777.

A SOLVABLE CASE OF THE QUINTIC EQUATION.

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xviII. (1882), pp. 154-157.]

The roots of the general quintic equation

$$
\left(a, b, c, d, e, f \chi(x, 1)^{5}=0\right.
$$

may be taken to be

$$
\begin{aligned}
& -\frac{b}{a}+B+C+D+E \\
& -„+\omega^{4},+\omega^{3}, \not+\omega^{2}{ }^{\prime}+\omega^{\prime} \\
& -„+\omega^{3},+\omega_{„}+\omega^{4}{ }^{\prime}+\omega^{2}, \\
& -„+\omega^{2},+\omega^{4},+\omega_{„}+\omega^{3}, \\
& -{ }^{\prime}+\omega{ }^{\prime}+\omega^{2},{ }^{2}+\omega^{3},+\omega^{4}, \text {, }
\end{aligned}
$$

where ω is an imaginary fifth root of unity; and if one of the four functions B, C, D, E is $=0$, say if $E=0$ (this implies of course a single relation between the coefficients), then the equation is solvable.

Writing $x=\xi-\frac{b}{a}$, we have

$$
(a, b, c, d, e, f)\left(\xi-\frac{b}{a}, 1\right)^{5}=\left(a^{\prime}, 0, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime} \backslash \xi, 1\right)^{5},
$$

where

$$
\begin{aligned}
& a^{\prime}=a, \\
& a c^{\prime}=a c-b^{2}, \\
& a^{2} d^{\prime}=a^{2} d-3 a b c+2 b^{3}, \\
& a^{3} e^{\prime}=a^{3} e-4 a^{2} b d+6 a b^{2} c-3 b^{4}, \\
& a^{4} f^{\prime}=a^{4} f-5 a^{3} b e+10 a b^{2} d-10 a b^{2} c+4 b^{5},
\end{aligned}
$$

and the roots of the new equation

$$
\left(a^{\prime}, 0, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime} \backslash \xi, 1\right)^{5}=0
$$

have the above-mentioned values, omitting therefrom the terms $-\frac{b}{a}$; we find without difficulty

$$
\begin{aligned}
2 \frac{c^{\prime}}{a^{\prime}} & =-B E-C D \\
2 \frac{d^{\prime}}{\overline{a^{\prime}}}= & -B^{2} D-B C^{2}-C E^{2}-D^{2} E \\
\frac{e^{\prime}}{a^{\prime}} & =-B^{3} C-B^{2} E^{2}+B C D E+B D^{3}+C^{3} E+C^{2} D^{2}-D E^{2} \\
\frac{f^{\prime}}{a^{\prime}}= & -B^{5}+5 B^{3} D E-5 B^{2} C^{2} E-5 B^{2} C D^{2}+5 B C^{3} D+5 B C E^{3} \\
& -5 B D^{2} E^{2}-C^{5}+5 C D^{3} E-5 C D^{2} E^{2}-D^{5}-E^{5}
\end{aligned}
$$

and hence, when $E=0$, we have

$$
\begin{aligned}
& 2 \frac{c^{\prime}}{a^{\prime}}=-C D \\
& 2 \frac{d^{\prime}}{a^{\prime}}=-B^{2} D-B C^{2} \\
& \frac{e^{\prime}}{a^{\prime}}=-B^{3} C-B D^{3}-C^{2} D^{2} \\
& \frac{f^{\prime}}{a^{\prime}}=-B^{5}-5 B^{2} C D^{2}+5 B C^{3} D-C^{5}-D^{5}
\end{aligned}
$$

or, as these may be written,

$$
\begin{array}{ll}
-2 \frac{c^{\prime}}{a^{\prime}} & =C D \\
-2 \frac{d^{\prime}}{a^{\prime}} & =B^{2} D+B C^{2} \\
-\frac{e^{\prime}}{a^{\prime}}-4 \frac{c^{\prime 2}}{a^{\prime 2}} & =B^{3} C-B D^{3} \\
-\frac{f^{\prime}}{a^{\prime}} & =B^{5}+C^{5}+D^{5}-10 \frac{c^{\prime}}{a^{\prime}}\left(B^{2} D-B C^{2}\right)
\end{array}
$$

equations which imply a single relation between the coefficients $a^{\prime}, c^{\prime}, d^{\prime}, e^{\prime}, f^{\prime}$. Supposing this satisfied, we may attend only to the first three equations; or, writing for convenience,

$$
\begin{array}{ll}
\gamma=-2 \frac{c^{\prime}}{a^{\prime}}, & =-\frac{2}{a^{2}}\left(a c-b^{2}\right) \\
\delta=-2 \frac{d^{\prime}}{a^{\prime}}, & =-\frac{2}{a^{3}}\left(a^{2} d-3 a b c+2 b^{3}\right) \\
\theta=-\frac{e^{\prime}}{a^{\prime}}-4 \frac{c^{\prime 2}}{a^{\prime 2}}, & =-\frac{1}{a^{4}}\left\{a^{2}\left(a e-4 b d+3 c^{2}\right)+\left(a c-b^{2}\right)^{2}\right\}
\end{array}
$$

the equations are

$$
\begin{aligned}
& \gamma=C D \\
& \delta=B\left(B D+C^{2}\right) \\
& \theta=B\left(D^{3}-B^{2} C\right)
\end{aligned}
$$

The first equation gives $C=\frac{\gamma}{D}$, and substituting this value in the other two equations, we have

$$
\begin{aligned}
& B^{2} D^{3}+B \gamma^{4}-\delta D^{2}=0 \\
& B^{3} \gamma+B D^{4}+\theta D=0
\end{aligned}
$$

Eliminating B, the result is obtained in the form Det. $=0$. where in the last column of the determinant each term is divisible by D; and omitting this factor, the result is

$$
\left\lvert\,\right.
$$

If, in order to develope the determinant, we consider it as a sum of products, each first factor being a minor composed out of columns 1 and 2 , and the second factor being the complementary minor composed out of columns 3, 4, 5 (the several products being of course taken each with its proper sign), the expansion presents itself in the form

$$
\begin{aligned}
& D^{3} \gamma\left(-\theta \delta \gamma^{2} D^{2}+\delta^{2} D^{7}\right), \\
- & D^{6}\left(-\theta \gamma^{2} D^{4}+\delta D^{9}-\theta^{2} D^{4}\right) \\
- & \gamma D^{3},-\delta D^{2}\left(\delta D^{5}-\theta \gamma^{2}\right) \\
+ & \gamma^{3}\left(\gamma^{2} \delta D^{5}-\theta \delta D^{5}-\theta \gamma^{4}\right) \\
- & \gamma^{2} \delta^{3} D^{5} .
\end{aligned}
$$

Hence, collecting, and changing the sign of the whole expression, we obtain

$$
\delta D^{15}-\left(2 \gamma \delta^{2}+\gamma^{2} \theta+\theta^{2}\right) D^{10}+\left(-\gamma^{3} \delta+3 \gamma \delta \theta+\delta^{3}\right) \gamma^{2} D^{5}+\gamma^{7} \theta=0,
$$

a cubic equation for D^{5}. We have then as above $C=\frac{\gamma}{D}$, and B is given rationally as the common root of the foregoing quadric and cubic equations satisfied by B.

Substituting for γ, δ, θ their values in terms of the original coefficients, the equation for D^{5} becomes

$$
\begin{aligned}
& 2\left(a^{2} d-3 a b c+2 b^{3}\right)(a D)^{15} \\
& +\left\{\begin{array}{c}
a^{4}\left(a e-4 b d+3 c^{2}\right)^{2} \\
+a^{2}\left(a c-b^{2}\right)^{2}\left(a e-4 b d+3 c^{2}\right) \\
-16\left(a c-b^{2}\right)\left(a^{2} d-3 a b c+2 b^{3}\right)^{2}
\end{array}\right\}(a D)^{10} \\
& +4\left(a c-b^{2}\right)^{2}\left\{\begin{array}{cc}
28\left(a c-b^{2}\right)^{3}\left(a^{2} d-3 a b c+2 b^{3}\right) \\
+12 a^{2}\left(a c-b^{2}\right)\left(a^{2} d-3 a b c+2 b^{3}\right)\left(a e-4 b d+3 c^{2}\right) \\
+8 & \left(a^{2} d-3 a b c+2 b^{3}\right)^{3}
\end{array}\right\}(a D)^{5} \\
& -128\left(a c-b^{2}\right)^{7}\left\{a^{2}\left(a e-4 b d+3 c^{2}\right)+\left(a c^{2}-b^{2}\right)^{2}\right\}=0,
\end{aligned}
$$

and the solution of the given quintic equation thus ultimately depends upon that of this cubic equation.

