953.

ON THE NINE-POINTS CIRCLE.

[From the Messenger of Mathematics, vol. XXIII. (1894), pp. 23-25.]

IF from the angles A, B, C of a triangle we draw tangents to a conic Ω , meeting the opposite sides in the points α , α' ; β , β' ; γ , γ' respectively, then it is known that these six points lie in a conic. In particular, if the conic Ω reduce itself to a point-pair OO', then we have the theorem that, if from the angles A, B, C, we draw to the point O lines meeting the opposite sides in the points α , β , γ respectively; and to the point O' lines meeting the opposite sides in the points α' , β' , γ' respectively, then the six points α , α' ; β , β' ; γ , γ' lie in a conic. We may enquire the conditions under which this conic becomes a circle. It may be remarked that one of the points say O' remains arbitrary: for if through the points α' , β' , γ' , we draw a conic (or in particular a circle) meeting the three sides respectively in the remaining points α , β , γ , then (by a converse of the general theorem) the lines $A\alpha$, $B\beta$, $C\gamma$ will meet in a point O.

Using trilinear coordinates (x, y, z) and writing x : y : z = a : b : c for the point O, and x : y : z = a' : b' : c' for the point O', it is at once seen that the equation of the conic through the six points is

$$aa'x^{2} + bb'y^{2} + cc'z^{2} - (bc' + b'c)yz - (ca' + c'a)zx - (ab' + a'b)xy = 0;$$

in fact, writing herein successively x = 0, y = 0, z = 0, we see that the equation is satisfied by x = 0, (by - cz)(b'y - c'z) = 0; by y = 0, (cz - ax)(c'z - a'x) = 0; and by z = 0, (ax - by)(a'x - b'y) = 0 respectively. And it is to be observed that the equation may also be written

$$(aa'x + bb'y + cc'z)(x + y + z) - (b + c)(b' + c')yz - (c + a)(c' + a')zx - (a + b)(a' + b')xy = 0.$$

Suppose now that x, y, z represent areal coordinates, viz. that (x, y, z) are proportional to the perpendicular distances of the point from the sides, each divided by the

www.rcin.org.pl

ON THE NINE-POINTS CIRCLE.

518

perpendicular distance of the opposite angle from the same side; or, what is the same thing, coordinates such that the equation of the line infinity is x + y + z = 0. Then if A, B, C denote the angles of the triangle, the general equation of a circle is

$$(yz\sin^2 A + zx\sin^2 B + xy\sin^2 C) + (\lambda x + \mu y + \nu z)(x + y + z) = 0,$$

where λ , μ , ν are arbitrary coefficients.

Hence, putting this

$$= \Theta \{-(b+c)(b'+c')yz - (c+a)(c'+a')zx - (a+b)(a'+b')xy + (aa'x+bb'y+cc'z)(x+y+z)\},$$
st have

 $\Theta (b+c) (b'+c') = -\sin^2 A,$ $\Theta (c+a) (c'+a') = -\sin^2 B,$ $\Theta (a+b) (a'+b') = -\sin^2 C;$

and then

we mu

$$\Theta aa' = \lambda$$
, $\Theta bb' = \mu$, $\Theta cc' = \nu$.

which last equations determine the values of λ , μ , ν .

Taking a', b', c' at pleasure, we have

$$2a = \frac{1}{\Theta} \left(\frac{\sin^2 A}{b' + c'} - \frac{\sin^2 B}{c' + a'} - \frac{\sin^2 C}{a' + b'} \right),$$

$$2b = \frac{1}{\Theta} \left(-\frac{\sin^2 A}{b' + c'} + \frac{\sin^2 B}{c' + a'} - \frac{\sin^2 C}{a' + b'} \right),$$

$$2c = \frac{1}{\Theta} \left(-\frac{\sin^2 A}{b' + c'} - \frac{\sin^2 B}{c' + a'} + \frac{\sin^2 C}{a' + b'} \right),$$

viz. a, b, c having these values, the conic through the six points α , β , γ , α' , β' , γ' is the circle having for its equation

 $yz\sin^{2} A + zx\sin^{2} B + xy\sin^{2} C + \Theta (aa'x + bb'y + cc'z)(x + y + z) = 0;$

and we may obviously without loss of generality give to Θ any specific value, say $\Theta = 1$.

If a' = b' = c', =1, then we have

$$-4a = \frac{1}{\Theta} \left(-\sin^2 A + \sin^2 B + \sin^2 C \right),$$

$$-4b = \frac{1}{\Theta} \left(-\sin^2 A - \sin^2 B + \sin^2 C \right),$$

$$-4c = \frac{1}{\Theta} \left(-\sin^2 A + \sin^2 B - \sin^2 C \right),$$

or writing for convenience $\Theta = -\frac{1}{2}$, the values of a, b, c are

 $\frac{1}{2}(-\sin^2 A + \sin^2 B + \sin^2 C), \quad \frac{1}{2}(\sin^2 A - \sin^2 B + \sin^2 C), \quad \frac{1}{2}(\sin^2 A + \sin^2 B - \sin^2 C)$ respectively. But we have

$$A + B + C = \pi,$$

www.rcin.org.pl

and thence

953]

 $\sin^2 A + \sin^2 B - \sin^2 C,$ = $\sin^2 A + \sin^2 B - \sin^2 (A + B)$ = $2 \sin A \sin B (\sin A \sin B - \cos A \cos B),$ = $-2 \sin A \sin B \cos (A + B),$ = $2 \sin A \sin B \cos C,$

and we thus have

a, b, $c = \sin B \sin C \cos A$, $\sin C \sin A \cos B$, $\sin A \sin B \cos C$,

(or, what is the same thing, $a: b: c = \cot A : \cot B : \cot C$), and the equation of the circle is

$yz\sin^2 A + zx\sin^2 B + xy\sin^2 C$

 $-\frac{1}{2}(x\sin B\sin C\cos A + y\sin C\sin A\cos B + z\sin A\sin B\cos C)(x + y + z) = 0.$

We thus have x: y: z = 1: 1: 1 for the point O', and $x: y: z = \cot A : \cot B : \cot C$ for the point O; viz. O' is the point of intersection of the lines from the angles to the mid-points of the opposite sides respectively; and O is the point of intersection of the perpendiculars from the angles on the opposite sides respectively: and the foregoing equation is consequently that of the Nine-points Circle.