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1. Introduction 
 
In recent years, we observe a significant development of new materials, particularly composites and 
metamaterial, as well as the technological advancements that these new materials have allowed. To reduce 
the cost of experimental testing during the design stage of those materials, digital modeling can be 
incorporated. In order to represent correctly the materials’ global mechanical behavior, it is necessary to 
include certain features of the microscale when modeling. However, the complexity of the problem leads to a 
large number of degree of freedom (dof). Therefore, we propose an application of the Multiscale Finite 
Element Method (MsFEM) [1] to reduce the computational cost. 

The MsFEM is a promising method used to model heterogeneous materials. It requires neither  the 
assumption of scale separation nor the periodicity of the microstructure. Furthermore, the calculations can be 
easily parallelized, since the MsFEM special macroscale shape functions that capture microscale details are 
computed independently, in appropriate groups of elements. 

The proposed multiscale modeling will contribute to development of efficient and reliable tools for a better 
understanding of the relationship between the additive manufacturing process, metamaterial microstructure, 
and the overall mechanical properties of 3D printed elements. 

2. Problem formulation 
 
We consider the linear elasticity problems formulated below for heterogeneous or porous materials. 

Find field of displacements u(x) in a domain Ω such that: 

(1) 

with kinematic ( ) and static ( ) boundary conditions specified on  and  respectively, where 
 and continuity conditions at the interface between subdomains . 

The strong ellipticity and boundedness of the microscale material parameter tensor  is assumed (i.e., 
, ). The material parameters are differentiable 

(typically constant) in each , and  denotes a body force component. 

The discrete counterpart of problem (1) may be written in the following matrix form 

(2) 

where  is the vector dof and ,  denote the assembled matrix and vector, respectively. 

The MsFEM uses two meshes of finite elements. A coarse mesh is generated at the macroscale and is locally 
refined, for each coarse element node. This creates a set of fine meshes for every element (see example in 
Fig. 1). The most important issue of the MsFEM is an approximation of solutions of the following auxiliary 
problems to determine special shape functions 
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Given , find  such that: 

(3) 

In other words, problem (3) defines the interpolation operator that transfers  coarse element dof into  fine 
mesh dof. Such a mapping is represented by a matrix  and is used to compute the coarse element matrix 

, vector   of fine mesh. 

(2)  

Assembling such a matrixes and vectors leads to a system of macroscale algebraic equations with relatively 
small number of dof. 

3. Preliminary results 

 

Below, we present a study of convergence of the method for on exemplary 2D problem (see Fig. 1).  

 
 
 

 
 
 

 
 

 
Fig. 1: Numerical example: the problem scheme and 4 × 4 element coarse mesh (left), fine mesh used for one 

coarse element (center), p-convergence of the error in  and energy norms (right). 
 

4. Concluding remarks 

 
The results presented in the previous section as well as some other examples known from both literature and 
other research [2] indicate that MsFEM with higher order application is an efficient method for modeling of 
advanced materials. An experimental validation of the approach is conducted and its results will be discussed 
at the conference. 
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