768.

NOTE ON LANDEN'S THEOREM.

[From the Proceedings of the London Mathematical Society, vol. xiII. (1882), pp. 47, 48. Read November 10, 1881.]

Landen's theorem, as given in the paper "An Investigation of a General Theorem for finding the length of any Are of any Conic Hyperbola by means of two Elliptic Arcs, with some other new and useful Theorems deduced therefrom," Phil. Trans., t. Lxv. (1775), pp. 283-289, is, as appears by the title, a theorem for finding the length of a hyperbolic arc in terms of the length of two elliptic arcs; this theorem being obtained by means of the following differential identity, viz., if

$$
t=g x \sqrt{\frac{m^{2}-x^{2}}{m^{2}-g x^{2}}},
$$

where

$$
g=\frac{m^{2}-n^{2}}{n^{2}}
$$

then

$$
\sqrt{\frac{m^{2}-g x^{2}}{m^{2}-x^{2}}} d x=\left\{\frac{1}{2}+\frac{1}{4} \sqrt{\frac{(m-n)^{2}-t^{2}}{(m+n)^{2}-t^{2}}}+\frac{1}{4} \sqrt{\frac{(m+n)^{2}-t^{2}}{(m-n)^{2}-t^{2}}}\right\} d t,
$$

(this is exactly Landen's form, except that he of course writes \dot{x}, \dot{t} in place of $d x$, $d t$ respectively): viz., integrating each side, and interpreting geometrically in a very ingenious and elegant manner the three integrals which present themselves, he arrives at his theorem for the hyperbolic arc; but with this I am not now concerned.

Writing for greater convenience $m=1, n=k^{\prime}$, and therefore $g=k^{2}$, if as usual $k^{2}+k^{\prime 2}=1$, the transformation is

$$
t=k^{2} x \sqrt{\frac{1-x^{2}}{1-k^{2} x^{2}}},
$$

C. XI.
leading to

$$
\sqrt{\frac{1-k^{2} x^{2}}{1-x^{2}}} d x=\left\{\frac{1}{2}+\frac{1}{4} \sqrt{\frac{\left(1-k^{\prime}\right)^{2}-t^{2}}{\left(1+k^{\prime}\right)^{2}-t^{2}}}+\sqrt{\frac{\left(1+k^{\prime}\right)^{2}-t^{2}}{\left(1-k^{\prime}\right)^{2}-t^{2}}}\right\} d t
$$

The form in which the transformation is usually employed (see my Elliptic Functions, pp. 177, 178) is

$$
y=\left(1+k^{\prime}\right) x \sqrt{\frac{1-x^{2}}{1-k^{2} x^{2}}},
$$

leading to

$$
\frac{\left(1+k^{\prime}\right) d x}{\sqrt{1-x^{2} .1-k^{2} x^{2}}}=\frac{d y}{\sqrt{1-y^{2} \cdot 1-\lambda^{2} y^{2}}}
$$

where

$$
\lambda=\frac{1-k^{\prime}}{1+k^{\prime}} .
$$

If, to identify the two forms, we write $y=\frac{t}{1-k^{\prime}}$ and in the last equation introduce t in place of y, the last equation becomes

$$
\frac{d x}{\sqrt{1-x^{2} .1-k^{2} x^{2}}}=\frac{d t}{\sqrt{\left\{\left(1-k^{\prime}\right)^{2}-t^{2}\right\}\left\{\left(1+k^{\prime}\right)^{2}-t^{2}\right\}}}
$$

Comparing with Landen's form, in order that the two may be identical, we must have

$$
\begin{gathered}
1-k^{2} x^{2}=\left\{\frac{1}{2}+\frac{1}{4} \sqrt{\frac{\left(1-k^{\prime}\right)^{2}-t^{2}}{\left(1+k^{\prime}\right)^{2}-t^{2}}}+\frac{1}{4} \sqrt{\frac{\left(1+k^{\prime}\right)^{2}-t^{2}}{\left(1-k^{\prime}\right)^{2}-t^{2}}}\right\} \\
\times \sqrt{\left(1-k^{\prime}\right)^{2}-t^{2}} \sqrt{\left(1+k^{\prime}\right)^{2}-t^{2}}
\end{gathered}
$$

viz., this is

$$
1-k^{2} x^{2}=\frac{1}{4}\left\{\sqrt{\left(1-k^{\prime}\right)^{2}-t^{2}}+\sqrt{\left(1+k^{\prime}\right)^{2}-t^{2}}\right\}^{2},
$$

that is,

$$
1-k^{2} x^{2}=\frac{1}{2}\left[1+k^{\prime 2}-t^{2}+\sqrt{\left.\left\{\left(1-k^{\prime}\right)^{2}-t^{2}\right\}\left\{\left(1+k^{\prime}\right)^{2}-t^{2}\right\}\right]}\right.
$$

where the function under the radical sign is

$$
\left(1-k^{\prime 2}\right)^{2}-2\left(1+k^{\prime 2}\right) t^{2}+t^{4}(=T \text { suppose }) ;
$$

and this must consequently be a form of the original integral equation

$$
t=k^{2} x \sqrt{\frac{1-x^{2}}{1-k^{2} x^{2}}}
$$

In fact, squaring and solving in regard to x^{2} with the assumed sign of the radical, we have

$$
x^{2}=\frac{k^{2}+t^{2}-\sqrt{ } T}{2 k^{2}}
$$

corresponding to an equation given by Landen. And we thence have

$$
1-k^{2} x^{2}=\frac{1}{2}\left\{2-k^{2}-t^{2}+\sqrt{ } T\right\}, \quad=\frac{1}{2}\left\{1+k^{\prime 2}-t^{2}+\sqrt{ } T\right\},
$$

which is the required expression for $1-k^{2} x^{2}$.
The trigonometrical form $\sin \left(2 \phi^{\prime}-\phi\right)=c \sin \phi$ of the relation between y and x does not occur in Landen; it is employed by Legendre, I believe, in an early paper, Mém. de l'Acad. de Paris, 1786, and in the Exercices, 1811, and also in the Traité des Fonctions Elliptiques, 1825, and by means of it he obtains an expression for the arc of a hyperbola in terms of two elliptic functions, $E(c, \phi), E\left(c^{\prime}, \phi^{\prime}\right)$, showing that the arc of the hyperbola is expressible by means of two elliptic arcs,-this, he observes, "est le beau théorème dont Landen a enrichi la géométrie." We have, then (1828), Jacobi's proof, by two fixed circles, of the addition-theorem (see my Elliptic Functions, p. 28), and the application of this (p. 30) to Landen's theorem is also due to Jacobi, see the "Extrait d'une lettre adressée à M. Hermite," Crelle, t. xxxir. (1846), pp. 176-181; the connection of the demonstrations, by regarding the point, which is alone necessary for Landen's theorem as the limit of the smaller circle in the figure for the addition-theorem is due to Durège (see his Theorie der elliptischen Functionen, Leipzig, 1861, pp. 168, et seq.).

