 \ 4+5 \ 6+7 \ 8+9 \ 10+11 \ 12+13 \ 14+15 \ 16,$$

with the signs all of them +; that is, we may assume ϵ_{12} , ϵ_{34} , &c., or say

all of them = +1. And in the other lines, the signs of all the terms of any line may be reversed at pleasure, that is, we may assume ϵ_{13} , ϵ_{14} , &c., or say 1 3, 1 4, 1 5, 1 6, 1 7, 1 8, 1 9, 1 10, 1 11, 1 12, 1 13, 1 14, 1 15, 1 16, all of them = +1.

Making these assumptions, then for any one of the synthematic arrangements the several tetrads give as before relations between the signs; among these are included the results already obtained for the 8-question, and taking as before

$$-a = b = c = d = \theta,$$

we have the signs of the several terms belonging to the 8-question given as $=\pm 1$ or $\pm \theta$ as before. The remaining tetrads up to 1 8 12 13 then serve to express all the remaining signs in terms of the as yet undetermined signs *e*, *f*, *g*, *h*, *i*, *j*, *k*, *l*, *m*, *n*, *o*, *p*, *q*, *r*, *s*, *t*, *u*, *v*, *w*, *x*, *y*, *z*, α , β , for instance

that is, $3 \ 9=e$, $3 \ 11=-e$, $9 \ 11=e$; and then the tetrads up to $2 \ 8 \ 9 \ 15$ serve to express these signs in terms of the undetermined signs λ , μ , ν , ρ , σ , τ ; for instance

that is, -e = f = i; and in like manner 2 3 10 11, 2 4 9 11 and 2 4 10 12 give respectively -e = f = j, -e = i = j, f = i = j; that is, we have -e = f = i = j, $= \lambda$ suppose. And in this way we have, for each of the four synthematic arrangements the signs of all the terms expressed in terms of the undetermined signs θ , λ , μ , ν , ρ , σ , τ , as shown in the following table; where observe that the results apply to the four synthematic arrangements *separately*, viz. the *e*, *f*, *g*, &c., and the θ , λ , μ , ν , ρ , σ , τ in each column are altogether independent of the like symbols in the other three columns.

Signs for the four synthematic arrangements:

www.rcin.org.pl

308

-	i	I.	M	II.	11	III.	IV.
1	2	+ 1		same		same	same
-	3	+ 1	Sector 1				1
	4	+ 1					
	5	+ 1					
	6	+ 1					
	7	+ 1					
	8	+ 1					
	9	+ 1					
	10	+ 1					
	11	+ 1					
	12	+ 1					
	13	+ 1					
	14	+ 1			2		
	15	+ 1					
1	16	+ 1					
2	3	+ 1		same		same	same
	4	- 1					
	5	+ 1					
	6	- 1					
	7	+ 1					
	8	- 1					
	9	+ 1	al				
	10	-1					
	11	+ 1					
	12	-1					
	$\frac{13}{14}$	+ 1 - 1	1 1		1		
	14	+1					
	16	+1 - 1	9			119	
	10	- 1					
3		+ 1		same	-	same	same
	5	- θ	a - · · ·				Y
	6	θ	,		1		
	7	θ					
	8	- θ					
	9	e	$-\lambda$				
	10	f	λ λ				
	11	- e £	$-\lambda$				
	12	-f					
	$\frac{13}{14}$	$g \\ h$	- µ			1	
	$\frac{14}{15}$		μ μ				
	15	-g -h	- µ				
	10	10	m				

310

[763

		I.		II.	III.	IV.
4	5	θ	-	same	same	same
	6	θ				
	7	$-\theta$	-			
	8	$-\theta$				
	9	i	λ			
	10	j	λ			Carl St. Collin
	11	-j	$-\lambda$			
	12	-i	$-\lambda$			
	13	k	μ		19 11 11 15 1	A dea del pico d
	14	l	μ	No. International Vice	and an and a second	
	15	-l	$-\mu$		San San San	
	16	-k	- μ			
5		+ 1		+ 1	+ 1	1
	7	$-\theta$		$-\theta$	$-\theta$	$-\theta$
	8	θ		θ	θ	θ
	9	m	- v	m v	$m - \nu$	m v
	10	n	ν	n v	n v	n v
	11	0	$-\rho$	ο ρ	$o - \rho$	ο ρ
	12	p	ρ	p p	P P	p p
	13	-m	ν	$-n - \nu$	-ο ρ	$-p - \rho$
	14	-n	$-\nu$	$-m - \nu$	$-p - \rho$	$-o -\rho$
	15	- 0	ρ	$-p - \rho$	$-m \nu$	$-n - \nu$
	16	- <i>p</i>	- ρ	- o - p	$-n - \nu$	$-m - \nu$
6		θ		θ	θ	θ
	8	θ		θ	θ	θ
	9	q	ν	q v	q v	q v
	10	? *	ν	$r - \nu$	r v	$r - \nu$
	11	8	ρ	8 p	8 p	8 p
	$\frac{12}{13}$	t	ρ	$t - \rho$	t p	$t - \rho$
	13	- r	$-\nu$	$-q - \nu$ $-r - \nu$	$\begin{vmatrix} -t & -\rho \\ -s & -\rho \end{vmatrix}$	$\begin{vmatrix} -s & -\rho \\ -t & \rho \end{vmatrix}$
	15	$\begin{array}{c} -q \\ -t \end{array}$	$-\nu$ $-\rho$	$-r \nu$ $-s -\rho$	$\begin{vmatrix} -s & -\rho \\ -r & -\nu \end{vmatrix}$	$\begin{vmatrix} -t & \rho \\ -q & -\nu \end{vmatrix}$
	16	- 8	$-\rho$	$-t \rho$	$-q - \nu$	$-r$ ν
7	8	+ 1	1. 1994 - I	+ 1	+ 1	+ 1
	9	rı	-σ	$u - \sigma$	$u - \sigma$	υ σ
	• 10	υ	σ	υσ	υσ	υσ
	11	w	$-\tau$	ιυ τ	$w - \tau$	τυ τ
	12	œ	τ	α τ	α τ	α τ
	13	- w	τ	$-x - \tau$	$-u \sigma$	$-v -\sigma$
	14	- x	$-\tau$	$-w - \tau$	$-v -\sigma$	$-u - \sigma$
	15	- 26	σ	$-v - \sigma$	- <i>w</i> 7	$-x - \tau$
	16	- v	- σ	$-u - \sigma$	$-x - \tau$	$-w - \tau$
					1	and the second sec

www.rcin.org.pl

		I.	ed gaps	I	I.	IJ	п. ⁽⁸	I	₹.
8	9	y	σ	y	σ	y	σ	y	σ
	10	2	σ	z	- σ	z	σ	2	$-\sigma$
	11	a	τ	a	τ	a	τ	a	τ
	12	β	τ	β	$-\tau$	β	τ	β	$-\tau$
	13	$-\beta$	$-\tau$	- a	$-\tau$	- 2	- σ	-y	- σ
	14	- a	$-\tau$	$-\beta$	τ	-y	-σ	- 2	σ
	15	- z	- σ	-y	- σ	$-\beta$	$-\tau$	- a	$-\tau$
	16	-y	- σ	- 2	σ	- a	- τ	$-\beta$	τ
9	10	+ 1		+ 1		+ 1		+ 1	
	11	е	$-\lambda$	е	$-\lambda$	e	$-\lambda$	е	$-\lambda$
	12	i	λ	i	λ	i	λ	i	λ
	13	m	- v	q	ν	26	- σ	y	σ
	14	q	ν	m	ν	y	σ	U	σ
	15	u	- σ	y	σ	m	- ν	q	ν
	16	y	σ	u	σ	q	ν	m	ν
10	11	j	λ	j	λ	j	λ	j	λ
	12	f	λ	f	λ	f	λ	f	λ
	13	r	ν	n	ν	2	σ	v	σ
	14	n	ν	r	- v	v	σ	2	- σ
	15	2	σ	v	σ	r	ν	n	ν
	16	v	σ	2	- σ	n	ν	r	- <i>v</i>
11	12	+ 1		+ 1		1		+ 1	
	13	w	$-\tau$	a	τ	0	$-\rho$	8	ρ
	14	a	τ	w	τ	8	ρ	0	ρ
	15	0	- ρ	8	ρ	w	$-\tau$	a	τ
	16	8	ρ	0	ρ	<i>a</i>	τ	w	τ
12	13	β	τ	œ	τ	t	ρ	p	ρ
	14	x	τ	β	$-\tau$	p	ρ	t	$-\rho$
	15	t	ρ	p	ρ	β	τ	æ	τ
	16	р	ρ	t	-ρ	20	τ	β	$-\tau$
13		+ 1		+ 1		+ 1		+ 1	
	15	g	- μ	g	- μ	9	- μ	g	$-\mu$
	16	k	μ	k	μ	k	μ	k	μ
14	15	J	μ	l	μ	1	μ	1	μ
	16	h	μ	h	μ	h	μ	h	μ
15	16	+ 1		+ 1		+ 1	-	+ 1	

We have now for the four arrangements respectively, by means of hitherto unused tetrads, the following determinations of sign: these being in each case inconsistent with each other.

First arrangement.

6.9	5	9	15	+	<i>-θ</i>	- σ	that is,
619	9	5	15	-	$-\lambda$.	ρ	$\theta \sigma = \lambda \rho = -\mu \nu,$
	15	5	9	+	μ	- v	
-							
610	5	10	16	+	$-\theta$.	σ	
610	10	5	16	-	λ	-ρ	$-\theta\sigma = \lambda\rho = -\mu\nu,$
	16	5	10	+	$-\mu$.	ν	
-							
99	5	11	13	+	$-\theta$.	$-\tau$	
3	11	5	13	-	λ.	ν	$\theta \tau = -\lambda \nu = \mu \rho,$
3	13	5	11	+	-μ	- ρ	
-		-					
99	5	12	14	+	$-\theta$.	τ	
90	12	5	14	-	-λ	- v	$-\theta\tau=-\lambda\nu= \mu\rho.$
3	14	5	12	+	μ.	ρ	

Second arrangement.

3	5	9	16	$+-\theta$.	σ	
3	9	5	16	λ	-ρ	$\theta \sigma = \lambda \rho = \mu \nu,$
3	16	5	9	$+-\mu$.	ν	
3	5	10	15	$+-\theta$.	σ	
3	10	5	15	- λ	-ρ	$-\theta\sigma=\lambda\rho=\mu\nu,$
3	15	5	10	+ μ.	ν	
3	5	11	14	$+-\theta$.	τ	
3	11	5	14	- λ	- v	$-\theta\tau = \lambda\nu = \mu\rho,$
3	14	5	11	+ μ.	ρ	
3	5	12	13	$+-\theta$.	- τ	
3	12	5	13	λ	- v	$\theta \tau = \lambda \nu = \mu \rho.$
3	13	5	12	$+-\mu$.	ρ	

Third arrangement.

	3	5	9	13	+	- θ		- σ			
	3	9	5	13	-	-λ		ρ	$\theta \sigma =$	$-\lambda \rho =$	μν,
	3	13	5	9	+	-μ		- <i>v</i>			
	-							-			
	3	5	10	14	+	- θ	•	σ			
	3	10	5	14	-	λ		-ρ	$\theta \sigma =$	$-\lambda \rho = -$	- <i>μν</i> ,
	3	14	5	10	+	μ	L	ν			
	-	~			-	-					
			11								
	3	11	5	15	-	У		ν	$\theta \tau =$	$-\lambda \nu = -$	- μρ,
	3	15	5	11	+	μ		- ρ			
	-	E	10	10		0					
			12								
	3	12	5	16	-	- λ	•••	- <i>v</i>	$\theta \tau =$	$-\lambda \nu =$	μρ.
	3	16	5	12	+	- μ	ι.	ρ			
L	ar	ran	gem	nent							
	3	5	9	14	+	-θ		σ			
			5						Ar -	$\lambda \rho = -$	
									00 -	$\lambda p = -$	- μν,
	3	14	5	9	+	μ	••	ν			
	3	5	10	13	+	-θ		σ			
	3	10	5	13	-	λ		- p	$\theta \sigma =$	$-\lambda \rho =$	uv.
								1	1.		par,

Fourth

3 5 9 14 + $-\theta$. σ	
$3 \ 9 \ 5 \ 14 \\lambda \ -\rho$	$\theta\sigma = \lambda \rho = -\mu \nu,$
$3 14 5 9 + \mu . \nu$	u The Basing also far Eander Mademarking
3 5 10 13 $+-\theta$. σ	
$3 \ 10 \ 5 \ 13 \ - \ \lambda \rho$	$ heta\sigma=-\lambda ho=-\mu u,$
$3 \ 13 \ 5 \ 10 \ + -\mu \ . \ \nu$	
3 5 11 16 $+ - \theta$. τ	
$3 \ 11 \ 5 \ 16 \ - \ \lambda \nu$	$\theta \tau = -\lambda \nu = \mu \rho,$
3 16 5 11 $+-\mu$. ρ	
$3 5 12 15 + -\theta\tau$	
$3 \ 12 \ 5 \ 15 \\lambda \ -\nu$	$\theta\tau=-\lambda\nu=-\mu\rho.$

And it hence finally appears, that we cannot, in any one of the four arrangements, determine the signs so as to give rise to a 16-square theorem; that is, the product of a sum of 16 squares into a sum of 16 squares cannot be made equal to a sum of 16 squares.

C. XI.