778.

[ADDITION TO MR HUDSON'S PAPER "ON EQUAL ROOTS OF EQUATIONS."]

[From the Quarterly Journal of Pure and Applied Mathematics, vol. xviII. (1882), pp. 226-229.]

It seems desirable to present in a more developed form some of the results of the foregoing paper.

Thus, if the equation $\left(a_{0}, a_{1}, \ldots, a_{n} \gamma(x, 1)^{n}=0\right.$ of the order n has $n-v$ equal roots, where v is not $>\frac{1}{2} n-1$, then we have $\psi(r, v+1, m)=0$, where m has any one of the values $0,1, \ldots, n-2 v-2$, and r any one of the values

$$
2 v+2,2 v+3, \ldots, n-m .
$$

The signification is

$$
\begin{array}{rlcccl}
\psi(r, v+1, m)= & r & 1 & \cdot \frac{1}{[r]^{v+2}} & a_{m} & a_{r+m} \\
& -(r-2) & \cdot \frac{v+1}{1} \cdot \frac{1}{[r-1]^{v+2}} & a_{m+1} & a_{r+m-1} \\
& +(r-4) & \frac{v+1 \cdot v+2}{1.2} \cdot \frac{1}{[r-2]^{v+2}} & a_{m+2} & a_{r+m-2} \\
& \vdots & & \frac{[v+1]^{s}}{[s]^{s}} \cdot \frac{1}{[r-s]^{v+2}} & a_{m+s} & a_{r+m-s} \\
& +(-)^{s}(r-2 s) & \vdots & & 1 \\
& +(-)^{v+1}(r-2 v-2) . & & \cdot \frac{1}{[r-v-1]^{0+2}} a_{m+v+1} a_{r+m-v-1} .
\end{array}
$$

Thus, when $v=0$, the condition is

$$
\left.\begin{array}{ccc}
r & \frac{1}{r \cdot r-1} & a_{m}
\end{array} a_{r+m}\right)
$$

that is,

$$
a_{m} a_{r+m}-a_{m+1} a_{r+m-1}=0,
$$

satisfied when the equation has all its roots equal.
The values of m are $0,1,2, \ldots, n-2$, and those of r are $2 v+2,2 v+3, \ldots, n-m$; in particular, if $m=0$, the values of r are $2,3, \ldots, n$, and the corresponding conditions are

$$
\begin{aligned}
& a_{0} a_{2}-a_{1}^{2}=0 \\
& a_{0} a_{3}-a_{1} a_{2}=0, \\
& \vdots \\
& a_{0} a_{n}-a_{1} a_{n-1}=0,
\end{aligned}
$$

and so for the different values of m up to the final value $n \mathbf{- 2}$, for which $r=2$, and the condition is

$$
a_{n-2} a_{n}-a_{n-1}^{2}=0 ;
$$

we have thus, it is clear, the whole series of conditions included in

$$
\left\|\begin{array}{l}
a_{0}, a_{1}, a_{2}, \ldots, a_{n-2}, a_{n-1} \\
a_{1}, a_{2}, a_{3}, \ldots, a_{n-1}, a_{n}
\end{array}\right\|=0
$$

which are obviously satisfied in the case in question of the roots being all equal.
Again, when $v=1$, the condition for $n-1$ equal roots is

$$
\left.\begin{array}{c}
r \quad .1 \cdot \frac{1}{r \cdot r-1 \cdot r-2} \quad a_{m} a_{r+m} \\
-(r-2) \cdot 2 \cdot \frac{1}{r-1 \cdot r-2 \cdot r-3} a_{m+1} a_{r+m-1} \\
+(r-4) \cdot 1 \cdot \frac{1}{r-2 \cdot r-3 \cdot r-4} a_{m+2} a_{r+m-2}
\end{array}\right\}=0,
$$

that is,

$$
\frac{a_{m} a_{r+m}}{r-1 \cdot r-2}-\frac{2 a_{m+1} a_{r+m-1}}{r-1 \cdot r-3}+\frac{a_{m+2} a_{r+m-2}}{r-2 \cdot r-3}=0
$$

or, what is the same thing,

$$
(r-3) a_{m} a_{r+m}-2(r-2) a_{m+1} a_{r+m-1}+(r-1) a_{m+2} a_{r+m-2}=0
$$

where $n=4$ at least, and m, r have the values

$$
\begin{array}{l|l}
m= & 0,1,2, \ldots, n-4 \\
r= & 4,4 \\
5,5 \\
\vdots & \vdots \\
\vdots & n-1 \\
n
\end{array}
$$

thus, when $n=4$, the only values are $m=0, r=4$, and the condition is

$$
a_{0} a_{4}-4 a_{1} a_{3}+3 a_{2}{ }^{2}=0
$$

Similarly, when $v=2$, the condition for $n-2$ equal roots is found to be

$$
\frac{a_{m} a_{r+m}}{r-1 \cdot r-2 \cdot r-3}-\frac{3 a_{m+1} a_{r+m-1}}{r-1 \cdot r-3 \cdot r-4}+\frac{3 a_{m+2} a_{r+m-2}}{r-2 \cdot r-3 \cdot r-5}-\frac{a_{m+3} a_{r+m-3}}{r-3 \cdot r-4 \cdot r-5}=0 ;
$$

or, what is the same thing,

$$
\begin{gathered}
r-4 \cdot r-5 \cdot a_{m} a_{r+m} \\
-3 \cdot r-2 \cdot r-5 \cdot a_{m+1} a_{r+m-1} \\
+3 \cdot r-1 \cdot r-4 \cdot a_{m+2} a_{r+m-2} \\
-\quad . r-1 \cdot r-2 \cdot a_{m+3} a_{r+m-3}=0,
\end{gathered}
$$

where $n=6$ at least, and m, r have the values

$$
\begin{array}{r|ll}
m= & 0, & 1, \ldots, n-6 \\
r= & 6, & 6, \\
7, & 7 \\
\vdots & \vdots \\
\vdots & n-1
\end{array}
$$

Observe that the sum of the coefficients is $=0$, viz.

$$
(r-4)(r-5)-3(r-2)(r-5)+3(r-1)(r-4)-(r-1)(r-2)=0,
$$

this should obviously be the case, since the conditions for $n-2$ equal roots must be satisfied when the roots are all of them equal; and the property serves as a verification.

It is to be remarked that the equation $\psi(r, v+1, m)=0$ does not in all cases give all the conditions for the existence of $n-v$ equal roots in an equation of the order n; thus when $n=3$ and $v=1$, we cannot by means of it obtain the condition that a cubic equation may have 2 equal roots. The problem really considered is that of the determination of those quadric functions of the coefficients which vanish in the case of $n-v$ equal roots; and in the case in question ($n=3, v=1$) there is no quadric function which vanishes, but the condition depends on a cubic function.

The question of the quadric functions which vanish in the case of $n-v$ equal roots, and to a small extent that of the cubic functions which thus vanish, is considered in Dr Salmon's "Note on the conditions that an equation may have equal roots," Camb. and Dublin Math. Jour., t. v. (1850), pp. 159-165, and in particular the equation there obtained p. 161 is the equation $\psi(0, v+1, n)=0$.

