779.

[NOTE ON MR JEFFERY'S PAPER "ON CERTAIN QUARTIC CURVES WHICH HAVE A CUSP AT INFINITY, WHEREAT THE LINE AT INFINITY IS A TANGENT."]

[From the Proceedings of the London Mathematical Society, vol. xiv. (1883), p. 85.]
The assumed form $\kappa \alpha^{3} \beta=u_{2}$, or, as this is afterwards written,

$$
2 \kappa x^{3} y=a x^{2}+2 b x y+c y^{2}+2 e x+2 d y+\lambda,
$$

is, I think, introduced without a proper explanation. Say, the form is $\left.x^{3} y=z^{2}(*) x, y, z\right)^{2}$, it ought to be shown how for a cuspidal quartic we arrive at this form; viz. taking the cusp to be at the point $(x=0, z=0), z=0$ for the tangent at the cusp, and $x=0$ an arbitrary line through the cusp; then the line $z=0$ besides intersects the curve in a single point, and, if $y=0$ is taken as the tangent at that point, the equation of the curve must, it can be seen, be of the form

$$
\left(x^{3}+\theta x^{2} z\right) y=z^{2}(a, b, c, f, g, h \gamma x, y, z)^{2} .
$$

The conic $(a, b, c, f, g, h \nmid x, y, z)^{2}=0$ touches the quartic at each of the two intersections of the quartic with the arbitrary line $x=0$; and we cannot, so long as the line remains arbitrary, find a conic which shall osculate the quartic at the two points in question; but, for the particular line $x+\frac{1}{3} \theta z=0$, there exists such a conic, viz. writing x instead of $x+\frac{1}{3} \theta z$, the form is $x^{3} y=z^{2}\left(a^{\prime}, b^{\prime}, c^{\prime}, f^{\prime}, g^{\prime}, h^{\prime} \chi x, y, z\right)^{2}$, and the new conic $\left(a^{\prime}, \ldots \chi x, y, z\right)^{2}=0$ has the property in question. This is the adopted form, and it thus appears that in it the line $x=0$ is a determinate line, viz. the line passing through the cusp and the two points of osculation of the osculating conic. It thus appears that in the assumed form the lines $x=0, y=0, z=0$ are determinate lines.

