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1 . Introduction

A frequent source of anisotropy of elastic materials is the presence of reinforcing fibres which display strong
stiffening properties accompanying their stretching. This phenomenon appears as near inextensibility and it
is in some way similar to near incompressibility which is observed for the ruber-like materials. Numerical
modeling of a nearly inextensible material by the Finite Element Method (FEM) may cause similar difficulties
as approximation of a nearly incompressible solid body: unstable or oscilatory solutions. The remedy for
incompressible mechanics is the well known splitting of the description of kinematics into the volumetric part
(dilatation) θ and the unimodular deformation gradient. The mixed formulation with adequate approximation
in the Qp and P p−1 finite element spaces for the displacements u and the auxiliary variables θ and pressure p,
respectively, allows one for effective modeling of the nearly incompressible solid [1]. In this work we propose
analogous approach to approximation of elastic materials with two fibres reinforcement. One fibre case was
studied in [2].

2 . Description of kinematics and stresses

In this section we briefly present the main principles of constructing the mixed formulation for the materials
reinforced with two families of fibres. We assume that the two preferred directions of reinforcement are given
by two distinct fields of unit vectors GA, A = 1, 2 in the reference configuration. We augment them with the
third direction G3 := G1 ×G2/|G1 ×G2|. We consider GA a basis of the curvilinear system of coordinates
corresponding to some parametrization X = X(ξA), A = 1, 2, 3, i.e. GA = ∂X/∂ξA. We consider also the
basisGA of the adjoint space (of linear functionals) which is dual toGA: 〈GA,GB〉 = δAB. We use convective
spatial coordinates, i.e. the spatial basis vectors are generated by the parametrization x = x(ζa), ga = ∂x/∂ζa

for wich ζ = ξ. It is known that the deformation gradient F , its adjoint F ∗ and their inverses F−1 and F−∗

take the form:

(2.1) F = δaAga ⊗GA, F−1 = δAaGA ⊗ ga, F ∗ = δaAG
A ⊗ ga, F−∗ = δAa g

a ⊗GA,

where ga denotes the adjoint basis dual to ga, i.e. satisfying the condition 〈ga, gb〉 = δab . We also introduce the
material and spatial metric tensors:

(2.2) G = GAB G
A ⊗GB and g = gab g

a ⊗ gb,

where GAB := GA ·GB and gab := ga · gb. The right Cauchy-Green deformation tensor takes the form:

(2.3) C = F ∗gF , C = δaAδ
b
Bgab G

A ⊗GB.

We also introduce the structural tensors corresponding to the preferred directions of fibres:

(2.4) AF := GF ⊗GF (no sum), F = 1, 2.
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The stretches λF of the directionsGF and the cosines between their images gF can be found as follows:

(2.5) λF = 〈C,AF 〉1/2, αFG = gF · gG/(λFλG).

We express the Cauchy-Green deformation tensor in terms of these new variables applying the extra substitution
λF (C) = λ̃F , F = 1, 2 reflecting the anticipated procedure of separate numerical approximation of stretches
along fibres:

(2.6) C̃ = C̃(C, λ̃1, λ̃2) =



λ̃21 α12λ̃1λ̃2 α13λ̃1λ3
• λ̃22 α23λ̃2λ3
• • λ23




AB

GA ⊗GB.

With these notions in mind we propose the ansatz for the strain energy function Ψ = Ψ(C;A1,A2) in the form
taking into account that C̃ is expressed by the dependent on deformation tensorC and separately approximated
stretches λ̃F :

(2.7) Ψ̃(C̃, λ̃1, λ̃2;A1,A2) = Ψ(C;A1,A2).

Selecting separate approximation of stretches λ̃F suggests assuming the following augmented strain energy
ansatz with the Lagrange multipliers ρ̃F corresponding to the constraints λ̃F = λF (C), F=1,2:

(2.8) Ψ = Ψ̃(C̃, λ̃1, λ̃2;A1,A2)−
∑2

F=1 ρ̃
F [λ̃F − λF (C)].

The assumptions above and the Clausius-Plank inequality lead to the following constitutive equations for the
2nd Piola-Kirchhoff stress:

(2.9)





S =
∑2

F=1 ρ̃
Fλ−1

F AF + S̃,

S̃ = ĨP

[
2
∂Ψ̃

∂C̃

]
, with ĨP :=

[
∂C̃

∂C

]∗
,

ρ̃F = ∂Ψ̃/∂λ̃F ,

The mixed formulation for (u, ρ̃F , λ̃F ) involves the principle of virtual work (expressing equilibrium), the
identification λ̃F = λF (C) and the constitutive relation for ρ̃F , and it takes the form: find (u, ρ̃F , λ̃F ) ∈
(V + u0)×Q4 such that:

(2.10)





∫

Ω
〈DuE(u)[δu],S〉dV=

∫

Ω
〈Gδu, B̄〉dV+

∫

ΓN

〈Gδu,P̄ 〉dA,
∫

Ω
δρ̃F {λF (C)− λ̃F }dV = 0,

∫

Ω
δλ̃F {∂Ψ̃/∂λ̃F − ρ̃F }dV = 0,

for all δu ∈ V, δλ̃F , δρ̃
F ∈ Q, V = {v ∈ H1(Ω) : v = 0, on ΓD}, Q = L2(Ω). In (2.10) B̄ denotes the

volume forces, P̄ and u0 are the Neumann and Dirichlet data on ΓN and ΓD. In addition E = 1
2(C − I)

and DuE(u)[δu] = 1
2(F

∗∇δu +∇∗δuF ). The FE approximation of (2.10) results in a system of nonlinear
equations which is solved using the Newton-Raphson algorithm applied to linearization of (2.10).

Numerical tests confirm effectivity of the proposed formulation for strongly anisotropic materials.
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