792.

LOCUS.

[From the Encyclopcedia Britannica, Ninth Edition, vol. xiv. (1882), pp. 764, 765.]
Locus, in Greek tótos, a geometrical term, the invention of the notion of which is attributed to Plato. It occurs in such statements as these:-the locus of the points which are at the same distance from a fixed point, or of a point which moves so as to be always at the same distance from a fixed point, is a circle; conversely a circle is the locus of the points at the same distance from a fixed point, or of a point moving so as to be always at the same distance from a fixed point; and so, in general, a curve of any given kind is the locus of the points which satisfy, or of a point moving so as always to satisfy, a given condition. The theory of loci is thus identical with that of curves; and it is in fact in this very point of view that a curve is considered in the article Curve, [785]; see that article, and also Geometry (Analytical), [790]. It is only necessary to add that the notion of a locus is useful as regards determinate problems or theorems: thus, to find the centre of the circle circumscribed about a given triangle $A B C$, we see that the circumscribed circle must pass through the two vertices A, B, and the locus of the centres of the circles which pass through these two points is the straight line at right angles to the side $A B$ at its mid-point; similarly the circumscribed circle must pass through A, C, and the locus of the centres of the circles through these two points is the line at right angles to the side $A C$ at its mid-point; thus we get the ordinary construction, and also the theorem that the lines at right angles to the sides, at their mid-points respectively, meet in a point. The notion of a locus applies, of course, not only to plane but also to solid geometry. Here the locus of the points satisfying a single (or onefold) condition is a surface; the locus of the points satisfying two conditions (or a twofold condition) is a curve in space, which is in general a twisted curve or curve of double curvature.

