944.

ON PFAFF-INVARIANTS.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xxvi. (1893), pp. 195-205.]

1. The functions which I propose to call Pfaff-invariants present themselves and play a leading part in the memoir, Clebsch, "Ueber das Pfaffsche Problem" (Zweite Abhandlung), Crelle, t. Lxi. (1863), pp. 146-179: but it is interesting to consider them for their own sake as invariants, and in the notation which I have elsewhere used for the functions called Pfaffians. The great simplification effected by this notation is, I think, at once shown by the remark that Clebsch's expression R, which he defines by the periphrasis "Sei ferner R der rationale Ausdruck dessen Quadrat der Determinant der $a_{i k}$ gleich ist" (l.c. p. 149), is nothing else than the Pfaffian 1234...2n-1.2n, and that its differential coefficients $R_{i k}=\frac{\partial R}{\partial a_{i k}}$ are the Pfaffians obtained from the foregoing by the mere omission of any two symbolic numbers i, k.
2. I call to mind that the symbols $12,13, \& c$., made use of are throughout such that $12=-21$, \&c.; and that the definition of the successive Pfaffians 12, 1234, \&c., is as follows:

$$
\begin{aligned}
& 12=12 \\
& 1234=12.34+13.42+14.23 \\
& 123456=12.3456+13.4562+14.5623+15.6234+16.2345
\end{aligned}
$$

in which last expression 3456 denotes the Pfaffian $34.56+35.64+36.45$, and similarly 4562 , \&c.; and so on for any even number of symbols. Of course, instead of the symbolic numbers $1,2,3$, \&c., we may have any other numbers (0 is frequently used in the sequel as a symbolic number), or we may have letters or other symbols.
3. I use also a function very analogous to a Pfaffian, which is expressed in the same notation, viz. this is

$$
\begin{array}{llrl}
\phi \psi 12 & =\phi \psi 12, & \\
\phi \psi 1234 & =\phi \psi 12.34 & +\phi \psi 13.42 & +\phi \psi 14.23 \\
& & +\phi \psi 34.12 & +\phi \psi 42.13+\phi \psi 23.14, \\
\phi \psi 123456 & =\phi \psi 12.34 .56+\phi \psi 34.12 .56+\phi \psi 56.12 .34+\& c .,
\end{array}
$$

viz. taking any term 12.34 .56 of the Pfaffian 123456, $\phi \psi$ is connected successively with each of the binary symbols $12,34,56$ of the term, so as to give rise to terms containing the quaternary symbols $\phi \psi 12, \& c$. Such function may be called a co-Pfaffian.
4. To avoid suffixes I use different letters $(x, y),(x, y, z)$, \&c., as the case may be, associating these with the numbers (1,2); (1,2,3), \&c. In the case of a differential of an even number $2 n$ of terms, for instance $X d x+Y d y+Z d z+W d w$, I consider the functions 1234, $\phi 01234$, and $\phi \psi 1234$, the first and second of which are Pfaffians, the last a co-Pfaffian, as explained above. To fix in connexion with the differential $X d x+Y d y+Z d z+W d w$ the meanings of these expressions, I assume

$$
12=\frac{d X}{d y}-\frac{d Y}{d x}, \quad 13=\frac{d X}{d z}-\frac{d Z}{d x}, \& c .
$$

(of course these imply $12=-21, \& c$.),

$$
01=-10=X, \quad 02=-20=Y, \& c .
$$

ϕ is an arbitrary function of x, y, z, w, and I write

$$
\phi 0=-0 \phi=0, \quad \phi 1=-1 \phi=\frac{d \phi}{d x}, \quad \phi 2=-2 \phi=\frac{d \phi}{d y}, \quad \& c .
$$

ψ is also an arbitrary function of x, y, z, w, and I write

$$
\phi \psi 12=\frac{d \phi}{d x} \frac{d \psi}{d y}-\frac{d \phi}{d y} \frac{d \psi}{d x},=\frac{\partial(\phi, \psi)}{\partial(x, y)}, \quad \& c .
$$

(this implies $\phi \psi 21=-\phi \psi 12, \& c$.).
5. Thus, at full length, the functions are

$$
\begin{aligned}
1234= & 12.34+13.42+14.23 \\
= & \left(\frac{d X}{d y}-\frac{d Y}{d x}\right)\left(\frac{d Z}{d w}-\frac{d W}{d z}\right)+\left(\frac{d X}{d z}-\frac{d Z}{d x}\right)\left(\frac{d W}{d y}-\frac{d Y}{d w}\right)+\left(\frac{d X}{d w}-\frac{d W}{d x}\right)\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right), \\
\phi 01234= & \phi 0.1234+\phi 1.2340+\phi 2.3401+\phi 3.4012+\phi 4.0123 \\
= & \frac{d \phi}{d x}(23.40+24.03+20.34) \\
& +\frac{d \phi}{d y}(34.01+30.14+31.40) \\
& +\frac{d \phi}{d z}(40.12+41.20+42.01) \\
& +\frac{d \phi}{d w}(01.23+02.31+03.12)
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{d \phi}{d x}\left\{-W\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right)+Z\left(\frac{d Y}{d w}-\frac{d W}{d y}\right)-Y\left(\frac{d Z}{d w}-\frac{d W}{d z}\right)\right\} \\
& +\frac{d \phi}{d y}\left\{X\left(\frac{d Z}{d w}-\frac{d W}{d z}\right)-Z\left(\frac{d X}{d w}-\frac{d W}{d x}\right)-W\left(\frac{d Z}{d x}-\frac{d X}{d z}\right)\right\} \\
& +\frac{d \phi}{d z}\left\{-W\left(\frac{d X}{d y}-\frac{d Y}{d x}\right)-Y\left(\frac{d W}{d x}-\frac{d X}{d w}\right)+X\left(\frac{d W}{d y}-\frac{d Y}{d w}\right)\right\} \\
& +\frac{d \phi}{d w}\left\{X\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right)+Y\left(\frac{d Z}{d x}-\frac{d X}{d z}\right)+Z\left(\frac{d X}{d y}-\frac{d Y}{d x}\right)\right\} \\
\phi \psi 1234= & \phi \psi 12.34+\phi \psi 13.24+\phi \psi 14.23 \\
& +\phi \psi 34.12+\phi \psi 24.13+\phi \psi 23.14 \\
= & \frac{\partial(\phi, \psi)}{\partial(x, y)}\left(\frac{d Z}{d w}-\frac{d W}{d z}\right)+\frac{\partial(\phi, \psi)}{\partial(x, z)}\left(\frac{d Y}{d w}-\frac{d W}{d y}\right)+\frac{\partial(\phi, \psi)}{\partial(x, w)}\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right) \\
& +\frac{\partial(\phi, \psi)}{\partial(z, w)}\left(\frac{d X}{d y}-\frac{d Y}{d x}\right)+\frac{\partial(\phi, \psi)}{\partial(y, w)}\left(\frac{d X}{d z}-\frac{d Z}{d x}\right)+\frac{\partial(\phi, \psi)}{\partial(y, z)}\left(\frac{d X}{d w}-\frac{d W}{d x}\right) .
\end{aligned}
$$

6. The invariantive property of the functions consists herein, viz. if we have

$$
X d x+Y d y+Z d z+W d w=P d p+Q d q+R d r+S d s
$$

so that p, q, r, s, and thence also P, Q, R, S are functions each of them of x, y, z, w, then we have

$$
\begin{aligned}
1234 \partial(x, y, z, w) & =(1234)^{\prime} \partial(p, q, r, s), \\
\phi 01234 \partial(x, y, z, w) & =(\phi 01234)^{\prime} \partial(p, q, r, s), \\
\phi \psi 1234 \partial(x, y, z, w) & =(\phi \psi 1234)^{\prime} \partial(p, q, r, s),
\end{aligned}
$$

where the accented functions refer to (p, q, r, s, P, Q, R, S), and where for greater symmetry I have separated the symbolical numerator and denominator $\partial(p, q, r, s)$ and $\partial(x, y, z, w)$; each of these equations really contains

$$
\frac{\partial(p, q, r, s)}{\partial(x, y, z, w)}
$$

which is the functional determinant of (p, q, r, s) in regard to (x, y, z, w) : or, if we please, it contains the reciprocal hereof

$$
\frac{\partial(x, y, z, w)}{\partial(p, q, r, s)}
$$

which is the functional determinant of (x, y, z, w) in regard to (p, q, r, s).
7. The equations give

$$
\begin{gathered}
\frac{\phi 01234}{1234}=\frac{(\phi 01234)^{\prime}}{(1234)^{\prime}} \\
\frac{\phi \psi 1234}{1234}=\frac{(\phi \psi 1234)^{\prime}}{(1234)^{\prime}}
\end{gathered}
$$

and then the expressions on the left-hand are absolute invariants in respect to the transformation of

$$
X d x+Y d y+Z d z+W d w \quad \text { into } \quad P d p+Q d q+R d r+S d s
$$

They are, in fact, (for $2 n=4$) Clebsch's derivatives (ϕ) and (ϕ, ψ).
8. For the Pfaffian reduction
we may write

$$
X d x+Y d y+Z d z+W d w=F d f+G d g
$$

$$
\begin{aligned}
& P, Q, R, S=F, G, 0,0 \\
& p, q, r, s=f, g, F, G
\end{aligned}
$$

viz. we take f, g, F, G as the new independent variables; we thus have

$$
\begin{aligned}
& 01^{\prime}=F, 02^{\prime}=G, \quad 03^{\prime}=0, \quad 04^{\prime}=0, \\
& 12^{\prime}=0, \quad 13^{\prime}=1, \quad 14^{\prime}=0, \quad 23^{\prime}=0, \quad 24^{\prime}=1, \quad 34^{\prime}=0, \\
&(1234)^{\prime}=12^{\prime} .34^{\prime}+13^{\prime} .42^{\prime}+14^{\prime} .23^{\prime},=-1
\end{aligned}
$$

and similarly

$$
\begin{aligned}
& (\phi 01234)^{\prime}=-\left\{F \frac{d \phi}{d F}+G \frac{d \phi}{d G}\right\} \\
& (\phi \psi 1234)^{\prime}=-\left\{\frac{\partial(\phi, \psi)}{\partial\left(f, F^{\prime}\right)}+\frac{\partial(\phi, \psi)}{\partial(g, G)}\right\}
\end{aligned}
$$

where, in the equations, the - sign presents itself by reason that $2 n,=4$, is the double of an even number, or say that n is even; in the case of $2 n$, the double of an odd number, that is, n odd, the sign would have been + .
9. We thus have

$$
\begin{aligned}
(\phi) & =\frac{\phi 01234}{1234}=F \frac{d \phi}{d F}+G \frac{d \phi}{d G} \\
(\phi \psi) & =\frac{\phi \psi 1234}{1234}=\frac{\partial(\phi, \psi)}{\partial(f, F)}+\frac{\partial(\phi, \psi)}{\partial(g, G)}
\end{aligned}
$$

and in particular, by giving to ϕ and ψ the values f, g, F, G, we find

$$
\begin{gathered}
(f)=0, \quad(g)=0, \quad\left(F^{\prime}\right)=F, \quad(G)=G \\
(f, g)=0, \quad\left(f, F^{\prime}\right)=1, \quad(f, G)=0 \\
(F, G)=0, \quad\left(g, F^{\prime}\right)=0, \quad(g, G)=1
\end{gathered}
$$

which are Clebsch's equations; in the case of $2 n$ terms, the number of them is

$$
n+n+\frac{1}{2}\left(n^{2}-n\right)+\frac{1}{2}\left(n^{2}-n\right)+n^{2}=2 n+n^{2}-n+n^{2}
$$

$=n(2 n+1)$, or $\frac{1}{2} 2 n(2 n+1)$, as it should be.
10. It may be remarked that we have

$$
F d f+G d g=F d\left(f+\frac{G}{F} g\right)-F g d \frac{G}{F}
$$

or writing this $=F^{\prime} d f^{\prime}+G^{\prime} d g^{\prime}$, we have

$$
F^{\prime}=F, \quad f^{\prime}=f+\frac{G g}{F}, \quad G^{\prime}=+F g, \quad g^{\prime}=\frac{G}{F^{\prime}}
$$

whence conversely

$$
F=F^{\prime}, \quad f=f^{\prime}+\frac{G^{\prime} g^{\prime}}{F^{\prime \prime}}, \quad G=F^{\prime} g^{\prime}, \quad g=-\frac{G^{\prime}}{F^{\prime \prime}}, \quad\left(G g=-G^{\prime} g^{\prime}\right)
$$

The ten equations $(f)=0,(g)=0$, \&c., ought then to lead to the corresponding ten equations $\left(f^{\prime}\right)=0,\left(g^{\prime}\right)=0$, \&cc., and it is easy to verify that they do so ; for instance, we have

$$
\left(f^{\prime}\right)=\left(f+\frac{G g}{F}\right)=(f)+\frac{G}{F}(g)+g\left(\frac{G}{F}\right)
$$

where

$$
\left(\frac{G}{F}\right)=\frac{1}{F}(G)-\frac{G}{F^{2}}\left(F^{\prime}\right), \quad=\frac{G}{F}-\frac{G}{F^{\prime 2}} F, \quad=0
$$

and thus $\left(f^{\prime}\right)=0$. And again,

$$
\left(f^{\prime}, g^{\prime}\right)=\left(f+\frac{G g}{F}, \frac{G}{F}\right)=\left(f, \frac{G}{F}\right)+\left(\frac{G g}{F}, \frac{G}{F}\right)=\left(f, \frac{G}{F}\right)+\frac{G}{F}\left(g, \frac{G}{F}\right)+g\left(\frac{G}{F}, \frac{G}{F}\right)
$$

where the last term vanishes; the remaining terms are

$$
\begin{aligned}
& =\frac{1}{F}(f, G)-\frac{G}{F^{2}}(f, F)+\frac{G}{F^{2}}(g, G)-\frac{G}{F^{2}}(g, F) \\
& =0-\frac{G}{F^{2}}+\frac{G}{F^{2}}-0, \text { that is, }\left(f^{\prime}, g^{\prime}\right)=0
\end{aligned}
$$

There is, of course, the like transformation

$$
F d f+G d g=G\left(d g+\frac{F}{G} f\right)-G f d \frac{F}{G}
$$

11. I have, for better exhibiting the results, taken $2 n=4$, but the most simple case for an even number of terms is $2 n=2$. Here we have $X d x+\dot{Y} d y=P d p+Q d q$, and the functions to be considered are

$$
\begin{aligned}
12,=12 & =\frac{d X}{d y}-\frac{d Y}{d x} \\
\phi 012,=\phi 0.12+\phi 1.20+\phi 2.01 & =-Y \frac{d \phi}{d x}+X \frac{d \phi}{d y} \\
\phi \psi 12,=\phi \psi 12 & =\frac{\partial(\phi, \psi)}{\partial(x, y)} .
\end{aligned}
$$

We have here

$$
X=P \frac{d p}{d x}+Q \frac{d q}{d x}, \quad Y=P \frac{d p}{d y}+Q \frac{d q}{d y}
$$

and the invariantive properties are easily verified.
12. Thus

$$
12=\frac{d X}{d y}-\frac{d Y}{d x}, \quad=\left(\frac{d P}{d y} \frac{d p}{d x}-\frac{d P}{d x} \frac{d p}{d y}\right)+\left(\frac{d Q}{d y} \frac{d q}{d x}-\frac{d Q}{d x} \frac{d q}{d y}\right)
$$

c. XIII
or, writing herein

$$
\frac{d P}{d x}=\frac{d P}{d p} \frac{d p}{d x}+\frac{d P}{d q} \frac{d q}{d x}
$$

and the like values for $\frac{d P}{d y}$ and for $\frac{d Q}{d x}$ and $\frac{d Q}{d y}$, we have

$$
12=\left(\frac{d P}{d q}-\frac{d Q}{d p}\right)\left(\frac{d p}{d x} \frac{d q}{d y}-\frac{d p}{d y} \frac{d q}{d x}\right)=(12)^{\prime} \frac{\partial(p, q)}{\partial(x, y)}
$$

Similarly, we find
and

$$
\phi 012=-Y \frac{d \phi}{d x}+X \frac{d \phi}{d y}=\left(-Q \frac{d \phi}{d p}+P \frac{d \phi}{d q}\right)\left(\frac{d p}{d x} \frac{d q}{d y}-\frac{d p}{d y} \frac{d q}{d x}\right)=(\phi 012)^{\frac{\partial}{\partial}(p, q)},
$$

$$
\phi \psi 12=\frac{d \phi}{d x} \frac{d \psi}{d y}-\frac{d \phi}{d y} \frac{d \psi}{d x}=\left(\frac{d \phi}{d p} \frac{d \psi}{d q}-\frac{d \phi}{d q} \frac{d \psi}{d p}\right)\left(\frac{d p}{d x} \frac{d q}{d y}-\frac{d p}{d y} \frac{d q}{d x}\right)=(\phi \psi 12)^{\prime} \frac{\partial(p, q)}{\partial(x, y)}
$$

We thus have
or say

$$
\begin{aligned}
12 \partial(x, y) & =(12)^{\prime} \partial(p, q) \\
\phi 012 \partial(x, y) & =(\phi 012)^{\prime} \partial(p, q) \\
\phi \psi 12 \partial(x, y) & =(\phi \psi 12)^{\prime} \partial(p, q)
\end{aligned}
$$

$$
\frac{\phi 012}{12}=\frac{(\phi 012)^{\prime}}{(12)^{\prime}}, \text { and } \frac{\phi \psi 12}{12}=\frac{(\phi \psi 12)^{\prime}}{(12)^{\prime}}
$$

The proof is the same in principle for $2 n=4$, or any other even value.
13. The theory is very similar in the case of an odd number $2 n+1$ of terms; thus $2 n+1=3$, the forms are

$$
0123, \phi 123, \text { and } \phi \psi 0123
$$

the first and second of which are Pfaffians, the third of shem co-Pfaffian: the developed expression of this last is

$$
\begin{aligned}
\phi \psi 0123= & \phi \psi 01.23+\phi \psi 02.31+\phi \psi 03.12 \\
& +\phi \psi 23.01+\phi \psi 31.02+\phi \psi 12.03
\end{aligned}
$$

and to fix the meaning hereof we write

$$
\phi \psi 01=0, \quad \phi \psi 02=0, \quad \phi \psi 03=0
$$

Hence, the differential expression being $X d x+Y d y+Z d z$, we have

$$
\begin{aligned}
0123 & =01.23+02.31+03.12 \\
& =X\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right)+Y\left(\frac{d Z}{d x}-\frac{d X}{d z}\right)-Z\left(\frac{d X}{d y}-\frac{d Y}{d x}\right) \\
\phi 123 & =\phi 1.23+\phi 2.31+\phi 3.12 \\
& =\frac{d \phi}{d x}\left(\frac{d Y}{d z}-\frac{d Z}{d y}\right)+\frac{d \phi}{d y}\left(\frac{d Z}{d x}-\frac{d X}{d z}\right)+\frac{d \phi}{d z}\left(\frac{d X}{d y}-\frac{d Y}{d x}\right), \\
\phi \psi 0123 & =\phi \psi 23.01+\phi \psi 31.02+\phi \psi 12.03 \\
& =X \frac{\partial(\phi, \psi)}{\partial(y, z)}+Y \frac{\partial(\phi, \psi)}{\partial(z, x)}+Z \frac{\partial(\phi, \psi)}{\partial(x, y)}
\end{aligned}
$$

14. For the transformation
we have

$$
X d x+Y d y+Z d z=P d p+Q d q+R d r
$$

$$
\begin{array}{rr}
0123 \partial(x, y, z)= & (0123)^{\prime} \partial(p, q, r), \\
\phi 123 \partial(x, y, z) & =(\phi 123)^{\prime} \partial(p, q, r), \\
\phi \psi 0123 \partial(x, y, z) & =(\phi \psi 0123)^{\prime} \partial(p, q, r),
\end{array}
$$

and consequently

$$
\begin{gathered}
\frac{\phi 123}{0123}=\frac{(\phi 123)^{\prime}}{(0123)^{\prime}}, \\
\frac{\phi \psi 0123}{0123}=\frac{(\phi \psi 0123)^{\prime}}{(0123)^{\prime}} ;
\end{gathered}
$$

so that the left-hand functions are absolute invariants.
15. If in particular, $X d x+Y d y+Z d z=d f+G d g$, then we may write

$$
\begin{aligned}
& P, Q, R=1, G, 0 \\
& p, q, r=f, g, G
\end{aligned}
$$

Hence

$$
01^{\prime}=1, \quad 02^{\prime}=G, \quad 03^{\prime}=0 ; \quad 23^{\prime}=1, \quad 31^{\prime}=0, \quad 12^{\prime}=0,
$$

and therefore

$$
(0123)^{\prime}=1, \quad(\phi 123)^{\prime}=\frac{d \phi}{d f}, \quad(\phi \psi 0123)^{\prime}=\frac{\partial(\phi, \psi)}{\partial(g, G)}+G \frac{\partial(\phi, \psi)}{\partial(f, G)}
$$

or say
and we thus have

$$
=\frac{\partial(\phi, \psi)}{\partial(g, G)}-G \frac{\partial(\phi, \psi)}{\partial(f, G)} ;
$$

$$
\begin{aligned}
0123 \partial(x, y, z) & =\partial(f, g, G) \\
\phi 123 \partial(x, y, z) & =\frac{d \phi}{d f} \partial(f, g, G) \\
\phi \psi 0123 \partial(x, y, z) & =\left\{\frac{\partial(\phi, \psi)}{\partial(g, G)}-G \frac{\partial(\phi, \psi)}{\partial(f, G)}\right\} \partial(f, g, G),
\end{aligned}
$$

and then

$$
\begin{aligned}
(\phi) & =\frac{\phi 123}{0123}=\frac{d \phi}{d f} \\
(\phi, \psi) & =\frac{\phi \psi 0123}{0123}=\frac{\partial(\phi, \psi)}{\partial(g, G)}-G \frac{\partial(\phi, \psi)}{\partial(f, G)}
\end{aligned}
$$

viz. we thus have derivatives (ϕ) and (ϕ, ψ) analogous to (but quite different in form from) those of Clebsch in the case of an even number of terms.

In particular, writing $\phi, \psi=f, g, G$, we obtain

$$
(f)=1, \quad(g)=0, \quad(G)=0 ; \quad(f, g)=0, \quad(f, G)=-G, \quad(g, G)=1
$$

which are the analogues of Clebsch's formula.
16. It is interesting to compare the formula for the two cases

$$
X d x+Y d y+Z d z+W d w=F d f+G d g
$$

and

$$
X d x+Y d y+Z d z=d f+G d g
$$

In the former case f and g are symmetrically related to each other, and we may say that ($f=$ const. and $g=$ const.) is a solution of $X d x+Y d y+Z d z+W d w=0$; we have $(f)=0$ and $(g)=0$. In the second case ($f=$ const. and $g=$ const.) is still a solution of $X d x+Y d y+Z d z=0$, but f and g are not symmetrically related to each other, and we have $(f)=1,(g)=0$. Moreover, in the first case $(G)=G$, but in the second case $(G)=0$, an equation of the same form as $(g)=0$; the reason is that we have here

$$
X d x+Y d y+Z d z=d f+G d g, \quad=d(f+G g)-g d G
$$

so that, besides the solution ($f=$ const. and $g=$ const.), we have the solution

$$
(f+G g=\text { const. and } G=\text { const. }) .
$$

17. The remark just made may be further developed: we have

$$
X d x+Y d y+Z d z=d f+G d g,=d(f+G g)-g d G,=d f^{\prime}+G^{\prime} d g^{\prime},
$$

suppose, where $f^{\prime}=f+G g, G^{\prime}=-g, g^{\prime}=G$, and therefore also $f=f^{\prime}+G^{\prime} g^{\prime}, G=g^{\prime}$, $g=-G^{\prime}$; the equations

$$
(f)=1, \quad(g)=0, \quad(G)=0, \quad(f, g)=0, \quad(f, G)=-G, \quad(g, G)=1
$$

should lead to

$$
\left(f^{\prime}\right)=1, \quad\left(g^{\prime}\right)=0, \quad\left(G^{\prime}\right)=0, \quad\left(f^{\prime}, g^{\prime}\right)=0, \quad\left(f^{\prime}, G^{\prime}\right)=-G^{\prime}, \quad\left(g^{\prime}, G^{\prime}\right)=1
$$

There is no difficulty in verifying this; thus the equations $(g)=0,(G)=0$, give at once $\left(g^{\prime}\right)=0,\left(G^{\prime}\right)=0$; and then the equation $(f)=1$ gives $\left(f^{\prime}+G^{\prime} g^{\prime}\right)=1$, that is,

$$
\left(f^{\prime}\right)+G^{\prime}\left(g^{\prime}\right)+g^{\prime}\left(G^{\prime}\right)=1, \text { or }\left(f^{\prime}\right)=1
$$

So again $(g, G)=1$ gives $\left(g^{\prime}, G^{\prime}\right)=1$; and then $(f, g)=0$ gives $\left(f^{\prime}+G^{\prime} g^{\prime}, G^{\prime}\right)=0$, that is,

$$
\left(f^{\prime}, G^{\prime}\right)+G^{\prime}\left(g^{\prime}, G^{\prime}\right)+g^{\prime}\left(G^{\prime}, G^{\prime}\right)=0, \text { or }\left(f^{\prime}, G^{\prime}\right)=-G^{\prime}
$$

And finally, $(f, G)=-G$ gives $\left(f^{\prime}+G^{\prime} g^{\prime}, g^{\prime}\right)+g^{\prime}=0$, that is,

$$
\left(f^{\prime}, g^{\prime}\right)+G^{\prime}\left(g^{\prime}, g^{\prime}\right)+g^{\prime}\left(G^{\prime}, g^{\prime}\right)+g^{\prime}=0, \text { or }\left(f^{\prime}, g^{\prime}\right)=0 .
$$

I stop to give the direct verification of the equations $(f)=1,(g)=0,(G)=0$. We have

$$
X d x+Y d y+Z d z=d f+G d g
$$

that is,

$$
X=\frac{d f}{d x}+G \frac{d g}{d x}, \quad Y=\frac{d f}{d y}+G \frac{d g}{d y}, \quad Z=\frac{d f}{d z}+G \frac{d g}{d z},
$$

and thence

$$
\begin{aligned}
& 23=\frac{d Y}{d z}-\frac{d Z}{d y}=\frac{d G}{d z} \frac{d g}{d y}-\frac{d G}{d y} \frac{d g}{d z} \\
& 31=\frac{d Z}{d x}-\frac{d X}{d z}=\frac{d G}{d x} \frac{d g}{d z}-\frac{d G}{d z} \frac{d g}{d x} \\
& 12=\frac{d X}{d y}-\frac{d Y}{d x}=\frac{d G}{d y} \frac{d g}{d x}-\frac{d G}{d x} \frac{d g}{d y}
\end{aligned}
$$

Hence, multiplying first by $\frac{d f}{d x}, \frac{d f}{d y}, \frac{d f}{d z}$, that is,

$$
X-G \frac{d g}{d x}, \quad Y-G \frac{d g}{d y}, \quad Z-G \frac{d g}{d z},
$$

and adding, we have

$$
23 \frac{d f}{d x}+31 \frac{d f}{d y}+12 \frac{d f}{d z}=X 23+Y 31+Z 12
$$

that is, $f 123=0123$, or $(f)=1$.
And then multiplying secondly by $\frac{d g}{d x}, \frac{d g}{d y}, \frac{d g}{d z}$ and adding, and thirdly by $\frac{d G}{d x}, \frac{d G}{d y}, \frac{d G}{d z}$ and adding, we obtain

$$
23 \frac{d g}{d x}+31 \frac{d g}{d y}+12 \frac{d g}{d z}=0, \text { that is, }(g)=0
$$

and

$$
23 \frac{d G}{d x}+31 \frac{d G}{d y}+12 \frac{d G}{d z}=0, \text { that is, }(G)=0
$$

To exhibit more clearly the formulæ for any odd number of terms, I take $2 n+1=5$,

$$
X d x+Y d y+Z d z+W d w+T d t=d f+G d g+H d h
$$

We have here

$$
\begin{aligned}
(\phi) & =\frac{\phi 12345}{012345}=\frac{d \phi}{d f} \\
(\phi \psi) & =\frac{\phi \psi 012345}{012345}+\frac{\partial(\phi, \psi)}{\partial(g, G)}+\frac{\partial(\phi, \psi)}{\partial(h, H)}-G \frac{\partial(\phi, \psi)}{\partial(f, G)}-H \frac{\partial(\phi, \psi)}{\partial(f, H)}
\end{aligned}
$$

and in particular,

$$
\begin{aligned}
(f)=1 ; & (g)=0, \quad(h)=0 ; \quad(G)=0, \quad(H)=0 ; \\
(f, g)=0 ; & (f, h)=0 ; \quad(f, G)=-G, \quad(f, H)=-H ; \\
(g, h)=0 ; & (G, H)=0 ; \quad(g, G)=1, \quad(g, H)=0 ; \\
& (h, G)=0, \quad(h, H)=1 ;
\end{aligned}
$$

in all

$$
\begin{gathered}
1+2 n+2 n+\frac{1}{2}\left(n^{2}-n\right)+\frac{1}{2}\left(n^{2}-n\right)+n^{2} \\
=1+4 n+n^{2}-n+n^{2}, \quad=2 n^{2}+3 n+1, \quad=\frac{1}{2}(2 n+1)(2 n+2)
\end{gathered}
$$

equations.
We can, by what precedes, at once express the conditions which must be satisfied in order that a differential expression $X_{1} d x_{1}+X_{2} d x_{2}+\ldots+X_{\nu} d x_{\nu}$, may be reducible to one of the special forms $d f, F d f, d f+F_{1} d f_{1}, \& c$.; viz. if we have

$$
\begin{array}{rlrl}
X_{1} d x_{1}+X_{2} d x_{2}+\ldots+X_{\nu} d x_{\nu}= & d f, & \text { then } 12 & =0, \& c . \\
& =F d f, & " & 0123=0, \& c . \\
= & d f+F_{1} d f_{1}, & " & 1234=0, \& c . \\
= & F d f+F_{1} d f_{1}, \quad " & 012345=0, \& c ., \\
& \& c ., & & \& c .,
\end{array}
$$

where the numbers $12,1234,12345$, \&c., represent any combinations out of the numbers $1,2,3, \ldots, \nu$. Of course, if ν is not sufficiently large to furnish such a combination, then there is no condition to be satisfied; thus if

$$
X_{1} d x_{1}+X_{2} d x_{2}+X_{3} d x_{3}=d f+F_{1} d f_{1}
$$

there is no condition to be satisfied.

