ELŻBIETA KWIATKOWSKA-GRABACKA

Mikrofauna dna stawów rybnych w Golyszu Microfauna of the bottom of fish ponds in Golysz

Mémoire présenté le 11 janvier 1965 dans la séance de da Commission Biologique
de l'Académie Polonaise des Sciences, Oracovie

The present work is connected with joint investigations on the influence of fertilization upon communities of organisms in carp ponds. These investigations were organised in the Laboratory of Water Biology of the Polish Academy of Sciences by Professor Karol Starmach. The aim of this work was the study of Ciliata microfauna on the bottom of fertilized ponds.

I wish to express my sincere thanks to Professor K. Starmach for entrusting this problem to me and for his valuable indications during its realisation.

Characteristics of the investigated terrain and description of the method employed

The material was collected from April till September 1962 inclusive, from four rearing ponds at the Gołysz Fishery Farm (Cieszyn district). The layers of slime and primary soils of this farm are silt-clay formations and the majority of its ponds have fairly thick layers of slime. The differences in the mechanical composition of slime in particular ponds are exceedingly small. The mineral composition of the bottom is as follows: the soil material contains an average amount of slime substances, the slime strata have an abundant or average amount of organic substances, a small amount of carbonates, an average amount of $\mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{O}$ and acid reaction (Pasternak, 1959).

The external appearance of the ponds is as follows (Table I): Wyszni II - a pond slightly overgrown. The vegetation above the surface of the water covered the blanks of the pond and a small shallow place in its south-western part.

Wyszni III - the pond is divided by three old partly damaged dykes on which shrubs grow. The last sector of the pond forms a large and shallow place, densely overgrawn.

Wyszni V - the pond is divided by an old dyke into two parts, of which the larger one in exploitation is deep and slightly overgrown, while the smaller part, on the southern side, is very shallow and densely overgrown.

Table I
Dotalled data concerulag invostigated poncs

Name of pond	firea			Depth of stands		Fertilizers used in kg per the whole pond			Fish stocic
				A	B		P	N	
Wyszai 1 II	0.3	8.3	110	175-160	40-60	acid phosphate ammosia aminonlaten	234	775	
Wyszoni III	6.9	6.7	110	120-160	40-65	acid phosphate amonia	265	630	$\begin{array}{lll} \text { E. } & 2000 / \mathrm{ha} & 120 \mathrm{~kg} \text { ii/ha } \\ \text { feeded } & 40 \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha} \end{array}$
\#ygzal V	5.7	5.5	120	150-170	25-50	acid phosphate ammonium sulphate	250	672	$\begin{array}{ll} \mathrm{K}_{1} 2000 / \mathrm{ha} \quad 120 \mathrm{~kg} \\ & 40 \mathrm{~kg} \mathrm{ha} \\ \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ma} \end{array}$
Wyezai VI	6.2	6.0	70	90-120	20-50	unfertilized	-	-	K. $2000 / \mathrm{ha}$ unfeaded

Wyszni VI - in the southern part of the pond there is a large area densely overgrown in its upper part mostly with carex and in the lower one with manna which is sparsely dissominated in the remaining part of the pond.

Two permanent stands were determined in each pond for collecting samples: point A, situated in the the deep (usually over 1 m) part of the pond, not overgrown and deprived of vegetation at a distance of several metres from the outlet boox and point B in the shallow (usually under 50 cm) and overgrown part.

The Starmach's slime sucker was used for collecting material. Samples were collected every two weeks. Qualitative and quantitative analysis (evaluation) was carried out on live material. For estimation the Grospietsch (1958) 6 degree scale was used.

Samples of slime from both stands differed decisively in appearance. Samples from the deep stands contained fine slime of a greyish-brown colour. The slime from shallow stands was brownish-black with a considerable amount of vegetal remains and its upper thin layer acquired during the summer period a greenish-yellow colouring owing to a profuse development of algae. The lower stratum, however, was characterised by a distinctly putrescent odour.

Characteristics of the Ciliata fauna from particular ponds

During the initial period the character of the microbenthos was very similar in all the ponds. The generally poor samples collected in the first weeks after the flooding of the ponds were characterised by
a numerical prevalence of microflora in relation to the microfauna. At that time the Ciliata wore not numerous. Their numbers increased rapidly from the month of May onwards. Individual species reached their greatest quantities in different months.

Wyszni II - Navicula sp. appeared in the middle of May in masses at stand A, while there were still very few Ciliata. At stand B, however, Vorticella sp. appeared in great numbers. The distinctiveness of stand B then became evident, for here the amount and number of Ciliata species increased much more rapidly than at stand A. In the beginning of June Cyclidium citrullus (assembling near agglomerations of bacteria), Paramecium caudatum and Spirostomum minus appeared in great numbers at stand B. From July onwards a mass development of algae was observed, in which green algae and flagellates prevailed, their presence causing a distinctly green colouring of the upper stratum of slime in the sample and giving a yellowish-green colour to the water. The samples had a distinctly putrid odour and the colour of the slime was brownish--black. In July Coleps hirtus and Coleps amphacanthus appeared in masses and Cyclidium citrullus, Halteria grandinella, and Lacrymaria elegans were numerous. The first specimens of saprophelic Ciliata, characteristic for rotting slime, were already present. Their number increased towards the end of July. As for algae, species of the genus Scenedesmus achieved a mass development. In the first half of August fish began to die in masses in this pond. The water became turbid and acquired a distinctly green colouring. At both stands a considerable number of algae appeared, mostly green algae and flagellates, among which Trachelomonas sp. dominated. Agglomerations of thread-like blue--green algae were fairly numerous. The number of saprophelic Ciliata of the genus Metopus distinctly increased, among which Metopus spiralis was the most frequent. They also appeared at stand A. The Ciliata which feed on algae were abundantly filled with food. Amoeba sp. appeared in numbers and their endoplasm was also abundantly filled with food. Large numbers of shells of crustaceans, mostly of the Bosmina and Cyclops genera, were observed especially at stand A. In connection with the dying of fish, the pond was limed, besides other processes, and the water rapidly recovered its transparency. A distinct decrease in the number of Ciliata took place at the end of August. Saprophelic Ciliata disappeared almost completely, while algae with a distinct prevalence of green algae of the Scenedesmus genus at stand A and flagellates of the Phacus genus at stand B continued to appear in considerable numbers. At the beginning of September the number of Ciliata did not alter to any great degree. Several saprophelic species appeared again. Only Coleps hirtus and Cyclidium libellus were numerous. The number of Ciliata decreased distinctly at the end of September.

Pond Wyszni III - in the middle of May the ciliate Nassula sp. appeared abundantly at stand A and in mass numbers at stand B. Towards the end of June a mass appearance of Cinetochilum margaritaceum and of Stylonychia mytilus took place at stand B. No losses in fish rearing were noted in this pond. At the end of July and in August several saprophelic species were noted at stand B, but this was not especially important for the association of Ciliata fauna as the specimens appeared only sporadically. In the summer months the thin upper stratum of slime at stand B also acquired a greenish colouring from the algae developing in masses with a predominance of green algae. Cyclidium citrullus and Vorticella sp. appeared in considera:ble numbers at ctand A in the middle of August. Vorticella sp. was present at that time in great masses at stand B. At both stands the number of species was at its maximum Coleps hirtus occurring the most numerously. In Septemiber the number of Ciliata distinctly: decreased.

Wyszni V - towards the middle of May the number of Ciliata was three times greater at stand B than at stand A. Saprophelic Ciliata already then appeared sporadically at stand B, while Coleps hirtus and Coleps incurvus were very numerous. At stand A green algae. with a mass development of Closterium and diatoms prevailed decidedly. The period from July to August, inclusive, was distinguished by the most abundant numerical development of Ciliata with a distinct dominance of the number of species at stand B. Particular species attained successively the peak of their development. At the beginning of July Coleps incurvus and Cyclidium libellus were numerous at stand B. Towards the end of July, Coleps hirtus and Cyclidium citrullus were very numerous, and Chilodonella uncinata and Cinetochilum margaritaceum fairly numerous. In August this last species appeared in masses beside very numerous Aspidisca costata, Coleps incurvus, Cyclidium libellus, and Loxodes striatus. In September the amount of Ciliata diminished considerably. Only a mass appearance of Vorticella sp., a great number of Coleps hirtus and numerous Coleps amphacanthus and Cyclidium libellus were observed at stand B.

Wyszni VI - Aspidisca sulcata and Halteria grandinella were numerous at the end of April at stand A. Saprophelic species appeared already at the beginning of June and continued to be present during the whole season though always in exceedingly small quantities. Towards the end of June Flagellata were very numerous at stand B, as for Ciliata, there was a mass appearance of Loxodes striatus and Spirostomum minus. The most abundant development of Ciliata at stand B was noted in August. At stand A, however, the number of Ciliata was very small. At stand B there was a mass appearance of Cyclidium citrullus, while Coleps amphacanthus, Coleps hirtus, and Loxodes striatus
were numerous. The greatest amount of algae was observed at stand B, where many Ciliata feeding on them were also present. In September the quantity of Ciliata diminished. Very numerous Aspidisca costata and Cinetochilum margaritaceum and numerous Stylonychia mytilus were also present at that time at stand B.

Discussion of results

In the sediment accumulating on the bottom of the pond metabolic processes constantly take place. Detritus of vegetal origin (remnants of dying plants and animals), mineral particles and very fine grains of sand are the components of slime. The organic matter contained in the sand is the main source of food for organisms living there.

When analysing the Ciliata fauna of the investigated ponds, a distinct difference between its qualitative and quantitative composition at the two stands was noted in the first place, to the advantage of the shallow stand. This difference was evident in all the ponds at the beginning of the season, becoming more and more apparent in the process of time. The phenomenon was chiefly conditioned by the fact that the amount of organic substance on the bottom of the pond is different in different parts and alters during the season of vegetation. The highest content of organic substance was abserved in the shallowest parts of the pond and inversely. This is caused in the shallowest part of the pond by the presence of an abundant rooted vegetation which, on dying, considerably enriches the bottom with this component (Wrábel, 1960).

In decomposition processes the principal role falls to the bacteria. A greater content of organic matter in the slime of shallow and overgrown parts of a pond makes possible the abundant formation of bacterial flora on which the majority of Ciliata feed. Besides, a better insolation of the bottom in these places favoured a profuse development of algae in the upper stratum of slime which, on the one hand, enriched the bottom with organic matter and, on the other, made possible the development of the Ciliata feeding on algae. These last were always more numerous at shallow stands than at deep ones.

The quantity of Ciliata showed changes during the season. In the first weeks after the pond had been flooded the number of these organisms was not very great. In general, the number of species and their quantity gradually increased until the month of July. But the rate was not the same at the two stands, the increase being more rapid at shallow ones. In the majority of ponds Ciliata appeared most abundantly from the end of July until August, inclusive. A slow decrease in quantity began in September. Individual species, however, attained their independent maximum development in different months. This is undoubtedly connected with the course of the processes of accumulation and decom-
21 Acta Hydroblologica
position of organic matter. After the flooding of ponds organic substances already existing on the bottom are subject to decomposition. A new enrichment of the bottom with organic matter as a result of the preponderance of accumulative processes over the processes of decomposition begins only in July (Wróbel 1960). Bombówna (1957) also observed maximum amounts of sediment towards the end of summer and at the beginnning of autumn.

The total number of Ciliata in a given pond can be divided into three groups: species found exclusively at stand B form a decided majority, species found at stand A constitute a very small part, and the remainder is formed of species found at both stands. The relation is similar in nearly all the ponds (fig. 1). However, this distribution of species on

Fig. 1. Distribution number of Ciliata species at individual stands. 1 - species found exclusively at stand A in ponds, 2 - species found exclusively at stand B in ponds, 3 - species found in both istands in ponds
the bottom of the pond does not signify that territorial ranges of appearance of particular species exist, only that there are on the bottom of ponds two somewhat different associations of conditions for the development of Ciliata. It must be stressed that the quantity of species appearing at one type of stand in all ponds is very small.

Among the Ciliata from the investigated ponds speeies feeding on bacteria distinctly prevailed. The bacterial flora of the bottom, in the opinion of Rodina (1958), quoted after Wrobel (1960), is 10 to 100 times more abundant than the bacterial flora of water, while the fertilizing of ponds in itself has a favourable influence on the quantity of microorganisms and on the increase of their activity. The influence of fertilization on the protozoan fauna is therefore probably intermediary through the intensifying of the rate of bacterial processes in the slime of the bottom, thus accelerating the circulation of matter in the pond and contributing to a higher output of the pond.

The Ciliata of the control pond demonstrated a slightly lower quantitative development with a more regular course than in fertilized ponds. Stand B, when compared with analogical stands in fertilized ponds, showed a very slight difference. The greatest number of Ciliata appeared
there in the month of August. The saprophelic group was not numerous and represented only by specimens appearing sporadically. It must be remembered, however, that this pond receives water from a fertilized pond (Wyszni VII) and has, moreover, transparent water which makes possible an additional enrichment of the bottom in organic matter by means of the photosynthesis of lower plants, especially at a stand that is shallow and occupies a farly large surface area.

Saprophelic Ciliata, differentiated by Lauterborn (1915) and Wetzel (1928), are species characteristic for rotting slime producing sulphurated hydrogen. Sipecies belonging to this group were present in all ponds, mostly at stand B, most frequently during the summer period. They always formed a minority in the total number of Ciliata species at this stand. In these places the slime, lying under a thin green layer of algae, was of a brownish-black colour and had a distinctly putrescent odour. The number of saprophelic species increased in the ponds when fish were dying. At thait time the Ciliata were observed in the pond Wyszni II also at stand. A, which might indicate a considerable pollution of the bottom and an extension of the anaerobic milieu. Saprophelic Ciliata were always found in the deeper parts of the slime. However, these Ciliata characteristic for decaying slime are a positive indication of an alteration in the oxygen conditions and of the appearance of putrescent processes on the bottom of the pond - these processes were accompanied by the dying fish in the pond Wyszni II. The Ciliata can therefore be an important indication of changes in the circulation of matter at the bottom of the ponds, especially where processes of reduction begin to prevail over thase of oxydation.

Notes on some species

A list of determined species and their appearance in particular ponds is presented in the tables (Tables II-V). During the investigation of material, measurements of the length of Ciliata specimens were carried out. Measurements of length which differ from the dimensions presented in K ahl's key (1935) are listed below.

For Aspidisca costata Ehrbg. - 20μ, Dileptus monilatus S tokes - the range of dimensions amounted from 400 to 720μ, for Epalxis striata Kahl-40 μ, Lembadion lucens M askell-60 H , Loxophyllum helus Stokes - this species demonstrated a great variability of size within the range $80-200 \mu$, Metopus laminarius Kahl fo. minor K a h l - 80μ, Metopus spiralis Sm ith also showed a great variability from 60 to 140μ, in Pleuronema crassum Dujaridin - 55μ, Spirostomum filum (Ehrbg.) Penard - a great variability of size within
the range of $340-800 \mu$, in Spirostomum minus Roux there is also a great variability of size within the range of $600-1020 \mu$.

Table II
The depelopment of Cillata in a deep (A) stand and a shallow one (B) 10 the WISZNI II pond

The six-grade acale givan by Grospletsob 1958

In horizontal lines the distribution of apeoies is givan as in fig. i. Saprophollo Ciliata are varked with an astorisk.

The development of Cillata in a deep (A) gtand and a shallow one (B) in the inSzivI IIf fond

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{} \& \multirow{4}{*}{No.} \& \multirow{4}{*}{Species} \& \multicolumn{11}{|c|}{Date of collecting samples} \\
\hline \& \& \& \[
\begin{aligned}
\& 27 \\
\& \text { IV }
\end{aligned}
\] \& \(\stackrel{9}{\mathrm{~V}}\) \& \[
\begin{gathered}
18 \\
V
\end{gathered}
\] \& VI \& 22
VI \& \begin{tabular}{|c|}
\hline 3 \\
VII \\
\hline
\end{tabular} \& 31
VII \& \[
\begin{array}{|l|}
\hline 14 \\
\text { VIII }
\end{array}
\] \& \[
\begin{array}{|l|}
\hline 28 \\
\text { VIII } \\
\hline
\end{array}
\] \& \[
\begin{aligned}
\& 11 \\
\& I X \\
\& \hline
\end{aligned}
\] \& \[
\begin{array}{|l}
26 \\
I K \\
\hline
\end{array}
\] \\
\hline \& \& \& A B \& A B \& A B \& A B \& A 8 \& A B \& : 3 \\
\hline \& \& \& \multicolumn{11}{|c|}{tards} \\
\hline A \& \[
\begin{array}{r}
1 . \\
2 . \\
3 . \\
* \quad 4 . \\
\hline
\end{array}
\] \& Aspidiaca turrita Enrbg. Dileptus anser O.F.Mtller D1leptus monilatus Stokes Netopus es var. pingaia Kahl Hotopus nasutus Da Cunha \& \& 0 \& \& \& \& \& O \& 0 \& \& \& 0 \\
\hline A
+
B \& \& \begin{tabular}{l}
Aspidiaca costata Dujardin A epidisoa lynoeus Ehrbg. \\
Chilodonella uncinata Ehrbg. \\
Chilodonalla 8p. \\
Cinetoch1lum margaritaceur Perty \\
Coleps amphacanthus Ehrbg. \\
Colops hirtus Nitzsab \\
Cyciidium citrulus Cohn \\
Euplotes sp. \\
Halteria grandinella O.F. Lttller \\
Lembadion lucens Liaakell \\
Lionotus sp. \\
Loxophyllum hellus Stokes \\
Mesodinium acarus Stein \\
Nassula 8 p . \\
Oxytricha sp. \\
Paramecium caudatum Ehrbg. \\
Prorodon sp. \\
Spirostomum minus Roux \\
Vorticella 8p.
\end{tabular} \& 1
0 \& \& 0
0
2
\[
\left|\begin{array}{ll}
1 \\
3 \& 4 \\
0 \& \\
\& 1
\end{array}\right|
\] \& \[
1
\] \& 0
5
0
2 \& \& \[
1 \begin{aligned}
\& 1 \\
\& 1 \\
\& 1 \\
\& 0 \\
\& 0
\end{aligned}
\] \& \begin{tabular}{l}
0 \\
2
\[
\begin{array}{ll}
0 \& 0 \\
2 \& 4 \\
\hline
\end{array}
\]
\end{tabular} \& \[
\left.\begin{array}{ll}
0 \& 1 \\
0 \& 1 \\
2 \& 1 \\
2 \& 3 \\
\& 0 \\
0 \& 0 \\
0 \& 0 \\
0 \& 0
\end{array} \right\rvert\,
\] \& \[
\left[\left.\begin{array}{ll}
0 \& 1 \\
\& 1 \\
\& \\
\& 0 \\
0 \& \\
\& \\
\& 0 \\
\& 0 \\
0 \& 0 \\
0 \& 1
\end{array} \right\rvert\,\right.
\] \& \(1 \begin{aligned} \& 1 \\ \& 1 \\ \& \\ \& \cdots \\ \& 0 \\ \& 0 \\ \& \\ \& \\ \& 1 \\ \& 1\end{aligned}\) \\
\hline B \& 26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39
40
41
42
43
44 \& \begin{tabular}{l}
Caenomorpha medusula Perty Epalxis sp. \\
Ludio parrui: a Penard \\
Metopus contractus Penara \\
Saprodinium dentatim Lauterborn \\
Aspidisca herbicola Kahl \\
Cycildium sp. \\
Cyclotrichium sp. \\
Didinium sp . \\
Euplotes patella Myller-Ehrbg. \\
Lionotus Pasciola Earbg.-Wrzesniowski \\
Lozodes striatus \\
Paruroleptus mubculus var.sinplex Kabl \\
Spirostomum filom (Eharbg.) Penari \\
Stentor coeruleus Ehrbs. \\
Stentor roeseli Ehrbg. \\
Stylonychia mytilus Ehrbz. \\
Stylonychia sp. \\
Urostyla sp .
\end{tabular} \& \& \& 0
0 \& \(\bigcirc\) \& 0
0 \& \[
\begin{aligned}
\& 0 \\
\& 0 \\
\& 1 \\
\& 0
\end{aligned}
\] \& \& 1 \& 0
0
0

0
0
0
2 \& 0 \& 0
1
0
0
0

\hline
\end{tabular}

The dovelopmant of Cillata in a deop (A) Btand and a ahallow one (B) in the WYSZNI ∇ pond

Table V
The development of Cillata in a deep (A) atand and a shallow one (B) in the WYSZNI VI poud

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \multirow{4}{*}{No.} \& \multirow{4}{*}{Species} \& \multicolumn{11}{|c|}{Date of collecting samples} \\
\hline \& \& \& IV \& 9 \& |18 \& V1 \({ }^{4}\) \& \[
\left.\right|_{22} ^{22}
\] \& VII \({ }^{3}\) \& \[
\begin{aligned}
\& 31 \\
\& \text { VII }
\end{aligned}
\] \& \[
\begin{aligned}
\& 14 \\
\& \text { VIII }
\end{aligned}
\] \& \[
\begin{aligned}
\& 28 \\
\& \text { VIII }
\end{aligned}
\] \& \[
\begin{aligned}
\& 11 \\
\& I x
\end{aligned}
\] \& \[
\begin{aligned}
\& 26 \\
\& D X
\end{aligned}
\] \\
\hline \& \& \& \& A B \& A \(B\) \\
\hline \& \& \& \multicolumn{11}{|l|}{(ttands} \\
\hline \(\Delta\) \& \[
\begin{array}{r}
1 . \\
2 . \\
3 . \\
4 . \\
5 . \\
6 . \\
7 . \\
8 . \\
9 . \\
10 . \\
19 .
\end{array}
\] \& \begin{tabular}{l}
Aspidiaca herbicola Kahl Aspidisca lynceus Ehrbg. Aspidisca sulcata Kabl \\
Coleps hirtus var. minor Kahl \\
Dileptus monilatus Stokes Lembadion lucens Maskell \\
Pleuronems crassum Dujardin Saprophilus sp. \\
Strobilidium gyrans Stokes \\
Urotricha agilis Stokes \\
Vorticella similis Stokes
\end{tabular} \& \& \[
1 \begin{aligned}
\& 0 \\
\& 1 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& 0 \& 0 \& \& 0 \& 2 \& 1 \& \& \& \\
\hline \& \[
\begin{aligned}
\& 12 . \\
\& 13 . \\
\& 14 . \\
\& 15 . \\
\& 16 . \\
\& 17 . \\
\& 18 . \\
\& 19 . \\
\& 20 . \\
\& 21 . \\
\& 22 . \\
\& 23 . \\
\& 24 . \\
\& 26 . \\
\& 27 .
\end{aligned}
\] \& \begin{tabular}{l}
Aspidiaca costata Dujardin Aspldieca sp. \\
Cinetoch1lum margaritacoum Perty Cycildium sp. Halteria grandinella O.F.Meller Holophrya ap. L1onotus sp. tiesodinlum acarus Stein Hiesodinium sp. Oxytricha Ep . Pleuronema coronatum Kent Prorodon sp. Stylonycbia mytilus Ehrbg. Stylonych1s sp. Uroleptus ap. Vorticella sp.
\end{tabular} \& \[
\sqrt{1}
\] \& \begin{tabular}{l}
0 \\
1 \\
0
\end{tabular} \& 0 \& \[
\left\lvert\, \begin{array}{ll}
0 \& \\
\& 0 \\
\& 1 \\
0 \& 1 \\
0 \& 1 \\
1 \& 0 \\
0 \& 0 \\
0 \& 0
\end{array}\right.
\] \& \[
\begin{array}{|r}
\hline 0 \\
0 \\
1 \\
0 \\
0 \\
\\
\\
1 \\
1
\end{array}
\] \& \[
\begin{array}{ll}
\hline 0 \& \\
0 \& \\
0 \& 0 \\
0 \& 0 \\
0 \& 0 \\
0 \& \\
0
\end{array}
\] \& \[
\begin{array}{|l|l|}
\hline 1 \\
1 \& 1 \\
0 \& 1 \\
0 \& \\
0 \& 0 \\
1 \& 0
\end{array}
\] \& \& 0
0
0
0 \& 3
0
0
0 \& 0 \\
\hline B \& \& \begin{tabular}{l}
Caenomorpha medusula Perty Epalx18 sp . \\
Notopus es O.F. Muller \\
Metopus es var. reofur Kahl \\
Netopus eplnosus Kahl \\
Letopus spiralia Smith \\
Letopus striatue Uchiurrich \\
Metopus \(6 p\). \\
Plagiopyla ovata Kahl \\
Saprodinium dentatum Lauterborn \\
Coleps amphacanthus Ehrbg. \\
Coleps hirtus Nitzach \\
Coleps incurnus iharbg. \\
Cyclidium citrullus Cohn \\
Cyclidium libellus Kahl \\
Euplotes patella f.latus Kahl \\
Euplotes patella f.typicus Kahl \\
Euplotes sp. \\
Frontonia leucas Khrbg. \\
Lacrjmaria olor O.F.i:tiller \\
Loxodes magnus Stokes \\
Loxodes rostrum O.F. MH1ler \\
Loxodes Stristus Engelnann \\
Loxophyllum helus Stokes \\
Paruroleptus lacteus ñahl \\
Prorodon teres Ehrbg. \\
Spirostomum filum (Ehrbg.) Penard \\
Spirostomum intermedium hahl \\
Spirostomum minus koux \\
Urocentrum turbo O.F.Nitler \\
Uroleptus diepar Stokes \\
Uroleptus limnetis Stoises
\end{tabular} \& \& \& \& 0
0
0
0
0
0
0
0
0
0 \& 0

2
1

4
0
0
2
0
0 \& 0
0
0
0
0
0
0
0 \& 1
2
0
0
0

1
1 \& 0
0
0
0
0
0

2
0
1
4

1
0
1
2
2
0
0 \& 0
0
0
1
0
0
0
0
0
0
0
0 \& 0

1
1
0
0
0
2

0
0

0
0
0 \& 0

\hline
\end{tabular}

STRESZCZENIE

Badano rozwój arzęsków w mule dennym nawożonych stawów rybnych. Material zbierano z czterech stawów odrostowych Gospodarstwa Doswiadiczalnego PAN w Golyszu, przez caly sezon wegetacyjny w roku 1962. W każdym stawie wyznaczono dwa stanowiska zbioru prób: w glẹbokiej częsci stawu w pobliżu odplywu oraz w plytikiej częSci stawu, gęsto zarośniętej roślinnością wynurzona.

W badanym materiale znaleziono 113 gatunków orzęsków. Stwierdzono wyraźną różnice w illości orzęsków na abu stanowiskach na korzyśsc stanowiska piytuiego. Zjawisko to wiąże się niewqupliwie z iwiększą zawartością unaterii organicznej w imule pplytkich i zaroskych ezęści stawów. Ogolną liczbe gatunków orzęsków danego stawu można podzielić na trzy grupy: zdecydowana większośc to gatunki znajdywane wylacznie na stanowisku plytkim, bardzo niewielka częśc to gatunki znajdywane wylacznie na stanowisku glẹbokim, ostatnia grupa to gatunkj występujace na obu stanowiskach.

Liczebność orzęcków wykazywala zmiany w ciagu sezonu. W pierwszych tygodniach po zalaniu sta:wów ilości tych onganizmów byly niewielkie. W większośçi stawów iwystąpowaly ane najobficiej od konca lipca do sierpnia wlącznie. Powolny spadek zaczynal się we w.rześniu. Niezależne od tego paszczególne gatunki osiagaly iw różnych miesiącach maksymalne rozwoje.

Wśród orzésów badanych stawów przeważaly gatunki odżywiajace się bakteriami. Nawożenie stawów :wplywa korzysitnie na liczebnośe drobnoustrojów i wzmożenie ich działalności. Wipływ nawożenia na fauné pierwotniakowa jest więc przypuszczalnie pośredni poprzez wzmożenie tempa procesów bakteryjnych iw mule dennym, co z kolei przyśpiesza oorót materii w stawie.

W miesiącach letnich znajdywano gatunki sapropelowe, które w stawach nawożonych występowaly :w większych ilościach niż w kontrolnym. Pojawily się one glownie na stanowiskach plytkich, a w oikresie sniçcia ryb w jednym ze stawbw, gdy byl on silniej zanieczyszczony, pewne gatunki znaleziono również na stanowisku glębokim. Gatunki te maga być wiskazówką zmiany warunków tlenowych i pojawienia sie procesow gnilnych na dnie stawu.

Orzeski stawu kontrolnego wykazaly nieco slabszy rozwój ilościowy zwlaszcza na stanowisku głębokim. Stanowisko plytkie różnilo się niewiele od analogicznych stanowisk w stawach nawozonych.

REFERENCES

Bombówna M., 1957. Tworzenie się osadów dennych w stawach rybnych. Biuletyn Zakl. Biol. Stawów, 4, 112-126.
Grospietsch T., 1958. Beträge zur Rhizopodenfauna Deutschlands. Hydrobiologia, 10, 3:05-322.
Kahl A., 1935. Wimpertiere oder Ciliata, in Dahl: Die Tierwelt Deutschlands. Jena, G. Fischer.
Lauterborn R., 1915. Die sapropelische Lebewelt. Verh. Nat. Med. Ver. Heidelberg (NF) 13, 395-481.
Pasternalk K., 1959. Gleby gospodarstw stawowych dorzecza Górnej Wisły. Acta Hydrobiol., 1, 3-4, 221-283.
Wetzel A., 1918. Der Faulschlamm und seine Ciliaten-Leitformen. Z. Morph. Okol. d. Tiere, 13, 1:79-328.
Wróbell S., 1960. Wspólzależnosé między dnem i woda w stawach. Acta Hydrobiol., 2, 2, 69-1 ${ }^{124 .}$

Adres autorki - Author's address
Mgr Elíbieta Kwiatkowska-Grabacka
Zakład Biologii Wód, Polska Akademia Nauk, Kraków, ul. Sławkowska 17.

