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Chapter 1

Introduction.

In the introductory section the author would like to convince the Reader

that nonlinear chemical systems are interesting and worth studying, because

they play a very important role in numerous phenomena occuring in living

and nonliving nature. Moreover, this chapter contains examples of appli-

cations of nonlinear chemical systems to information processing of various

types. Further, the basic facts about chemical excitable systems are given

and possible ways of experimental realizations of such systems are described.

This information enables to specify the aims of this work and determines the

background and motivation for the research described in Chapter 2.

1.1 Why are nonlinear chemical systems im-

portant?

Nonlinear chemical reactions are of vital importance for all living creatures as

well as for numerous events occurring in the nonliving world. If the reactions

proceed in far from equilibrium conditions, they may lead to a variety of

phenomena (for example oscillations, trigger waves, excitable pulses etc.),

7
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CHAPTER 1. INTRODUCTION. 8

which contribute to and reveal in processes like morphogenesis ([1], p. 593),

formation of static and dynamical spatial patterns ([1], p. 327-590) and

the cycles, observed on all levels of organization of the living matter, from

single cells to whole organisms ([1], p. 140). In particular, the existence of

cycles can be explained by the oscillatory character of the underlying chemical

reactions [1]-[4]. Together with the cyclic external perturbations (for example

by the day/night cycle) they give grounds to so called ”biological clocks” [1],

ie. the mechanisms which control rhythms of different activities of the living

creatures. Thus, the biological and biochemical systems provide a ”natural”

environment for nonlinear chemical reactions. Lots of examples can be found

in any textbook on biochemistry (eg. [5]) or review reports on oscillations

in chemical reactions (eg. [6, 7]). The majority of the biochemical cycles are

very complicated, as there are thousands of complex reactions proceeding

inside the living cells, most of which are catalyzed by enzymes and contain

autocatalytic/nonlinear steps. Still, they provide a very attractive subject of

research, because of their fundamental importance.

Oscillations have also been discovered in chemical reactions proceeding

outside living organisms. Historically first well described example is known

as the Bray reaction [8] (catalytic decomposition of H2O2, during which the

rate of O2 production oscillates). In early 1950s periodical changes of con-

centrations of reagents were observed by B. P. Belousov [9] in the reaction

of oxidation of citric acid with bromate, catalyzed with cerium. This ob-

servation surprised the community of ”orthodox” chemists. Further studies

confirmed that the oscillations were really the result of the chemical reaction.

Moreover, other examples of catalytic oxidation of organic substances with

bromate were found [10, 11]. This group of reactions, called the Belousov

- Zhabotinsky (BZ) reactions, became probably the most famous and most
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CHAPTER 1. INTRODUCTION. 9

intensively studied type of oscillatory chemical reactions in the last 30 years.

In the meantime, oscillations of concentrations of reagents were found in

numerous catalyzed or non-catalyzed reactions (the references [2, 3, 4] give

many examples of such systems).

All these reactions have attracted a lot of scientific interest and there are

at least two reasons for that. First, these reactions are usually far simpler

than enzymatic biochemical processes and yet qualitatively similar to them,

as they reveal oscillations, excitability etc. Consequently, their cognition and

description is much easier, but it gives grounds for better understanding of

complex mechanisms of biochemical cycles. Second, in systems where chem-

ical reactions appear together with the process of diffusion, a diversity of

phenomena have been observed, which are interesting themselves, as a sep-

arate subject of studies. They include: chemical waves [10, 11], travelling

fronts and excitable pulses (examples further in this work), Turing structures

[12, 13, 14], pattern formation [1], [15]-[31], synchronization [32, 33, 34] and

resonances [35, 36, 37], to name only a few. The patterns and structures

appearing in such systems are not only beautiful [15], but they also influ-

ence processes of practical use, for example chemical reactions catalyzed by

surfaces [38]-[41].

Experimental investigations of these phenomena are (in most cases) very

complicated. To make them easier and - first of all - to understand them

better, their proper theoretical (and mathematical) description is necessary.

Thus, much effort was devoted to finding the models of the known nonlinear

reactions and processes. As a remarkable part of my thesis concerns the phe-

nomena occuring in systems based on the Belousov - Zhabotinsky reaction, it

is worth mentioning that a commonly accepted mechanism of this particular

type of reaction was proposed in 1972 by R. J. Field, E. Körös and R. M.
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CHAPTER 1. INTRODUCTION. 10

Noyes [42]. It is known as the FKN mechanism of the BZ reaction. The FKN

mechanism gave grounds for mathematical description of the system. Two

simplified mathematical models, which are derived on the basis of the FKN

mechanism, are the Oregonator model [43] and the Rovinsky - Zhabotinsky

model [44, 45, 46]. They are very popular and frequently used in numerical

studies of the BZ reaction.

The results obtained within mathematical models are characterized by a

high level of generality. They can be applied to any systems, to which a given

model is applicable. In particular, the oscillatory or excitable systems appear

in a variety of fields apart from chemistry. Investigations of thermochemical,

electrochemical or biochemical systems [47], pulses in heart tissues [48]-[52],

optical systems [53], or even ecosystems (population growth, [1], p. 1-107,

disease spread [1], p. 610) or economics are only a few examples.

On the other hand, models invented in other fields were adapted by

chemists. A good example is the well known FitzHugh - Nagumo model

(FH-N), originally developed to describe the propagation of pulses of exci-

tation in nerve tissues [54, 55], as a simplification of the Hodgkin - Huxley

model [56]. The FH-N model has been used for investigations of chemical

systems for many years [57, 58].

Interesting applications of oscillatory or excitable chemical reactions in-

clude information processing (this area of research is briefly introduced in

Section 1.3) or self-oscillating polymer gels [59]-[63], which may be used to

construct artificial muscles.

Undoubtedly, the investigations of nonlinear chemical systems have be-

come a fast developing field of science, with interdisciplinary character. In

this field theoretical studies and computer simulations are equally important

as experimental works and both approaches are complementary.
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CHAPTER 1. INTRODUCTION. 11

1.2 Excitable systems.

This section contains basic information about chemical excitable systems. It

includes the definitions of excitability, refractory time and explains how trav-

elling excitable pulses may appear in spatially distributed systems. Further

the response of an excitable system to periodic perturbations is discussed,

using a very general and simple model. It is shown that the dependency of

the frequency of excitations of the system on the parameters of perturbations

may have a devil’s-staircase-like form, due to non-zero refractory time of the

excitable medium.

1.2.1 What is an excitable system?

A chemical system is called excitable if it has a stable stationary state of

a special kind. The amplitude of a small perturbation of this state decays

exponentially in time. However, if the amplitude of a perturbation exceeds

a certain critical value, then during the evolution towards the stable state,

the distance on the phase space between the time dependent state of the

system and the stable state may become a few orders of magnitude larger

than the distance between the stable state and the initial perturbation. Thus,

perturbations with sufficiently large amplitude are amplified and the system

returns to its steady state after much longer time than in the case of a

small perturbation. The evolution after such perturbation forms a closed

trajectory (so called excitation cycle) in the phase space. For a given type of

perturbation one can introduce smin as the minimum strength of perturbation

which leads to systems excitation.

The excitable systems have another important and interesting feature:

just after an excitation they become refractory with respect to consecutive

http://rcin.org.pl



CHAPTER 1. INTRODUCTION. 12

perturbations. The minimal time after which the system can be re-excited

is called refractory time (tr). Of course, tr depends on the strength of the

system’s perturbation s.

As far as the mathematical description of such systems is concerned,

excitability means that the nullclines of equations describing the system, as

well as the vector fields driving the variables, are qualitatively similar to those

presented in Figures 1 and 2 (Section 2.1; the figures contain also examples of

excitation cycles). Of course, any translations, rotations and mirror images

of the presented nullclines together with the vector field are allowed. What

is important is that the nullclines have only one common point, located near

the extreme of the S-shaped curve, as well as the orientation of the vector

field. If the nullclines intersect in three or more points (a system has two or

more stable stationary states), then the excitable (non-monotonic) switching

between the stable states may be observed ([1], p. 335). To describe an

excitable system a set of minimum two autonomous differential equations

(two-variable system) is necessary.

If the system is distributed in space and locally perturbed, then a local

excitation may propagate (by diffusion) to the neighboring areas, while the

points initially excited relax to the stationary state. Thus, for the proper

choice of parameters travelling pulses may appear in the system (one pulse

per one supercritical perturbation). The pulses are stable. After initiation

they develop into stationary forms, which do not depend on the method of

initiation.

The refractory time of the medium limits from above the frequency at

which excitable pulses may appear at a certain point of a spatially distributed

system. Once a pulse has passed through a part of the system, then at least

the time tr is necessary before another pulse would be able to propagate
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CHAPTER 1. INTRODUCTION. 13

in this region. If the next pulse arrives earlier it cannot propagate and

disappears. The situation here is similar to burning the grass: once the grass

has been burnt it needs some time to grow again before it can be burnt.

1.2.2 Devil’s-staircase-like response in a ”naive” model

of a periodically perturbed excitable system.

Let us consider an excitable system which is periodically perturbed. Observ-

ing consecutive excitations of the system and comparing their frequency with

the frequency of perturbations one may see that the frequency of excitations

is equal to the frequency of perturbations, or lower. The difference between

the frequencies of perturbations and of successful excitations can emerge in

every excitable system, just because of the non-zero refractory time. If the

time shift between consecutive perturbations is shorter than the refractory

time of the perturbed medium (for a given strength of perturbations), then

some of the perturbations have to occur at moments, when the system is in

the refractory state and cannot be excited. Thus, for a high frequency of

perturbations, not all of them lead to excitation of the system.

Let us consider an excitable system characterized by the refractory time

tr, schematically shown in Figure 0A. The horizontal axis of Fig. 0A presents

the strength of the perturbation, given in smin units (smin is the minimum

strength of perturbation which leads to system’s excitation). The vertical

axis gives the refractory time (in arbitrary units). Let us take into account

two successive perturbations, occurring at times 0 and t. Let us fix the

strength s of these perturbations. At time 0 every perturbation charac-

terized by s (s/smin>1) excites the system. A successful excitation by the

second perturbation depends on the values of t and s. The line tr(s) in Fig.

0A corresponds to the minimal time shift after which the second perturba-
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Figure 0A. The ”naive” model of a perturbed excitable system. The proba-

bility that the second perturbation excites the system is shown as a function

of the strength of perturbation s in smin units (x - axis) and the time sepa-

rating perturbations t (arbitrary units, y - axis). The set of parameters for

which the second perturbation excites the system is located above the line.

For a given s the line separating excited by the second perturbation from

unexcited ones shows tr(s). Note that for times t<tr and for s/smin<1 the

system cannot be excited.
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CHAPTER 1. INTRODUCTION. 15

tion of the strength s is able to excite the system. Thus, if the perturbation

is strong enough, then re-excitation occurs when t>tr. The shape of the

tr(s) dependency shown in Fig. 0A seems quite natural, for the following

reasons: First, if s is too small (s/smin<1), the system is not excited by the

second perturbation, nor by the first one, no matter how large is the time

shift between them. Second, after a successful excitation the system relaxes

towards the steady state. It can be excited again if it has reached the ap-

propriate neighborhood of the steady state before the second perturbation

occurs. This neighborhood is larger (and reached faster) for stronger pertur-

bations. Consequently, for s/smin>1 one should expect that tr gets smaller

when perturbation’s strength increases. Third, even if the perturbations are

very strong, the system cannot be excited if it is too far from the steady state.

As a consequence, the curve tr(s) becomes less and less steep for larger s.

For a simplified analysis let us assume that a state of the system is not sig-

nificantly changed after an unsuccessful perturbation and the probability of

excitation shown in Fig. 0A remains valid if a periodic sequence of perturba-

tions is considered. Now t denotes the time from the last perturbation which

excited the system. Let us consider a periodic sequence of perturbations at

times k·tp, k∈N, characterized by a fixed strength s. It is easy to see that if

tp>tr(s), then each perturbation excites the system. If tr(s)/2≤tp<tr(s) then

every second of them excites the system, if tr(s)/3≤tp<tr(s)/2, then every

third perturbation does it and so on. Plotting the firing number f (ie. the

ratio between the frequencies of excitations and perturbations) as a function

of tp (Figure 0B), one obtains a plot similar to devil’s staircase [64]. Another

staircase-like plot can be obtained by representing the firing number as a

function of s for a fixed tp (cf. Figure 0C).

Of course, the ”naive” model that has just been discussed is extremely
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Figure 0B. The firing number as the function of the time interval be-

tween consecutive perturbations of the system (in tp/tr(s) units), for a fixed

strength of perturbation s. This result has been obtained for the ”naive”

model of a perturbed excitable system.
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Figure 0C. The firing number as the function of the strength of perturbation

s, for a fixed tp. This result has been obtained for the ”naive” model of a

perturbed excitable system.
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CHAPTER 1. INTRODUCTION. 18

crude, but it predicts that devil’s-staircase-like dependence of firing num-

ber on the period of perturbations should be widely observed in excitable

systems. It is true indeed. Such dependence can be found in a number of ex-

periments concerned with periodic perturbations of a homogeneous excitable

system, the results of which were published by M. Marek and collabora-

tors [65]-[68]. Another staircase-like dependence of the firing number was

observed by A. Toth, V. Gaspar and K. Showalter in spatially distributed

excitable systems linked with a capillary tube [69]. The excitable waves were

generated in one system and they might excite the other one via reagents’

transport in the capillary. In this experiment the diameter of the capillary

controlled the strength of perturbation. If it was small, the refractory time of

the perturbed system was much longer than the refractory time in the system

where waves were originally generated. As the result only a fraction of gen-

erated waves excited the system after passing through the capillary and the

firing number as the function of entering wave period had a devil’s-staircase-

like dependence (cf. Fig. 6 in [69]). Similar phenomenon was observed by

K. Suzuki, T. Yoshinobu and H. Iwasaki [70] in the ferroin catalyzed BZ

system. In their experiment a train of excitable pulses, travelling on a fer-

roin covered membrane, arrived at a gap (a narrow stripe of area without

ferroin). The frequency of pulses on the other side of the gap depended on

the gap’s width and was a certain fraction of the frequency of the arriving

train of pulses. Moreover, recent studies indicate that it is possible to excite

a spatially distributed excitable system by a local periodic modulation of one

of its parameters [71]. Although all the perturbations are subcritical (ie. a

single perturbation of that kind never leads to an excitation cycle), an ap-

propriately tuned frequency of periodic perturbations goes in resonance with

the damped oscillations around the stable fixed point and leads to regular
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CHAPTER 1. INTRODUCTION. 19

excitations of the system [71]. Also in this case the firing number (the ratio:

number of excitations to number of perturbations in the same time inter-

val) as a function of the modulation frequency reveals a devil’s-staircase-like

structure.
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CHAPTER 1. INTRODUCTION. 20

1.3 Information processing by chemical sys-

tems.

The idea of information processing with purely chemical devices is attrac-

tive for both scientific community and leading hi-tech companies. Two most

promising ways of constructing such devices come from the molecular chem-

istry approach (the information is processed by individual molecules) [72]

and from the nonlinear chemical reactions.

Logical functions and other kinds of information processing tasks were

implemented in homogeneous (stirred) reactors, in which a reaction possess-

ing two or more stable stationary states proceeds. Once a logical value is

assigned to all of these states, the reactors can be applied to processing in-

formation [73]. A good example is the idea of Okamoto and collaborators

[74], who proposed to use a cyclic enzyme system, in which two reactions are

coupled by a shared reagent. Such system can be controlled (or stimulated)

by the supply of the substrate precursors of the two main reactions (consid-

ered as the two ”input signals”). The level of the shared reagent, which has

two stable stationary states, corresponds to the ”output signal”. This sys-

tem behaves like a neural cell and because of that it is called a ”biochemical

neuron”. The homogeneous reactors coupled by diffusion can be arranged

in networks, and used eg. for pattern recognition [75] or building multilayer

biochemical neuron networks, which may perform tasks of a high complexity

[74, 76].

Two dimensional photosensitive BZ systems are also suitable for direct

image processing. The BZ system should be prepared in the oscillatory

regime. In this regime the color of the BZ solution depends on the point of the

limit cycle and changes periodically in time. The period of oscillations can
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CHAPTER 1. INTRODUCTION. 21

be influenced by external illumination. In particular, if an image is projected

onto such system, then a chemical ”representation” of the image is produced

in the system, as the period changes from point to point, according to the

light intensity. Once the light is switched off, different areas of the system

start to evolve towards the new limit cycle with different initial conditions.

Because of that the initial variances in illumination of neighboring areas

may be increased (contrast enhancement) or decreased (contrast reduction)

during the evolution. When the phase of the limit cycle changes by π, then

the negative image is obtained. Alternatively, if a high intensity of light is

used, then in some regions (the brightest parts of the image) the system

may be switched from the oscillatory to excitable regime. This regime may

be applied to determining or smoothing contours of the originally projected

picture [77, 78, 79].

Another interesting application of a photosensitive BZ system, presented

by Rambidi and Yakovenchuk [80], is finding the shortest path in a labyrinth.

The authors of [80] project the picture of the labyrinth onto a properly pre-

pared Ru catalyzed system and then register the consecutive stages of chem-

ical wave spreading throughout the image of the labyrinth’s pathway with a

video camera. The images are processed by a computer, using a special iter-

ative procedure which enables to establish the shortest path between given

starting and target points.

Another class of chemical devices which process information utilize the

fact that a chemical pulse, which can be produced in excitable or oscillatory

media, carries information. The area of a high concentration of a particular

reagent may be considered as corresponding to the logical ”true” state, while

the area of a low concentration - to the logical ”false”. Alternatively, a pulse

present in a selected part of a system may corresponds to the logical ”1”
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CHAPTER 1. INTRODUCTION. 22

state and if it is not there - it implies the logical ”0”. The travelling pulses

or regular trains of such pulses are called ”chemical signals”. On such signals

one can perform operations analogical to electronic ones. Using this idea the

chemical reactors which work as the basic logical gates (AND, OR, NOT)

were invented and constructed in real experiments [81, 82]. They utilize

the BZ reaction proceeding in capillary tubes [81] or on a catalyst loaded

membrane [82].

It has been found that a chemical system may perform more complex

logical operations if it is inhomogeneous and composed of ”active” regions,

in which reactions occur, and ”passive” areas, where some of the reagents are

absent and so only a part of reactions proceed there. In practice it means

that an immobilized catalyst is inhomogeneously distributed in space. The

passive areas are those which do not contain catalyst. In such systems a

”chemical diode”, which conducts travelling pulses only in one direction was

constructed [83]-[86] (the structure and functioning of the chemical diode is

presented in Section 2.4.7). The chemical diode was then used as a vital

component of successively proposed logical gates, coincidence detectors [86]

and memory cells, which can be written, read and erased [86, 87]. Most of

the studies concerning such reactors present theoretical (numerical) results

[84]-[87], but there are also a few experimental works [83, 87]. Of course,

information processing devices of this kind are far slower than silicon ones.

However, they may be competitive to traditional ”chips” in different fields,

such as new kinds of ”intelligent” materials or medicaments.
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CHAPTER 1. INTRODUCTION. 23

1.4 Experimental methods.

The numerical results presented in this thesis concern two dimensional re-

actors, in which BZ-type reactions proceed. The considered reactors consist

of active areas, containing the catalyst and passive areas, without catalyst.

This section provides basic information about obtaining such systems in real

chemical experiments.

Typical reactions used in such experiments include the ferroin catalyzed

BZ reaction ([19, 70, 81, 82, 83], [87]-[95]) or several types of photosensitive

BZ reactions (catalyzed with Ce, Ru or Mn [78], [96]-[100]).

The active areas of the system, where the reaction can proceed, are cov-

ered with an immobilized catalyst. In case of ferroin, it may be fixed on thin

cellulose nitrate or polysulfone membranes just by pouring the membranes

into appropriate solutions (the ”classical” description of ferroin’s fixation

on membranes can be found in [89]). Other cation-exchange membranes

[70, 82, 88, 90, 91, 93, 94], [101]-[105] or mesoporous glass [83] may also be

used. The important question is how to obtain catalyst-free pattern on an

otherwise catalyst-covered membrane. In simplest cases the solution con-

taining ferroin can be put on desired areas of a membrane with a fiber-pen

[89] or printed with an ink-jet computer printer [82, 101, 102, 106], which

provides better accuracy.1 The most accurate technique of fabrication of cat-

alyst micropatterns has been recently developed by K. Suzuki, T. Yoshinobu

and H. Iwasaki [70, 103, 104]. In their method a membrane is first covered

with a photoresist layer on which a mask containing the desired pattern is

printed. After exposure to light the membrane is developed and immersed in

a ferroin solution. The ferroin molecules can then stick only to the parts of

1Printing the catalyst with an ink-jet printer is also used in completely different sys-

tems, eg. when desired patterns for metal deposition on a surface are needed [107].
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the membrane that were previously exposed to light. As the last step of the

process the photoresist is removed by ethanol. The photolitographic tech-

nique enables to obtain catalyst-free (passive) stripes of the width of 50µm

[70]. On the other hand, it enables to control catalyst-filled areas with 20µm

precision [103]. If a photosensitive BZ reaction is used, the desired pattern

can be just projected onto the system by using a proper mask [78, 87]. In

this case the reaction proceeds in the dark areas and it is inhibited in the

illuminated ones (so they become passive).

Travelling waves or pulses of excitation in such systems may be initiated

very easy by touching the membrane with a silver wire [70, 82, 89, 91, 93],

with a glass tip [105] or just by dropping the activator from a micropipet at

the desired point of the system [108]. More sophisticated methods include the

electrochemical method, in which a silver wire electrode present in a system

is positively biased for a short moment (eg. 100msec), thus producing a

chemical pulse or a wave [69, 70]. The pulses may also be initiated with an

external electric field [109] or with a laser [94, 98]. In order to obtain a train

of pulses with a constant frequency it is also common to use a rotating spiral,

located in the appropriate part of the system [70, 99].
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1.5 The aims of this work.

The methods of direct information processing by means of chemical reactors

are intensively investigated, as they seem very promising. High hopes are

associated with two dimensional reactors composed of active and passive

areas, in which the information is carried by travelling pulses of excitation.

Quite a large number of such reactors have already been proposed, but most

of them come as the result of purely theoretical/numerical studies and only

a few have been tested experimentally. Consequently, the aims of this work

are the following:

1. Numerical calculations oriented on finding the new geometries of reac-

tors (ie. distribution of active and passive areas in space), which might

be applied to direct processing of chemical signals. The structures of

the cross junction (Section 2.3) and the simple passive barrier (Section

2.4) have been proposed.

2. Theoretical investigation of the phenomena which occur in proposed

signal processing reactors. It has been found that the cross junction

may work as a logical AND gate, a time coincidence detector of two

pulses and a switch of the direction of propagation of a pulse (Section

2.3). The passive barrier has the ability of systematical elimination of

pulses from a train. Consequently, it can be used as a transformer of

frequency of regular trains of pulses (Section 2.4).

3. Suggesting the experiments, in which these structures and phenom-

ena would be tested, thus proving the correctness or revealing the in-

correctness of models used in numerical studies. Experiments on fre-

quency transforming by a passive barrier have been made (Section 2.7).
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Their results confirm the numerical predictions and the correctness of

the Rovinsky - Zhabotinsky model of the ferroin catalyzed Belousov

- Zhabotinsky reaction used here (the model is described in Section

2.1.2).

4. Using the simple signal processing elements the properties of which are

already known, I can suggest more complex information processing re-

actors, like for example a reactor that is able to add two given numbers

together (Chapter 3).
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Chapter 2

Results.

2.1 The models.

The major part of my work has been dedicated to theoretical studies of

propagation of excitable pulses in two dimensional reactors, whose geometry

enables processing of chemical signals in the form of single travelling pulses

or regular trains of such pulses. The investigations have been carried out

by numerical integration of reaction - diffusion equations describing the time

evolution of variables appearing in selected models. Most of the results have

been obtained for the FitzHugh - Nagumo type model (FH-N) or the Rovin-

sky - Zhabotinsky model (R-Z). The variables of the latter model are directly

related to concentrations of chemical spices in the ferroin catalyzed Belousov

- Zhabotinsky reaction. Both models are presented below.

2.1.1 The FitzHugh - Nagumo model.

The FitzHugh-Nagumo type model used in this work [54, 55, 86] consists of

two variables: u and v. The time evolution of their values is given by the

27
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following set of equations:

τ
∂u

∂t
= −γ[ku(u− α)(u− 1) + v] + Du∇2u (2.1)

∂v

∂t
= γu (2.2)

This model is relatively easy for theoretical and numerical analysis, as it

contains only the polynomials of the third order. It was originally developed

to describe the propagation of pulses of excitation in nerve tissues [54, 55],

as a simplification of the Hodgkin - Huxley model [56]. The FH-N model has

a very good biochemical background (presented in a clear way eg. in [110]).

The crucial disadvantage of this model is that its variables do not represent

directly concentrations of a known reaction scheme, so the results obtained

within this model cannot be regarded as a quantitative basis for a chemical

experiment.1 Nevertheless, the model has been used as generic model for

nonlinear chemical phenomena [57], because its dynamics reflects the basic

features of an excitable system.

The variables u and v in Eqs. (2.1-2.2) can be either negative or positive.

One may say that Eqs. (2.1-2.2) describe the time evolution of a “chemical”

system with two components. One of them (described by u) is the “activa-

tor” (because it may speed up its own production) and the other (described

by v) is the “inhibitor” (because it slows down the production of u). In

this sense the values of u and v are related to the “concentrations” of the

corresponding “reagents”. In the spatially distributed system it is assumed

that the “inhibitor” is always immobilized (it never diffuses). The system

(2.1-2.2) is excitable for the following parameters describing reactions: γ=1,

τ=0.03, k=3.0, α=0.02 [86]. The nullclines of Eq. (2.1) without the diffu-

1Although there was a successful attempt to propose a microscopic reaction scheme

corresponding to this model [58].
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sion term (solid line) and Eq. (2.2) (dashed vertical line identical with the v

axis) for these values of parameters are shown in Figure 1. Solid and dashed

arrows indicate the vector fields driving u and v respectively. The nullclines

have only one common point u=v=0, indicating the stationary homogeneous

solution of Eqs. (2.1-2.2). The dotted line with symbols shows a possible

evolution of the system in the phase space after a sufficiently large perturba-

tion. This is where the excitability of the system can be observed (note, that

the initial perturbation does not decrease, but at first it increases).2 The dif-

fusion coefficient of the “activator” Du equals 0.00045 because for this value

well defined pulses propagate in the system [111, 112]. Areas of the studied

FH-N systems where Eqs. (2.1-2.2) hold are called excitable or active areas.

In some parts of considered structures the “inhibitor” v is absent, no

reactions occur and only diffusion of the “activator” u is possible. These

areas of the FH-N systems are called diffusion or passive areas. Within them

the time evolution of u and v is described by the following set of equations

[86]:

τ
∂u

∂t
= Du∇2u (2.3)

v = 0 = const. (2.4)

where k=0.03 and Du=0.00045 [111, 112], as previously. In all the studied

structures free diffusion of the “activator” u between active and passive areas

is assumed.

2The response of the system described by Eqs. (2.1-2.2) without the diffusion term to

a perturbation of vi=-0.2 is illustrated in Fig 01a.htm on the CD-ROM (folder Figures).

Response of the same system to two consecutive perturbations is presented in Fig 01b.htm

and Fig 01c.htm. In the case of Fig 01b.htm the second perturbation comes too early after

the initial one and consequently is disappears almost instantly. In Fig 01c.htm the second

perturbation occurs a moment later and the system is excited again. In both cases the

second perturbation has the same amplitude of (∆u=0.4, ∆v=0.0)
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Figure 1. The nullclines of Eq. (2.1) without the diffusion term (solid line)

and Eq. (2.2) (dashed vertical line identical with the v axis) for the values of

parameters given in Section 2.1.1. Solid and dashed arrows indicate the vector

fields driving u and v respectively. The nullclines have only one common point

u=v=0, indicating the stationary homogeneous solution of Eqs. (2.1-2.2). The

dotted line with symbols shows the evolution of the system in the phase space

after a sufficiently large perturbation (vini=-0.2).
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One may notice that the number of parameters used in Eqs. (2.1-2.4)

may be reduced without losing generality, which is true, as Eq. (2.1) can

be divided by τ and then only four independent parameters remain in the

model. On the other hand, the form of the equations presented above is very

convenient for manipulations, because k and α influence the threshold value

of perturbation exciting the system, Du controls the propagation of excitable

pulses, τ corresponds to different time scales of the dynamics of “activator”

and “inhibitor” and γ is just a ”switch” between active and passive areas

(γ=1 for the active medium and 0 for the passive one).

2.1.2 The Rovinsky - Zhabotinsky model.

Another important model used in my calculations is the Rovinsky - Zhabotin-

sky model [44, 45] of the ferroin catalyzed Belousov - Zhabotinsky reaction

[10]. This model is based on the Field - Körös - Noyes mechanism [42].

To avoid duplicating information, only the most important facts about this

model are included in this section, because the variables, coefficients and de-

tails about scaling can be found in Appendix A, together with the detailed

step-by-step derivation of the reaction - diffusion equations from the chemical

reaction scheme.

The model consists of two variables: x and z, which correspond to dimen-

sionless concentrations of the activator x (HBrO2) and of the oxidized form

of catalyst z (Fe(phen)3+
3 ), where the scaling is given by Eqs. (A24-A25)

in Appendix A. In the active regions, which contain the catalyst, the time

evolution of the concentrations of x and z is described by Eqs. (2.5-2.6):

∂x

∂τ
=

1

ε
[x(1− x)− (2qα

z

1− z
+ β)

x− µ

x + µ
] +∇2

ρx (2.5)

∂z

∂τ
= x− α

z

1− z
(2.6)
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In the passive regions, without catalyst, the concentrations of x and z evolve

according to Eqs. (2.7-2.8):

∂x

∂τ
= −1

ε
[x2 + β

x− µ

x + µ
] +∇2

ρx (2.7)

z = 0 = const. (2.8)

α, β, µ and ε are scaled coefficients defined by Eqs. (A28-A31) in Appendix

A. τ and ρ are dimensionless variables describing time and distance respec-

tively. Their connection with physical time and distance is given by Eqs.

(A26-A27), Appendix A.

Eqs. (2.5-2.8) correspond to a typical experimental situation in which

the catalyst is immobilized on a membrane, whereas the activator is in the

solution and it can diffuse (compare eg. [19, 70, 81, 82], [87]-[91], [93, 94, 95,

102, 113, 114]).

In numerical calculations for the BZ system the following values of pa-

rameters (the same as considered in [44, 45, 112], [115]-[118]) have been used:

A=0.02 M, B=0.2 M, C=0.001 M, k1=100M−2/sec, k4=1.7·104M−2/sec, k5=107M−2/sec,

k7=15M−2/sec, K8=2·10−5M/sec, k13=10−6sec−1, q=0.5. The corresponding

values of scaled parameters α, β, ε, µ are 0.017· h−2
0 , 0.0017· h−1

0 , 0.1176 and

0.00051 respectively, where h0 denotes the Hammett acidity function, de-

scribing the effective proton concentration [46, 119, 120] and it is expressed

in mol/l. For these values of parameters the system becomes excitable if

h0<0.9899 [118]. Here h0=0.5 has been used.

For these values of parameters Eqs. (A26-A27) give the following con-

stants which transform dimensionless time (τ) and distance (ρ) into physical

units:

t[sec] = 8.5 · τ (2.9)

r[cm] = 2.915 ·
√

DX/[cm2/sec] · ρ (2.10)
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where t and r are physical time and distance. Consequently, similar transfor-

mation constant connecting the dimensionless (ν) and physical (v) velocities

of a pulse can be calculated:

v[cm/min] = 20.58 ·
√

DX/[cm2/sec] · ν (2.11)

In the last two equations DX is the diffusion constant of the activator X. How-

ever, this constant strongly depends on the medium the reactions proceed in.

In the aqueous solution it is of the order of 10−5cm2/sec [45, 46, 84, 118, 119]

whereas for a reaction in a gel it may be reduced by two orders of magnitude

[61, 84]. In order to make the results more general, all distances and veloc-

ities concerning the R-Z model are presented in double form: dimensionless

and as the function of the ratio of diffusion constants DX

DX0
, where the value

of DX0 corresponds to a particular choice of the diffusion constant: DX0=1·
10−5cm2/sec [45, 118]. The second number allows to see more clearly the

real spatial and temporal scale of the considered processes.

The nullclines of Eq. (2.5) without the diffusion term (solid line) and

Eq. (2.6) (dashed line) for these values of parameters are shown in Figure

2. The dotted line with symbols shows a possible evolution of the system in

the phase space after a sufficiently large perturbation.3

The coordinates of intersection of nullclines in Fig. 2 give the stationary

3Like in the case of the FH-N model, there are additional animated figures illustrating

nullclines of the system described by Eqs. (2.5-2.6) without the diffusion term (CD-ROM,

folder Figures). The response of such a system to a perturbation of xi=0.1 is illustrated

in Fig 02a.htm Response of the same system two consecutive perturbations is presented

in Fig 02b.htm and Fig 02c.htm. In the case of Fig 02b.htm the second perturbation

comes too early after the initial one and consequently is disappears almost instantly.

In Fig 02c.htm the second perturbation occurs a moment later and the system is excited

again. In both cases the second perturbation has the same amplitude of (∆x=0.1, ∆z=0.0)
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Figure 2. The nullclines of Eq. (2.5) without the diffusion term (solid line) and

Eq. (2.6) (dashed line) for the values of parameters given in Section 2.1.2. Solid

and dashed arrows indicate the vector fields driving x and z respectively. The

nullclines have only one common point (xsa=7.283·10−4, zsa=1.060·10−2) indicat-

ing the stationary homogeneous solution of Eqs. (2.5-2.6). The dotted line with

symbols shows the evolution of the system in the phase space after a sufficiently

large perturbation (xini=0.1).
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values of x and z in the active (excitable) area. They read:

xsa = 7.283 · 10−4 (2.12)

zsa = 1.060 · 10−2 (2.13)

(which is the stationary solution of Eqs. (2.5-2.6)). The stationary concen-

trations in the passive area (the stationary solution of Eqs. (2.7-2.8)) are

given by:

xsp = 5.099 · 10−4 (2.14)

zsp ≡ 0 (2.15)

Free diffusion of the activator x is assumed between active and passive areas.
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2.2 Propagation of single pulses of excitation

through a passive gap.

I. Motoike and K. Yoshikawa considered two active areas separated by a stripe

of the passive one [86]. A pulse of excitation propagating in one of these

areas may excite the other active area if the passive stripe is narrow. The

maximum width of the passive stripe for which such excitation still occurs

is called the penetration depth. They found [86] that the penetration depth

depends on the geometry of the junction and on the direction of propagation

of incident pulses and it is maximal for plain pulses travelling in the direction

perpendicular to the barrier. In [86] Motoike and Yoshikawa describe their

results obtained with an Euler explicit method for the FitzHugh - Nagumo

model, the same and with the same values of parameters as considered here.

According to [86], if the penetration depth for a single pulse with the wave

vector perpendicular to the barrier is denoted by dc,FH−N , then for a pulse

travelling parallel to the barrier it is only 0.94·dc,FH−N . This result has been

confirmed for the purpose of this study with an implicit method based on the

Crank - Nicolson discretization of the Laplace operator [121].4 It has been

found [86, 116] that dc,FH−N≈0.163.

Similar calculations have been carried out for the Rovinsky - Zhabotinsky

model [115, 116]. The penetration depth for a single pulse travelling in the

direction perpendicular to the barrier is dc,R−Z≈3.295 (0.03037·
√

DX

DX0
cm),

while for a pulse travelling parallel to the barrier it is about 3.287 (0.03029·
√

DX

DX0
cm),

which is 0.995·dc,R−Z . Note, that this result implies, that the penetration

4This method has been used to obtain most of the results presented in this work; if

other algorithms have been applied, it is indicated in the text. The formulas corresponding

to implicit integration schemes mentioned here as well as the explicit Euler method can

be found in Appendix B.
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depth for “perpendicular” and “parallel” pulses differ by 0.5% only, while

for the FitzHugh - Nagumo model it is 6%. Creating a stripe of passive

field with higher than 0.5% accuracy in its width is a hard, but achievable

task from the experimental point of view. One may apply for example the

photolithographic methods for the introduction of catalyst [70, 103, 104].5

5At first the BZ system was studied for h0=0.97. The penetration depths for pulses

travelling perpendicularly or parallel to the passive stripe for this value of h0 are almost

the same, as they differ by less than 0.05%. Therefore it seems to be very difficult to make

a passive stripe impenetrable for a ”parallel pulse” and penetrable for a ”perpendicular”

one in the laboratory. Decrement of h0 stabilizes the stationary solution of Eqs. (2.5-2.6)

[115]. This results in a faster relaxation of the active medium and remarkably increases

the asymmetry in the penetration depth. From the chemical point of view smaller h0

corresponds to lower concentration of H+ in the system. The results given in text have

been obtained for h0=0.5.
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2.3 The cross junction and its properties.

Having in mind the results of the previous section (Section 2.2) concerning the

FH-N model one may notice that a layer of the width dFH−N (0.94·dc,FH−N<dFH−N<d c,FH−N)

is transparent for a pulse propagating perpendicularly, but impenetrable for

a pulse propagating parallel to it.6 This observation opens the way to con-

struct a simple coincidence detector of chemical signals.

Let us consider a plain (two dimensional) system with geometry shown

in Figure 3, where the brighter areas correspond to the active (excitable)

medium and the dark stripes - to the passive (diffusion) one. The excitable

and diffusion areas in the device shown in Fig. 3 form two perpendicular

“channels”, in which travelling pulses can propagate. To simplify the de-

scription that follows let us assume that the excitable areas of our cross

junction are numbered as in Fig. 3.

If the width of the stripes of the diffusion field dFH−N is between 0.94·dc,FH−N

and d c then the cross junction presented in Fig. 3 may have interesting prop-

erties. It can be expected that:

i A single pulse propagating in one of the channels is able to propagate

along its own channel, but it cannot move “sideways” (because it cannot

cross the stripe of the diffusion field parallel to the direction of its

motion, as dFH−N>0.94·dc,FH−N);

6The asymmetry of the penetration depth within the FH-N model is nicely illustrated

in Fig 03a.htm and Fig 03b.htm on the CD-ROM (folder Figures). Brighter colors cor-

respond to higher concentration of the “activator” u. The passive stripe is blue and the

active areas are red. The same color coding is used for all the other animations mentioned

later in text. In Fig 03a.htm a plain pulse of excitation gets through a barrier perpendic-

ular to the direction of its motion, while the same barrier cannot be crossed by a pulse

travelling parallel to it (Fig 03b.htm).
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1 2 3

4 5 6

7 8 9

Figure 3. Geometry of the cross junction: brighter areas correspond to the

excitable field and the dark stripes - to the diffusion one. The excitable areas

are numbered to simplify the description in text.
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ii The pulse is able to propagate through the junction of two channels

(because it is able to cross the stripe of the diffusion field perpendicular

to the direction of its motion, as dFH−N<d c,FH−N).

Of course, properties (i) and (ii) are formulated for the FitzHugh - Nagumo

model, but analogical construction and explanations are valid for the Rovin-

sky - Zhabotinsky model.7

If there are two pulses of excitation propagating in perpendicular channels

of the cross junction presented in Fig. 3, they may coincide and interact in the

common central part of the device (area 5 in Fig. 3). This interaction may

be different, depending on the time difference between the incoming signals.

Thus, the detection of coincidence of signals from individual channels should

occur in the central area of the cross junction. It is interesting and useful

to obtain the full characteristics of the behavior of the cross junction with

respect to the time difference between the incoming pulses.

2.3.1 Results for the FH-N model.

The properties of the cross junction within the FH-N model have been thor-

oughly studied for passive stripes of the width dFH−N=0.16 [111]. The pulses

have been initiated on the border by decreasing the value of the inhibitor v

inside the channel to v i=-0.2. The answer of a homogeneous system with

respect to such excitation is shown in Fig. 1 (Section 2.1.1). The stationary

shape of a pulse is obtained after ts,FH−N ≈2.50 and the velocity of free

propagation of the pulse is v s,FH−N ≈0.77. Thus after covering the distance

of 2 units the pulse retains its stationary form.

7Properties (i) and (ii) for the FH-N model are presented in Fig 03c.htm on the CD-

ROM (folder Figures). All passive stripes in Fig 03c.htm have the same width of about

0.96·dc,FH−N
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Figure 4 presents a typical stationary shape of a travelling pulse in terms

of the variable u. Brighter areas correspond to the higher values of u. Thin

stripes of the diffusion field are located between the pairs of dashed lines

(the stripes are not filled black, so that the picture is more legible). One can

see characteristic “whiskers” of the pulse, slightly sticking outside the stripes

of the diffusion field. The collision of these “whiskers” explains part of the

characteristics of the cross junction given below (points A and C). Such sta-

tionary shape of a pulse does not depend on the mechanism of initialization.

If the width of the excitable field inside the channel (d e,FH−N) is large

enough (d e,FH−N>0.40) we do not observe its influence on the amplitude and

velocity of a pulse. In very narrow channels (d e,FH−N<0.10) both amplitude

and velocity are remarkably smaller than those characterizing a pulse in a

wide channel. In particular, in a channel characterized by d e,FH−N=0.10 the

amplitude of the pulse of u (”activator”) is by 2% smaller than for a pulse

propagating in a wide channel (umax=0.93 has been observed instead of 0.95

seen in wide channels). The velocity of such a pulse drops by 13%, from 0.77

to 0.67. In the narrowest channels studied (d e,FH−N=0.02) the amplitude of

the pulses of u is umax=0.75 and their velocity is only 0.39, but the pulses

still propagate.

The features of a pulse mentioned above are important for its propagation

through the junction. The data concerning penetration of diffusion filed

given by I. Motoike and K. Yoshikawa in [86] applies to pulses propagating

in wide channels. If the width of the channel is smaller than 0.70, then the

penetration depth for transverse propagation decreases. The width of the

excitable field inside each channel is also important for a pulse to propagate

through the junction, because the pulse needs enough space between the two

stripes of the diffusion field on its way to cross both of them. In other words:
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Figure 4. Typical stationary shape of a travelling pulse in terms of the

variable u. Brighter colors correspond to higher values of u. Thin stripes of

the diffusion field are located between the pairs of dashed lines (the stripes

are not filled black, so that the picture is more legible).
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to obtain the propagation of a pulse from the area 4 to the area 6 in Fig.

3 - the area 5 cannot be too small. It has been found [111] that in order

to obtain the junction with features (i) and (ii) the inner diameter of the

channel d e,FH−N should not be lower than ca. 0.80.

All the results presented below are obtained by integrating Eqs. (2.1-2.4)

numerically. The calculations have been carried out with the implicit method

[121]. The values of parameters given in Section 2.1.1 have been used, as well

as d e,FH−N=1.02. The time step of the integration dt=0.005. Three sizes

of the square the junction is built on have been considered (5x5, 7x7 and

8x8), covered with square lattices of 250x250, 350x350 or 400x400 points

respectively. Thus, the space step in all those calculations dx=dy=0.02 re-

mains constant. The results for different system’s sizes are consistent. No

flux boundary conditions have been used at the border of the square.

To find the time characteristics of the cross junction the following tech-

nique has been applied. In each of the input channels (areas 4 and 8) one

input signal (a pulse) is initiated. The pulses are produced on the border of

the square. For various experiments the channels are located in different parts

of the square, so that the pulses travel over various distances before reaching

the cross junction. This way, due to their constant velocity (v s,FH−N ≈0.77),

one is able to adjust the time difference ∆t between their arrival at the junc-

tion.8 Depending on ∆t seven types of the junction’s response have been

obtained. They are presented in Figures 5-11.9 The figures marked as a)-f)

8Note, that ∆t can be specified only with finite resolution of

dx/vs,FH−N=0.02/0.77≈0.026, as the distance between the place of initiation of a

pulse and the cross junction is controlled up to the space step of the grid used (0.02).

This makes the ”spectrum” of ∆t discontineous (see points A.-G. below).
9Each of Figs. 5-11 has its color, animated version under the name like Fig 05a.htm,

Fig 06a.htm, ... Fig 11a.htm (CD-ROM, folder Figures).

http://rcin.org.pl



CHAPTER 2. RESULTS. 44

show the time evolution of the activator in the junction (the exact timing of

snapshots a)-f) is given in figure captions).

Due to the symmetry of the system it is enough to restrict the analysis

to the case in which the first pulse is initiated in the area 4 and the second

- in the area 8. The behavior of the cross junction may be classified in the

following way:

A. For a very small time difference between incoming signals (∆t≤0.26) the

cross junction acts as the “AND” logical gate. The output signal is

produced in the area 7 between the two input channels (4 and 8) if and

only if there are two input signals arriving at the junction within the

given time difference. The output signal probably appears when the

“whiskers” of the two travelling pulses meet (cf. Fig. 5).

B. For the time difference in the range 0.28≤ ∆t≤3.45 only the earlier signal

survives and propagates within its own channel - area 6. Here the cross

junction works (as expected) as a coincidence detector in which the

earlier pulse switches the central field into the refractory regime and

blocks the propagation of the second signal (cf. Fig. 6).

C. When 3.48≤ ∆t≤3.79 the earlier signal survives in its own channel (area

6) and in addition a new output signal is produced in the lower right

hand side corner of the device (area 9). The new output signal appears

due to the same mechanism as in the case A, ie. due to the coincidence

of the “whiskers” (cf. Fig. 7).

D. For 3.81≤ ∆t≤4.22 the evolution is the same as in the case B: only the

earlier incoming signal survives and propagates in the area 6 (cf. Fig.

8).
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Figure 5. The “AND” logical gate for ∆t=0.00. The output signal is

produced in the area 7 between the two input channels (4 and 8). The

consecutive snapshots correspond to a) t=0.5, b) t=2.5, c) t=3.5, d) t=4.0,

e) t=4.5, f) t=5.0. Such behavior is observed for ∆t∈[0.00, 0.26].
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Figure 6. Only the earlier signal survives (within its own channel - area 6)

for ∆t=1.29. The consecutive snapshots correspond to a) t=0.5, b) t=2.5, c)

t=4.0, d) t=4.5, e) t=5.5, f) t=7.5. Such behavior is observed for ∆t∈[0.28,

3.45].
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Figure 7. The earlier signal survives in its own channel (area 6) and in

addition a new output signal is produced in the area 9 for ∆t=3.61. The

consecutive snapshots correspond to a) t=1.0, b) t=4.0, c) t=6.0, d) t=7.0,

e) t=8.0, f) t=10.0. Such behavior is observed for ∆t∈[3.48, 3.79].
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Figure 8. For ∆t=3.87 only the earlier incoming signal survives (area 6).

The consecutive snapshots correspond to a) t=1.0, b) t=4.0, c) t=6.0, d)

t=7.0 e) t=8.0 f) t=9.0. Such behavior is observed for ∆t∈[3.81, 4.22].
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Figure 9. For ∆t=4.25 the earlier incoming signal follows the way within its

own channel (area 6) while the other signal is switched from the original path

and follows the first signal (area 6). The consecutive snapshots correspond

to a) t=4.0, b) t=6.0, c) t=8.0, d) t=8.5, e) t=10.0, f) t=11.0. Slides c) and

d) present ”zoomed” images of the central field of the junction, in order to

show in details the most interesting part of the evolution in this area.
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Figure 10. For ∆t=4.64 the earlier signal goes unchanged through the

junction, while the other signal initiates output pulses both within its own

channel (area 2) and in the horizontal channel (area 6). The consecutive

snapshots correspond to a) t=4.0, b) t=7.0, c) t=8.5, d) t=9.0, e) t=10.0,

f) t=11.5. Such behavior is observed for ∆t∈[4.28, 5.41].
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Figure 11. For ∆t=5.67 the pulses do not “feel” each other any more.

Each of them simply propagates in the channel it was initialized in (areas 6

and 2 respectively). The consecutive snapshots correspond to a) t=4.0, b)

t=6.0, c) t=7.0, d) t=9.5, e) t=10.0, f) t=12.0. Such behavior is observed

for ∆t≥5.43.
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E. For ∆t≈4.25 the earlier incoming signal propagates within its own chan-

nel (area 6), while the other signal is switched from the original path

and follows the first signal (cf. Fig. 9). This behavior is caused by the

fact that the second pulse finds the central area of the junction relaxed

only on the left hand side. Consequently, further propagation of the

pulse within the junction starts there and the geometry of the reactor

makes the pulse switch its original direction. It can be seen in Figs. 9c)

and 9d), which present the ”zoom” of the central filed of the junction.

F. For 4.28≤ ∆t≤5.41 the earlier signal passes unchanged through the junc-

tion, while the later signal initiates output pulses both within its own

channel (area 2) and in the horizontal channel (area 6). The explana-

tion of this case is similar to the one given it the previous point. The

only difference is that here the second pulse enters the central area of

the junction a bit closer to the right than in the case E, due to a better

relaxation of the active medium in the central area (cf. Fig. 10).

G. For ∆t≥5.43 the pulses do not “feel” each other any more. Each of them

simply propagates in the channel it was initialized in (areas 6 and 2

respectively). This is because the central area of the junction is fully

relaxed when the second pulse appears (cf. Fig. 11).

2.3.2 Results for the R-Z model.

Interesting results obtained within the FitzHugh-Nagumo model motivated

me to study the propagation of excitable pulses in the cross junction geome-

try, but using a model which can be directly linked with chemical reactions,

in order to give grounds to verify the results experimentally. For this purpose

the Rovinsky - Zhabotinsky model has been applied.
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The system of partial differential equations (2.5-2.8) has been solved

numerically using the explicit Euler technique with a constant time step

dτ=0.001. The pulses have been initialized at the boundaries of the square,

inside the channels (areas 4 and 8 in Fig. 3) by increasing the concentration

of x to 0.1. In the majority of calculations the square has been covered with

a grid of 320x320 points. At the beginning the concentrations of x and z

in all active and passive areas correspond to their stationary states xsa, zsa

and xsp, zsp respectively (Eqs. (2.12-2.15)). On the lower and left hand side

borders of the system no flux boundary conditions have been used. On the

other hand the values of x and z have been fixed as equal to the correspond-

ing stationary states (xsa, zsa and xsp, zsp respectively) at the upper and right

hand side borders. This way the pulses arriving there may freely ”leak out”

of the system (they do not accumulate in the neighborhood of the borders)

and any influence of the system’s boundaries on the time evolution can be

avoided.

Passive stripes which are dR−Z=3.291 (0.03034·
√

DX

DX0
cm) wide have been

considered (this value is between 0.995·dc,R−Z and dc,R−Z given in Section

2.2). From the calculations the minimum width of a signal channel has been

found. For the selected width of the passive stripes the pulse initiated (for

example) in the area 8 always arrives to the central area 5. However, if

the central field is too small then the amplitude of the activator is not high

enough to excite the opposite area 2. It has been found that the minimum

inner width of the signal channel for which pulses can propagate through the

junction is about 10.526 (0.097029·
√

DX

DX0
cm).

The typical velocity of the pulse in our system is about 4.128 (0.2686·
√

DX

DX0
cm/min),

which is a reasonable value for a chemical wave in the BZ reaction [46, 102,

113, 119, 122, 123].
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Knowing the width of a semitransparent passive barrier and the width of

an active channel one can build a cross junction of the excitable BZ system

which should work similarly to that for the FitzHugh - Nagumo dynamics.

The pulses initiated in the horizontal channel (in the area 4 in Fig. 3) should

be able to get through the junction (area 5 in Fig. 3) and arrive at the other

side of the device (area 6 in Fig. 3) without escaping from the channel (to

the areas 1-3 and 7-9 in Fig. 3) and due to the symmetry of the device the

pulses in the vertical channel should behave in the same way. What is the

interaction between pulses coming from perpendicular directions? At the be-

ginning the system is in its stationary state. In calculations two sizes of the

square on which the junction is built have been considered: 198.13x198.13

and 263.3x263.3 (corresponding to 1.8264·
√

DX

DX0
cm and 2.427·

√
DX

DX0
cm), for

which square lattices of 240x240 or 320x320 points respectively have been

used. Thus, the space step in all those calculations dρ=0.82 remains con-

stant. Two channels of the width of 66.648 (0.61436·
√

DX

DX0
cm) or 132.473

(1.22114·
√

DX

DX0
cm) for smaller and larger systems respectively are placed

symmetrically on the square. The results obtained for different grids are

consistent. The first pulse is initiated on the left hand side border of the

area 4 in Fig. 3. After a time ∆τ another pulse is initiated on the lower

border of the area 8. Because the distance from both borders to the junction

is the same, the time difference between the arrival of the first and the second

pulse at the junction is also ∆τ .

It has been observed that if the second pulse arrives at the central field

earlier than ∆τmin=107 (910sec) after the first one, it is stopped at the central

field. On the other hand, if ∆τ > ∆τmax=115 (978sec) both pulses follow

their original signal paths without interaction.

Although it is apparently possible to build a coincidence detector based
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on the cross junction of excitable BZ systems with the dynamics given by the

Rovinsky - Zhabotinsky model, the other interesting features of the junction,

described in Section 2.3.1, do not occur in the R-Z model. In particular, the

”AND” logical gate behavior, when two pulses coincide, producing an output

pulse between the channels (in the areas 7 or 9 in Fig. 3) has never been

observed. Neither the ”chemical switch”, when the second pulse changes the

direction of propagation and follows the first one [111].

In order to see more clearly why the ”chemical switch” does not work for

the BZ system, calculations for the asymmetric junction presented in Figure

12 have been performed.10 Here a square of 263.3x263.3 (2.427·
√

DX

DX0
cm),

covered with the grid of 320x320 points has been used. The first pulse is

initiated in the horizontal channel (area 4 in Fig. 3). The channel is located

at the distance 56.363 (0.51956·
√

DX

DX0
cm) from the lower boundary; its width

is 99.560 (0.91775·
√

DX

DX0
cm). After the time ∆τ=109.0 (927sec) another

pulse is initiated in the vertical channel (area 8 in Fig. 3). This channel

is located at the distance 56.363 (0.51956·
√

DX

DX0
cm) from the left hand side

boundary; its width is 152.220 (1.40317·
√

DX

DX0
cm). One can see that when

the second pulse gets to the central area of the junction, it propagates in both

vertical and horizontal directions. The propagation to the right fails, while

the propagation upwards continues and, what is very important, the pulse is

able to pass from its own channel (area 2 in Fig. 3) to the upper right hand

side part of the system (area 3 in Fig. 3). Comparison of Figs. 12d) and 12e)

shows that the pulses trying to get from the area 5 to the area 6 and from

the area 2 to the area 3 ”attack” the stripe of the diffusion field both at the

same angle, so the geometrical factor is not the reason for the propagation

10Animated version of this Figure (Fig 12a.htm) can be found on the CD-ROM (folder

Figures).
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Figure 12. Two pulses in an asymmetric cross junction of systems with the

Rovinsky - Zhabotinsky dynamics. Figures show the concentration of activator for

a few selected moments in the case the second pulse of excitation arrives ∆τ=109

after the first one. The brighter areas correspond to higher values of x. a) τ=54

- the first pulse passes through the horizontal channel; b) τ=114 - the second

pulse approaches in the vertical channel; c) τ=134 - the second pulse propagates

asymmetrically in the central area; d) τ=150 - although the geometrical condition

is fulfilled, the pulse cannot pass into the area 6, but it gets into the area 2; e)

τ=170 - asymmetric propagation of the second pulse in the area 2; f) τ=184 - the

pulse gets into the area 3. Such behavior is observed for ∆τ∈(107, 115).
http://rcin.org.pl
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failure. The failure occurs apparently because the active medium in the area

6 is still not relaxed behind the first pulse. A number of calculations for a

set of smaller time shifts ∆τ has been performed (until the second signal is

not able to enter the junction at all for ∆τ=∆τmin=107 (910sec)) as well as

for the larger ones (until the second signal propagates through the junction

and does not ”feel” the influence of the first signal at all for ∆τ=∆τmax=115

(978sec)) and the second signal turning right from the area 5 to the area 6

has never been observed. Consequently, the ”chemical switch” behavior in

the Rovinsky - Zhabotinsky model has not been found, despite the favorable

geometry of the system.

The difference with respect to the FitzHugh - Nagumo model may be

explained as follows: in the Rovinsky - Zhabotinsky model the distance at

which the catalyst (z ) relaxes is by order of magnitude larger than the one

for the activator (x ), whereas in the FitzHugh - Nagumo both u and v relax

at the same spatial scale.

Looking at Figs. 12e) and 12f) one can see that the simplest idea how to

make the second pulse turn right is to direct the pulse excited in the upper

right hand side corner of the system (area 3 in Fig. 3) into an additional

channel.

This has been done in the computer experiment illustrated in Figure 13.11

The size of the square, grid size, width of the diffusion stripes and the time

shift between the signals are the same as in Fig. 12. The main channels

of identical width of 132.473 (1.22114·
√

DX

DX0
cm) are placed symmetrically

in the middle of the square (at the distance 66.236 (0.61057·
√

DX

DX0
cm) from

each border). An extra channel of the diameter 33.735 (0.31097·
√

DX

DX0
cm) is

11Animated version of this Figure (Fig 13a.htm) can be found on the CD-ROM (folder

Figures).
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Figure 13. Two pulses in a symmetrical cross junction of systems with the

Rovinsky - Zhabotinsky dynamics with an additional channel. Figures show con-

centration of activator for a few selected moments in the case the second pulse of

excitation arrives ∆τ=109 after the first one. The brighter areas correspond to

higher values of x. a) τ=54 - the first pulse passes through the horizontal channel;

b) τ=114 - the second pulse approaches in the vertical channel; c) τ=140 - the

second pulse propagates asymmetrically in the central area; d) τ=160 - the pulse

is stopped on the right hand side boundary of the vertical channel; e) τ=170 -

asymmetric propagation of the second pulse in the area 2; f) τ=182 - the pulse

gets into the area 3 (as in Fig. 12f), but also generates a pulse in the extra channel.

Such behavior is observed (at least) for ∆τ∈[108, 111].
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located in the upper right hand side corner of the system. In Fig. 13f) one

can see that the pulse is in fact excited in that extra channel. The results

obtained suggest that this type of behavior can be observed (at least) for

∆τ ∈ [108, 111] [918sec, 944sec].

Another way of building a ”chemical switch” is to speed up the relaxation

of the active chemical medium in the area 6 (Fig. 3) behind the first pulse.

One can do it easily by increasing the diffusion coefficient in the area 6.

Now pulses propagate here faster and the refractory time of the medium is

shorter. The idea is demonstrated by results of another calculations presented

in Figure 14.12 The geometry is the same as in Fig. 13, except there is no the

extra channel. Instead, the diffusion coefficient of the activator is doubled

in the area 6, comparing to the rest of the system. The first pulse travels in

the horizontal channel (areas 4-6 in Fig. 3) and speeds up remarkably after

crossing the junction (in the area 6 in Fig. 3). After ∆τ=109.0 (927sec) a

pulse in the vertical channel is initiated. This second pulse gets through the

junction (within its own channel - area 2 in Fig. 3), but it also follows the

first pulse, as desired. As in the previous calculations (Fig. 13) this behavior

can be observed (at least) for ∆τ ∈ [108, 111] [918sec, 944sec].

The calculations have shown that the width of signal channels does not

have significant influence on the behavior of the cross junction of the Rovin-

sky - Zhabotinsky systems (if only the channels are wider than the minimum

0.9703mm). The system for which the signal paths are three times wider

than those shown in Figs. 13 and 14 has been investigated (thus, the signal

channels have been 3.66cm wide). It has been found that for this system the

12Animated version of this figure (Fig 14a.htm) can be found on the CD-ROM (folder

Figures). In addition, Fig 14b.htm proves that in the last case a pulse propagating in the

vertical channel does not ”leak out” of it, despite the doubled diffusion coefficient in the

area 6.
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Figure 14. Two pulses in an asymmetric cross junction of systems with the

Rovinsky - Zhabotinsky dynamics, in the case of faster diffusion in the area 6.

Figures show concentration of activator for a few selected moments in the case

the second pulse of excitation arrives ∆τ=109 after the first one. The brighter

areas correspond to higher values of x. a) τ=54 - the first pulse passes through

the horizontal channel; b) τ=114 - the second pulse approaches in the vertical

channel; c) τ=146 - the second pulse propagates asymmetrically in the central

area; d) τ=158 - the pulse is doubled: it turns right into the area 6 and follows its

original path (area 2); e) τ=164 - asymmetric propagation of the second pulse in

the areas 2 and 6; f) τ=176 - the pulse from the area 6 excites a pulse in area 3.

Such behavior is observed (at least) for ∆τ∈[108, 111].
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pulses which arrive earlier than ∆τ=100 after the first one are stopped. Such

result might have been expected as the ”transparency” of the central field is

related to the time the system spends in the refractory regime, which hardly

changes with size. On the other hand, the interval of times for which the

system works as a signal switch becomes slightly longer for larger systems.

This is related to the direction of propagation of the second pulse in the

central area. It has been observed that for three times wider signal channels

(3.66cm) the junction works as shown in Fig. 12, even if the second pulse

arrives ∆τ=120 after the first one.

2.3.3 Discussion.

It has been demonstrated that a cross junction of active and passive fields

reveals interesting properties. These properties include coincidence detection

(the pulses coming within times shorter than a characteristic one are stopped)

and switching the direction of propagation of a chemical pulse. The features

of the cross junction have been studied for the FitzHugh - Nagumo and the

Rovinsky - Zhabotinsky dynamics. They can be realized in a junction of

excitable systems of Belousov - Zhabotinsky reaction.

It has been found that in order to construct a working cross junction

based on the Belousov - Zhabotinsky system it is necessary to create passive

stripes with a very high accuracy. If the diffusion constant of the activa-

tor corresponds to the value characteristic for an aqueous system (DX0=1·
10−5cm2/sec) then the stripe without catalyst should be 0.3034mm wide

with only 1% of tolerance. Such a high precision can be achieved with newly

developed photolithographic technique of introducing catalyst on the surface

[70, 103, 104].

The most interesting feature of the cross junction is its ability to switch
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the direction of an incoming signal. The effect has been discovered for a

symmetrical cross junction (the signal channels are of equal width) and the

FitzHugh - Nagumo dynamics. Similar effect for the BZ system has not

been observed, which seems to be connected to its slower relaxation. It

has been found that a switch of a chemical signal can be constructed if the

cross junction of excitable BZ systems is not symmetrical. Two working

schemes, in which the asymmetry is related to the diffusion coefficient or to

the existence of another output channel have been studied.

It is worth noticing that in the case of Belousov - Zhabotinsky reaction

such properties as the penetration depth strongly depend on the parameters

of the model. Therefore the comparison between calculations and carefully

prepared experiments for a junction of passive and active areas may be a

good verification of the model and the values of parameters used.
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2.4 Propagation of regular trains of pulses

through a passive barrier.

This section is concerned with a simple two dimensional reactor consisting

of an infinite plane of the active (excitable) medium with a stripe of the

passive medium (a passive barrier). Unlike in the previous section, instead

of single pulses of excitation - regular trains of such pulses arriving at the

barrier with a certain frequency are now considered. Such a train of pulses

is called a chemical signal. Pulses in the form of planar waves, travelling

perpendicularly to the stripe are considered. Such a problem is symmetrical

in the direction perpendicular to the stripe, so it can be described as one

dimensional. Therefore in the calculations the system’s evolution has been

modelled on a (one dimensional) interval.

A scheme of the investigated system is shown in Figure 15. In the bottom

part of Fig. 15 the black lines correspond to the active areas, which are

separated by a passive barrier (the gray line). There are free flow boundary

conditions between passive and active media and no flux boundary conditions

at both ends of the interval. Initially both active and passive areas are in

their stationary states. Pulses of excitation are initiated at the left end of

the interval and they travel to the right, coming across the passive barrier

on their way. Initiation of pulses is performed regularly at times k·tp, for

selected tp >0 and k=1, 2, 3,...,kmax. In the following the ”input signal” (a

train of pulses arriving at the barrier) and the ”output signal” (a train of

pulses going away after crossing the barrier) are distinguished. The input

signal frequency is defined as fp=1/tp. If the passive barrier is narrow, it is

transparent to all the incoming pulses; if it is wide - it is impenetrable for

any of them. However, it turns out [116, 117, 124] that for a certain range
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Figure 15. A scheme of the system studied. It is represented by one di-

mensional interval, shown in the bottom part of the figure; the active areas

are black and the passive barrier is gray. The barrier is located between grid

points n1 and n2. Concentrations of reagents are observed at grid points i1

(before the barrier), i2 (just behind the barrier) and i3 (far behind the bar-

rier). The upper part shows a snapshot of a train of pulses propagating in

the system (incoming signal, on the left hand side and outgoing signal, on

the right hand side). Note that the signals have different frequencies.
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of fp and barrier’s width d the passive gap transforms the frequency of the

input signal. It means that the frequency of the output signal fo (observed

behind the barrier) is a fraction of fp, because some of the incoming pulses

are stopped at the barrier, while the others get through (fo/fp∈[0, 1]). This

fact is schematically shown in the upper part of Fig. 15.

2.4.1 The numerical technique.

The time evolution of the signal is studied by numerical integration of the

reaction-diffusion equations in the active areas and within the barrier (Eqs.

(2.1 - 2.4) for the FH-N model or (2.5 - 2.8) for the R-Z model). The system,

represented by an interval of the length l, is divided into n parts by n+1

points of a grid, including both ends (cf. the bottom part of Fig. 15). The

distances between the grid points dl may be different; by selecting a fine

grid around the barrier it is possible to increase the accuracy of calculations,

while a crude grid far away from the barrier saves computer time without

affecting the accuracy. The barrier is located between grid points n1 and n2

(1¿n1 <n2¿n, cf. Fig. 15). It means that the evolution of the system at all

grid points j∈[0,n1]∪[n2,n] is given by the set of reaction-diffusion equations

corresponding to the active medium (Eqs. (2.1 - 2.2) for FH-N model or

Eqs. (2.5 - 2.6) for FH-N model), and the equations describing the passive

medium (Eqs. (2.3 - 2.4) or (2.7 - 2.8) respectively) give the evolution at all

grid points i∈(n1,n2). The barrier’s width is estimated as:

d ∼= (n2 − n1 − 1) · dlb (2.16)

where dlb is the distance between neighboring grid points (in the calculations

dlb is constant in the barrier and around it).

The concentrations of reagents of interest have been calculated using the
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implicit method already mentioned with the distance between neighboring

grid points (dl) as the space step of numerical integration. In the compu-

tations two types of the space grids have been applied . In case of equally

spaced (uniform) grids, used in part of calculations, the whole interval l has

been divided into n equal parts (in this case dl=l/n).

In the other calculations adaptive grids have been used, for which the

passive barrier and its neighborhood (so the part of the system which has

the most influence on signal’s transformation) has been covered with a fine

grid and at both ends of the interval a longer distance between grid points

has been used.13 Two kinds of adaptive grids have been applied. One of

such grids is formed by n=800 grid points and 30 of them are placed within

the barrier (the barrier is located between n1=400 and n2=431). The time

evolution in the active areas surrounding the barrier is also calculated using

the same fine grid as for the barrier dlb=dl/8. 40 grid points on each side

of the barrier, with the distance dlb between them are considered. Next

there are 40 grid points of each side with the distance 2 ·dlb and yet another

40 points with the distance 4 ·dlb. The reaction-diffusion equations in the

remaining part of the system are solved with a crude grid of dl (cf. Figure

16). In order to test the numerical stability, another adaptive grid has also

been used, for which the total number of grid points is n=870 and in this case

the passive barrier, located between n1=420 and n2=481, is covered with 60

points of dlb=dl/16. In the active areas located on both sides of the barrier

the grid is fine (dl/16, 40 points) and next it increases as follows: dl/8 -

20 points, dl/4 - 40 points and dl/2 - 40 points. The rest of the system is

covered with the space step dl.

13The formulas corresponding to the implicit method of numerical integration on adap-

tive grids are given in Appendix B.
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Figure 16. A scheme of the adaptive grid for n=800. Black intervals corre-

spond to active areas, the gray one marks the barrier. The distance between

grid points is given above the line, the number of grid points separated by a

particular dl is given below the line.
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The values of activator and inhibitor are recorded at indicators located

at the grid points i1 (before the barrier), i2 (just behind the barrier) and i3,

located far behind the barrier, as shown in the bottom part of Fig. 15. By

comparing the time evolutions at i1, i2 and i3 one can tell whether a pulse

which arrives at the barrier is able to cross it. Moreover, by counting the

number of maxima of activator within a certain time interval one can measure

the frequency of the input and output signals (fp and fo respectively). When

calculating fp and fo a few initial pulses (usually 10 or 20) are neglected

in order to eliminate a transient behavior at the beginning of evolution.

To describe quantitatively the passive barrier as a device which transforms

chemical signal frequency, the filtering ratio defined as fo/fp is introduced. It

corresponds to the firing number, if notation of [65]-[69] is used.

Calculations have been performed for different values of tp (or fp) and

different values of the barrier’s width d. The diagrams in the space of param-

eters (d,tp) showing ”phases” in which the barrier transforms the chemical

signal in a given way are shown in figures presenting results obtained for

particular models.

The parameters d and tp (or fp) seem to be proper variables to describe

how a passive barrier works as a transformer of the signal frequency. The

interval of tp (or fp) is limited by the fact that once the excitable medium

has been excited it needs some minimal amount of time (called the refractory

period) in order to relax, before it may be excited again. Thus, there exists

a minimal time pace tp,min at which the pulses can be successfully initiated.

The time tp,min depends on the strength of excitation and it fixes the upper

frequency of the signal. On the other hand, making tp very long reduces the

problem to propagation of single pulses. The range of d is also finite as there

always exists a barrier of width dmin, narrow enough to be transparent to
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all pulses in a train and another one, impenetrable for any of them (of the

width of dmax). Thus, the nontrivial transforming properties of the passive

barrier may be observed only in some finite range of tp and d, which depends

on the selected model and values of its parameters.

2.4.2 Results for the FH-N model.

In calculations for the FH-N model the following parameters of a uniform

grid have been used: n=251, n1=150, n2=160, i1=148, i2=162, i3=248. In

order to produce a pulse the value of v has been decreased to vini=-0.8 on

the left end of the interval.

For the considered values of parameters the minimum time after which

the second pulse may be re-excited is tp,min,FH−N≈2.4. However, for such a

short time of consecutive excitations it is not possible to obtain a regular,

stable train of pulses, because it happens that the medium at the initiation

point is not well relaxed and an attempt to re-excite it by the assumed vini

fails. For the FitzHugh - Nagumo system the value of tp,min,FH−N strongly

depends on vini (the strength of excitation) and also on dl, which describes

the spatial size of excitation. Here in order to create a stable train of pulses

tp∈[2.90, 4.04] has been used .

The maximum time within which the evolution is studied (tmax) is fixed

in the calculations. The system is excited approximately p=tmax/tp times,

so it is expected that such number of pulses is produced. The time shift

between individual pulses within a regular train equals tp and fp=1/tp gives

the frequency of incident pulses at the first indicator (i1).

To investigate the effect of the barrier tmax=500 and the time integration

step dt1=5·10−3 have been used to study a range of tp from 2.98 to 4.04 with

increment 0.02 (fp∈[0.248, 0.336]) and the barrier’s widths d∈[0.126, 0.172].
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For the selected tmax and tp, from 120 to 160 pulses have been observed in

the system for each combination of tp and d.

Figure 17 presents a sample signal (concentration of u) observed at the

grid points i1, i2 and i3 for dl=0.0175 (uniform grid) and fp=0.294. For all

the results shown in Fig. 17 n1=150, while n2 is changed to obtain barri-

ers of various width d. The upper curve (1) corresponds to incident pulses

(reference signal at indicator i1). In case of n2=151 (no passive barrier) the

same signal is observed at indicator i2 with only a small time shift, which

the signal needs to cover the distance between indicators i1 and i2 (signal

at i2 - curve 2). The result is the same for n2=155, which corresponds to a

thin, fully transparent passive barrier (curve 3 presents the signal at i2). All

incident pulses observed at indicator i1 get through the barrier and are also

observed at indicator i2. However, for a properly chosen width the barrier

becomes selective. For n2=160 (the barrier’s width is then d=0.158) exactly

every second of the incident pulses is transmitted through the barrier and

observed at indicator i2 (curve 4) or indicator i3 (curve 5).

Figure 18 summarizes the signal transforming properties of a passive bar-

rier as a function of the barrier’s width d and the time shift between consec-

utive incident pulses tp. The white, labeled regions correspond to the given

filtering ratio (fo/fp). The area labeled as ”1” indicates the ratio equal to

1, which means that every incident pulse is able to get through the passive

barrier (the barrier is transparent to all pulses). When tp decreases - one

arrives at the area (labeled as ”1/2” in Fig. 18) where only every second of

the incident pulses is transmitted. With increasing d the filtering ratio de-

creases, which means that the pulses are less and less frequently transmitted

(see area ”1/3” in Fig. 18, where only one out of three of incident pulses

gets through the barrier). Finally the barrier becomes too wide and no pulse
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Figure 17. The time evolution of activator’s concentration at the grid point

i1 (the upper curve 1), at the grid point i2 (curves 2-4) and at the grid point i3

far behind the barrier (curve 5). The evolutions at i2 correspond to no barrier

(curve 2), a narrow transparent barrier (curve 3) and to a barrier for which

frequency transformation occurs (curve 4). In the last case the evolution at

i3 is also shown (curve 5). Results for the FitzHugh - Nagumo model (Eqs.

(2.1-2.4)), tp=3.40 (fp=0.294), d=0.070 (curve 3), d=0.158 (curves 4 and 5).
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Figure 18. Filtering ratio (fo/fp) for the FitzHugh - Nagumo model as a

function of the barrier’s width (d) and the time shift between consecutive

pulses (tp). The white, labeled areas correspond to the situation when fo is

the fraction of fp given in the picture. Gray color marks more complicated

transformations of frequency. The dashed lines correspond to: (a) tp=3.10

(fp=0.323), (b) tp=3.70 (fp=0.270), (c) d=0.160. The rectangular area in the

bottom right hand side corner of the picture has been studied more carefully

and the results are illustrated in Fig. 19.
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can cross it (thus fo=0). This corresponds to the area labeled as ”0” in Fig.

18.14 The dashed lines in Fig. 18 mark tp=3.10 (fp=0.323) - line (a), tp=3.70

(fp=0.270) - line (b), and d=0.160 - line (c). The filtering ratios as functions

of parameters from the dashed lines (a), (b) and (c) are discussed in Sections

2.4.3 and 2.4.4. It is worth noticing that for the FitzHugh - Nagumo model

the frequency transforming (corresponding to elimination of some of the in-

coming pulses by the barrier) may appear for barriers which are narrower or

wider than the penetration depth for a single pulse (dc,FH−N=0.163). In fact,

in Fig. 18 there is a hidden line, corresponding to d=0.163, which divides the

”1/2” area into two qualitatively different sub-areas. For d<0.163 the barrier

is transparent for the first of incoming pulses, impenetrable for the second

one etc. For d>0.163 the first of incoming pulses is stopped at the barrier,

the second one gets through etc. In both cases the overall effect is the same

(fo/fp=1/2). Thus, the described change occuring sharply for d=0.163 can

be considered as phase shift of the outgoing signal.

The part of the parameter space for which the filtering ratio is smaller

than 1 has been studied more carefully with tmax=500 and dt2=2·10−3. The

range of tp from 3.00 to 3.40 with increment of 0.01 and the range of d

from 0.168 to 0.173 with increment of 0.00018 have been investigated (this

is the rectangular area marked with dashed line in the bottom right hand

side corner of Fig. 18). The results are presented in Figure 19, for which the

14Various modes of the frequency transformation occurring in the FH-N model are pre-

sented on animated figures containing 6 incoming pulses each. The animations can be

found on the CD-ROM (folder Figures). Fig 18a.htm presents the case of a fully trans-

parent barrier, for which fo/fp=1. The width of the barrier is then increased. Fig 18b.htm

shows fo/fp=2/3, Fig 18c.htm corresponds to fo/fp=1/2 and finally Fig 18d.htm presents

an impenetrable barrier for which fo/fp=0. The frequency of the input signal fp=0.270

(fp=3.70) is the same for all the figures mentioned here.
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meaning of the colors and labels is the same as in Fig. 18.

The gray regions in Figs. 18 and 19, which separate the areas labeled as

”1”, ”1/2”, ”1/3”, correspond to more complex (periodic or non-periodic)

transmission patterns described later in text. One of such patterns, corre-

sponding to the filtering ratio fo/fp=2/5, is presented in Figure 20. Results

presented in Fig. 20 have been obtained for n=251 (uniform grid), dl=0.01896,

n1=150 and n2=160 (so the barrier’s width is d=0.1707). Indicators have

been located at grid points i1=148, i2=162 and i3=248. Curves 1, 2 and 3

show the signal at indicators i1, i2 and i3 respectively, for fp=0.318 (tp=3.14).

Just after crossing the barrier the signal has the period of 5·tp with two max-

ima of concentration per period (Fig. 20, curve 2). The signal far behind

the barrier is shown as the curve 3. One can see that the small maxima

have not developed into regular pulses and the signal is composed of peaks

separated by 2·tp and 3·tp. Such form of a signal has a transient character.

The numerical experiments with pulses in the FH-N system have indicated

that the velocity of a pulse increases with the distance separating it from the

preceding ones [125]. Thus, a pulse which propagates 3·tp after the preceding

one is faster than that propagating 2·tp after the preceding one. In the long

time limit one obtains a periodic signal, the frequency of which is 2/5 of the

original one. The stability of the 2/5 transforming mode described here has

been confirmed by calculations carried out up to tmax=10000.

2.4.3 Numerical difficulties.

The solutions which correspond to the filtering ratio 1/2 or 1/3 are quite

stable numerically and they cover a large part of the parameter space. In

order to learn more about what happens in the gray areas of Figs. 18 and 19

a series of calculations has been performed with one of the parameters (the
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Figure 19. Filtering ratio (fo/fp) for the FitzHugh - Nagumo model as a

function of the barrier’s width (d) and the time shift between consecutive

pulses (tp). The white, labeled areas correspond to the situation when fo is

the fraction of fp given in the picture. Gray color marks more complicated

transformations of frequency.
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Figure 20. The time evolution of activator’s concentration in the FitzHugh

- Nagumo model at the grid point i1 (curve 1), at the grid point i2 (curve 2),

and at the grid point i3 (curve 3) for d=0.1707. Curves 1, 2 and 3 correspond

to fp=0.318 and illustrate the frequency transforming ratio equal to 2/5.
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width of the passive barrier d or the time shift between consecutive incident

pulses tp) fixed and the other changing within a certain range. By monitoring

the input and output signals (similar to those presented in Fig. 17) one is

not only able to calculate the filtering ratio for the given combination of d

and tp, but also describe the sequence of transmitted/stopped pulses in the

input signal, which leads to a particular value of fo/fp. The calculations have

been done for parameters on the lines of constant d or tp shown in Fig. 18.

The computations have to be performed for a period of time long enough

to observe many full cycles of signal transformation. However, it has been

discovered that the results of calculations are quite sensitive with respect to

the size of the grid and the time integration step (dt) used in computations.

Figure 21 presents a set of curves showing the filtering ratio for tp=3.10

(fp=0.323) as a function of d. The considered values of parameters line on

the horizontal dashed line (a) in Fig. 18. All results have been obtained

for dt=1·10−3 and the calculations have been performed up to tmax=500.

For curve (a), marked with empty triangles, a uniform grid with n=400 has

been used. Curve (b), marked with empty diamonds, indicates the results

for a uniform grid with n=800. The passive gap has been located between

n1=180 and n2=189 for n=400, n1=360 and n2=377 for n=800. In case of

curves (c) - filled circles and (d) - empty circles, adaptive grids with n=800

(c) or n=870 (d) respectively have been applied. The value of dlb in these

calculations depends on system’s length l and the number of grid points

used. The signals at indicators i1 and i2, located at approximately constant

distance of li=0.6 (in the dimensionless units of distance) before and behind

the passive barrier have been analyzed (cf. the bottom part of Fig. 15).

Results presented in Fig. 21 show a rich structure of different filtering

ratios, which is much more complex than the one shown in Fig. 0C for
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Figure 21. Results for the FitzHugh - Nagumo model. Filtering ratio fo/fp for

fixed tp=3.10 (fp=0.323) and d changing within the presented range. All results

have been obtained for dt=1·10−3, tmax=500, but for each of the curves (a) - (d)

different grids have been used. This figure illustrates the dependence of the results

on computational parameters. Curve (a) - marked with empty triangles - uniform

grid with n=400. Curve (b) - marked with empty diamonds - uniform grid with

n=800. Curve (c) - marked with filled circles - adaptive grid with n=800. Curve

(d) - marked with empty circles - adaptive grid with n=870.
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the ”naive” model of an excitable system. Of course, one can observe some

similarities: the region of d for which fo/fp=1/2 is the dominant one, and

the second most important is fo/fp=1/3. But there are also filtering ratios

between 1/3 and 1/2, which are absent in the ”naive” model (see Section

1.2.2). The calculations show that although fo/fp as a function of d looks

very similar for different values of parameters of integration, it shifts towards

greater values of d when more accurate integration techniques are applied. A

significant shift between curves (a) and (b) in Fig. 21 indicates that for the

uniform grids the results strongly depend on the grid size. It is worth noticing

that the behavior of the filtering ratio as a function of d does not change, but

the function as a whole is just shifted towards wider barriers. It is expected

that for yet finer grid one should obtain results which are numerically stable,

but a finer grid means that more grid points should be used to describe a

system of the same size. However, in the implicit method of solving parabolic

reaction-diffusion equations the solution at each time step is obtained via

iterations. In case of the FH-N model the roundup errors lead to instabilities

when few thousands of grid points are used. The adaptive grids (Fig. 16)

allow one to obtain more accurate numerical solutions. For such grids the

fine resolution within the most important area of the investigated system may

be achieved without using large number of grid points, which provides both

accuracy and stability of computations. As already mentioned, curve (c) in

Fig. 21 has been obtained for the adaptive grid with n=800. The resolution

in the neighborhood of the passive gap for this grid is dlb=dl/8≈0.06 (for

l≈25.72), which is four times smaller than dl for the finest uniform grid. For

curve (d) this resolution is twice higher, but fo/fp(d) obtained for both grids

(curves (c) and (d) in Fig. 21) are almost identical. Therefore, the adaptive

grid with n=800 seems to be sufficient for the calculations and it has been
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used to obtain results given below.

Several values of the time step of integration (dt=5·10−3, 1·10−3 and

1·10−4) have been used to verify the consistency of the results. Although the

implicit algorithms should be in general stable for all values of time and space

integration steps, it has been observed that numerical instabilities may ap-

pear for dt=5·10−3 and large n. On the other hand, the results for dt=1·10−3

and dt=1·10−4 have been regular and consistent. Consequently, dt=1·10−3

has been used to study the complex frequency transforming patterns, de-

scribed in the next section.

2.4.4 Complex patterns of output signals.

The results presented in this section have been obtained for the adaptive grid

with n=800. The passive area has been located between n1=400 and n2=431

(30 grid points inside the passive barrier). The incoming and outgoing pulses

have been monitored at grid points i1=390 and i2=441 respectively. The

computations have been carried out with the time step dt=1·10−3 up to

tmax=500, if not explicitly stated otherwise. Circa 150 pulses arrive at the

barrier within the selected time tmax.

A special notation has been introduced to describe the output signal

[124]. The incident pulses observed at i1 introduce a natural time scale in

the system. One writes ”1” if a pulse gets successfully through the passive

barrier and is observed at i2 or ”0” otherwise. Thus the output signal may be

coded as a sequence of ”0” and ”1”. In such notation a common case in which

every second pulse passes (filtering ratio fo/fp=1/2) is coded as (01) and the

mode ”1/3”, is described as (001). It is understood that the given sequence

repeats periodically. A pattern coded as (abc...)p(def...)q (where p and q are

positive integer numbers) means, that behind the barrier first the sequence
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(abc...) is observed p times, and next the sequence (def...) appears q times.

In this notation non-periodic modes correspond to an infinite sequence of

(abcde...). If pattern’s sequence is finite, then it is very easy to calculate the

corresponding filtering ratio fo/fp because it equals to the sum of the symbols

in the sequence divided by the number of symbols. For non-periodic modes

one can estimate the filtering ratio using a finite part of the sequence and

of course the more pulses is taken into account, the better approximation is

achieved.

Figure 22 presents the filtering ratio for tp=3.10 (fp=0.323) as a function

of the width of the passive barrier changing from 0.171 to 0.176 with incre-

ment of 0.0001 (this has been achieved by changing the total length of the

system l from 27.49 to 28.19 with increment of 0.016). This value of tp corre-

sponds to line (a) in Fig. 18. The results coming from our computations are

marked with filled circles. In Fig. 22 one may notice several plateaus, which

correspond to simple patterns of frequency transforming and are labeled with

appropriate filtering ratios. Looking from left to right there are modes: ”1/2”

with the sequence (01), ”2/5” with (01)(001), ”1/3” - (001), ”1/4” - (0001)

and finally ”0” with the sequence (0). It is remarkable that a ”simple” fre-

quency transformation occurs within a wider range of barrier’s width than

complex ones. Other interesting transmission patterns, located between those

plateaus, have also been observed, but the ranges of values of d within which

those patterns appear are so narrow that they have been detected just for

a single width of the barrier. The unique patterns have been labeled with

letters a - k in Fig. 22. Probably the most complicated transmission pat-

tern is associated with point a, located just below the plateau ”1/2”. In

this case the sequence of pulses behind the barrier is: (01)14(001)(01)13(001)

and the corresponding filtering ratio fo/fp=29/60. For point b in Fig. 22
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Figure 22. Results for the FitzHugh - Nagumo model. Filtering ratio fo/fp for

fixed tp=3.10 (fp=0.323) and d changing within the presented range. The filled

circles correspond to computational points. The curve forms several plateaus,

which are labeled with corresponding values of the filtering ratio (1/2, 2/5, 1/3,

1/4 and 0). At points labeled a - k the following values of fo/fp (and trans-

mission patterns) have been observed: a - 29/60, (01)14(001)(01)13(001); b -

11/24, (01)4(001)(01)5(001); c - 4/9, (01)3(001); d - 3/7, (01)2(001); e - 9/22,

(01001)3(0101001); f - 3/8, (01)(001)2; g - 7/20, (01)(001)6; h - 2/7, (001)(0001);

j - 1/5, (00001) and k - 1/7, (0000001).http://rcin.org.pl
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the corresponding pattern is (01)4(001)(01)5(001) resulting in fo/fp=11/24,

point c - (01)3(001), fo/fp=4/9; point d - (01)2(001), fo/fp=3/7; point e -

(01001)3(0101001), fo/fp=9/22; point f - (01)(001)2, fo/fp=3/8; point g -

(01)(001)6, fo/fp=7/20; point h - (001)(0001), fo/fp=2/7; point j - (00001),

fo/fp=1/5 and point k - (0000001), fo/fp=1/7.

Figure 18 suggests that transmission patterns corresponding to filtering

ratios greater than 1/2 are also present. Such patterns are absent in the

”naive” model of excitable systems (Figs. 0B - 0C). To see them clearly

the calculations for tp=3.70 (fp=0.270) have been performed for the barrier’s

width d changing from 0.130 to 0.171 with increment of 0.001 (l changing

from 20.93 to 27.49 with increment of 0.16). This value of tp corresponds to

line (b) in Fig. 18. The results are plotted in Figure 23. Indeed, one may

see here several plateaus, labeled with corresponding filtering ratios, which

are greater than 1/2. From left to right there are: plateau ”1” with the

sequence (1); plateau ”6/7” - (0111111); plateau ”4/5” - (01111); plateau

”3/4” - (0111); plateau ”2/3” - (011); plateau ”1/2” - (01) and plateau

”0” with the trivial transmission pattern (0). Even more complex output

signals have been observed. The points labeled with letters correspond to

the following patterns and filtering ratios: point a - (0)(1)35, fo/fp=35/36;

point b - (0)(1)14, fo/fp=14/15; point c - (0)(1)10, fo/fp=10/11; point d -

(0)(1)8, fo/fp=8/9 and point e - (011111), fo/fp=5/6. The output signals

observed here are dual to those with filtering ratios smaller than 1/2.

Figure 24 presents the filtering ratio for d=0.160 (l=25.72) plotted versus

the frequency of incident pulses fp∈[0.25, 0.28] (the time shift between consec-

utive pulses changing from 3.57 to 4.00 with increment of 0.02; approximate

values of tp are given on the top axis of Fig. 24). These values of d are placed

on the line (c) in Fig. 18. The numerical labels in Fig. 24 give the filtering
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Figure 23. Results for the FitzHugh - Nagumo model. Filtering ratio fo/fp

for fixed tp=3.70 (fp=0.270) and d changing within the presented range. The

filled circles correspond to computational points. The plateaus are labeled with

corresponding values of the filtering ratio (1, 6/7, 4/5, 3/4, 2/3, 1/2 and 0). At

points labeled a - e the following values of fo/fp (and transmission patterns) have

been observed: a - 35/36, (0)(1)35; b - 14/15, (0)(1)14; c - 10/11, (0)(1)10; d -

8/9, (0)(1)8 and e - 5/6, (011111).
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Figure 24. Results for the FitzHugh - Nagumo model. Filtering ratio fo/fp

for fixed d=0.160 and fp changing from 0.25 to 0.28 (see the bottom axis), which

corresponds to tp decreasing from 4.00 to 3.57 (see the approximate top axis). The

filled circles correspond to computational points. The plateaus as well as single

points are labeled with corresponding values of fo/fp (1, 9/10, 4/5, 3/4, 2/3 and

1/2). The letters A, B, C and D mark the intervals of the diagram which have been

studied with a higher resolution. The results for the interval AB are presented in

Fig. 25 and for the interval CD in Fig. 26.
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ratios observed for corresponding plateaus or points. In Fig. 24 from left to

right there are: plateau ”1” with the sequence (1); point ”9/10” with the

sequence (0)(1)9; point ”4/5” - (01111); point ”3/4” - (0111); plateau ”2/3”

- (011) and plateau ”1/2” with (01). In order to check whether the filtering

ratio is a monotonic function of fp, a number of calculations for fp∈[0.2604,

0.2618] and for fp∈[0.2646, 0.2674] have been performed. The ends of these

intervals correspond to fp for points A, B, C, D in Fig. 24. The system’s

behavior has been probed using δtp=0.002 (corresponding to δfp=0.00014).

In the interval AB the behavior is trivial, which means that studied systems

splits into two classes corresponding to (0111) and (011) modes (cf. Figure

25).

Similar calculations have been performed for systems located between

points C and D in Fig. 24 (this interval corresponds to fp∈[0.2646, 0.2674]).

In this case two patterns (α and β in Figure 26) have been observed between

the plateaus corresponding to filtering ratios 2/3 ((011) mode) and 1/2 ((01)

mode). One of these patterns (β) describes quite simple transformation of the

original signal to (01)(011) mode, which is just 1:1 mixture of the neighboring

modes. The other point (α) corresponds to more interesting behavior. Using

the same dt and dlb as for the other points shown in Fig. 26 (filled circles)

the filtering ratio fo/fp=0.51917 has been observed. The decrease in time

step dt increases the filtering ratio as follows: dt=1·10−4 gives fo/fp=0.55602

(empty circle), dt=2·10−5 gives fo/fp=0.57594 (empty triangle), dt=1·10−5

gives fo/fp=0.57895 (cross). Moreover it has been observed that time intervals

between transmitted pulses are not always a multiplicity of tp. In order to

explain it the time evolution u(t) at the points i1 and i2 has been examined.

Figure 27 shows the relevant part of it. One can notice that in some cases

the transmitted signal does not develop into a pulse, u(t) slightly decreases
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Figure 25. Results of a more detailed examination of the interval AB from Fig.

24. Filtering ratio fo/fp for fixed d=0.160 and fp changing from 0.2604 to 0.2618.

Points A and B in this figure correspond exactly to points A and B in Fig. 24.

No filtering ratios different from 3/4 or 2/3 have been observed.
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Figure 26. Results of a more detailed examination of the interval CD from Fig.

24. Filtering ratio fo/fp for fixed d=0.160 and fp changing from 0.2646 to 0.2674.

The filled circles mark the computational points. Points C and D in this figure

correspond exactly to points C and D in Fig. 24. A ”strange” point α has been

found between plateaus 2/3 and 1/2 (labeled with values of the filtering ratio),

for which the value of fo/fp depends on the time step of integration. Different

symbols mark the values of the filtering ratio obtained for: dt=1·10−3 (filled circle),

dt=1·10−4 (empty circle), dt=2·10−5 (empty triangle), dt=1·10−5 (cross). In the

studied region the point β has been observed, which is regular and corresponds to

the transmission pattern (01)(011) (thus fo/fp=3/5).
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Figure 27. Results for the FitzHugh - Nagumo model. A part of the time

evolution of the value of u at the grid point i1 (input signal - the upper curve 1)

and at the grid point i2 (output signal - curve 2) observed for d=0.160, fp=0.2660

with dt=1·10−5 (point α - the cross in Fig. 26). The arrow marks the position of

the ”strange excitation” in the output signal.
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and then it starts to increase again, forming a pulse shifted with respect

to the forcing signal. Such strange behavior for fp=0.2660 (tp=3.76) does

not disappear when decreasing dt and dlb. The moment it appears first

and the time intervals between successive strange excitations depend on dt,

but no regularities have been noticed. The presence of irregular ”strange

excitations” makes the filtering ratio at the point α dependent on dt. The

value of fo/fp at this point still remains smaller than 0.6, so one cannot exclude

a non-monotonic dependence of the filtering ratio on fo/fp. Moreover, such

strange excitations have been observed for the whole range of time integration

steps used, so one is unable to blame numerical instabilities for their presence.

The time evolution of the output signal between the strange excitations is a

mixture of (01) and (011) modes with different proportions.

2.4.5 Results for the R-Z model.

In the calculations for the Rovinsky - Zhabotinsky model a uniform grid

with n=320, n1=150, n2=155 has been used as well as the dimensionless

time integration step dτ=1·10−3. The pulses have been initiated at the left

end of the interval by increasing the value of x to 0.1.

Figure 28 presents a typical signal (value of x ) observed at the first and

second indicators (grid points i1=148 and i2=157) for dl=0.814 and τ p=30.0

(255sec). For these values of parameters the excitation at the boundary gives

a regular and stable train of pulses. In calculations, the results of which are

shown in Fig. 28, n2 is changed to obtain barriers of different widths. The

upper curve (1) corresponds to incident pulses (reference signal at indicator

1). For n2=151 (no passive barrier - curve 2) the same signal (shifted in time)

is observed at indicator 2. The same behavior is observed for a thin, fully

transparent passive barrier (n2=153 - curve 3). All incident pulses observed
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Figure 28. The time evolution of activator’s concentration at the grid point

i1 (the upper curve 1) and at the grid point i2 (curves 2-4). The evolutions at

i2 correspond to no barrier (curve 2), a narrow transparent barrier (curve 3)

and a barrier for which frequency transformation occurs (curve 4). Results for

the Rovinsky - Zhabotinsky model (Eqs. (2.5-2.8)), τp=30 (fp=0.033)), d=1.628

(0.0150·
√

DX
DX0

cm) (curve 3), d=3.256 (0.0300·
√

DX
DX0

cm) (curve 4). τp=30 corre-

sponds to 255sec.
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at indicator 1 get through the barrier and are also observed at indicator 2.

For n2=155 every third of the incident pulses is transmitted through the

barrier as observed at indicator 2 (curve 4). In this case the width of the

passive barrier is 3.256 (0.0300·
√

DX

DX0
cm).

It has been found that for the R-Z model the minimal time necessary to

initiate a new pulse after the first pulse has been produced in the system

is τ p,min,R−Z≈5.8 (49sec) but one has to use much higher values of τ p to

obtain a stable, regular train of pulses. The range of τ p from 30 (255sec)

to 60 (510sec) with increment of 2 (17sec) and the range of d changing

from 3.188 (0.02939·
√

DX

DX0
cm) to 3.295 (0.03037·

√
DX

DX0
cm) have been stud-

ied. τmax=2000 (17000sec) has been used, so during the evolution from 33

to 66 pulses may appear in the system for each combination of τ p and d.

The results are shown in Figure 29. For all the examined values of d and

τ p every excitation creates a pulse. The filtering ratio fo/fp presented in Fig.

29 reveals areas of parameters’ values for which every second or every third

of the incident pulses is transmitted (these regions are labeled with ”1/2”

and ”1/3” respectively). Label ”0” in Fig. 29 indicates the area in which

no pulse can cross the passive barrier. The gray regions between the white,

labeled areas in Fig. 29 correspond to more complex transmission patterns.

Unlike for the FH-N model, the transformation of frequency occurs only for

barriers which are narrower than the penetration depth for a single pulse

given in Section 2.2 dc,R−Z≈3.295 (0.03037·
√

DX

DX0
cm).

Figure 30 presents the filtering ratio fo/fp plotted versus the frequency of

incident pulses fp for a selected barrier’s width d=3.2375 (0.0298·
√

DX

DX0
cm).

This value of d corresponds to the dashed vertical line in Fig. 29. Here the

frequencies fp and fo are dimensionless frequencies, calculated as the inverse

of dimensionless time τ . For fp∈[0.0167, 0.0278] every second of incident
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Figure 29. Filtering ratio (fo/fp) for the Rovinsky - Zhabotinsky model as

a function of the barrier’s width (dimensionless - d) and the time shift between

consecutive pulses (dimensionless - τp). The white, labeled areas correspond to the

situation when fo is the fraction of fp given in the picture. Gray color marks more

complicated transformations of frequency. The dashed line indicates d=3.2375.
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Figure 30. Filtering ratio in the Rovinsky - Zhabotinsky model for a selected

barrier’s width d=3.2375 (0.0298·
√

DX
DX0

cm). This value of d corresponds to the

dashed vertical line in Fig. 29. fo/fp is presented as a function of the dimensionless

frequency of incident pulses (fp - bottom axis) or the (approximate) physical time

shift between consecutive incident pulses (tp [sec] - top axis). Labels give the

filtering ratio (fo/fp).
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pulses gets through the barrier. For fp≥0.0294 only one out of three incident

pulses gets through the barrier (thus the filtering ratio is fo/fp=1/3).

2.4.6 Results for the Oregonator model.

In order to check whether the frequency transforming is a typical feature of a

passive barrier in an excitable medium calculations for the Oregonator model

[126, 127, 128] have been performed. The form of the model presented in [127]

with diffusion of the activator added has been used. In the Oregonator model

the active field is described by the following reaction - diffusion equations

(2.17-2.18):
∂u

∂t
=

1

ε
[u(1− u)− f · v · u− q

u + q
] + D∇2u (2.17)

∂v

∂t
= u− v (2.18)

where u corresponds to the scaled concentration of activator (HBrO2) and v

- to the scaled concentration of catalyst (Ce4+) [127]. In the passive regions,

without catalyst, the concentrations of u and v evolve according to Eqs.

(2.19-2.20):
∂u

∂t
= −1

ε
· u2 + D∇2u (2.19)

v = 0 = const. (2.20)

In Eqs. (2.17-2.20) t denotes the scaled time and ε (a time scale parameter)

is small [127]. Another small parameter q is connected to the rate constants

of the reactions involved in the Oregonator model. The stoichiometric pa-

rameter f is proportional to the average number of bromide ions released per

metal ion reduced by organic matter. The details of scaling are described in

[127].

In the calculations the following values of parameters have been used:

ε=0.05 [128], f =3 [127], q=0.0002 [127] and D=1.0. For these values of
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parameters the stationary state of the system within the active areas corre-

sponds to

usa = vsa = 3.9988 · 10−4 (2.21)

and it is excitable. In the passive areas the stationary solution is given by

usp = vsp ≡ 0 (2.22)

In the calculations for this model a uniform grid with dl=0.3733, (n=400),

n1=200, dt=1·10−4 and tp=10.4. The pulses have been initiated on the left

end of the interval by decreasing v to vini=0.0. The evolution of this system

has been studied up to tmax=1000 (so that over 95 pulses has been involved

in each experiment). It has been observed that a passive barrier in the

Oregonator model also reveals frequency transforming properties. Figure

31 presents a sample signal (the value of u) observed at the first and second

indicators (grid points i1=198 and i2=213 respectively). As mentioned above,

n1=200 while n2 is changed to obtain barriers of different width. The upper

curve (1) corresponds to incident pulses (reference signal at indicator 1).

For n2=201 (no passive barrier - curve 2) the same signal (shifted in time)

is observed at indicator 2. The same behavior is observed for a narrow,

fully transparent passive barrier (n2=206 - curve 3). All incident pulses

observed at indicator i1 get through the barrier and are also observed at

indicator i1. For a wider barrier (n2=211) every second of the arriving pulses

is transmitted through the barrier and may be observed at indicator 2 (curve

4). For curve 4 the width of the passive barrier is 3.733. In this case, as for

R-Z (BZ) system, the frequency transforming occurs for barriers narrower

than the penetration depth for a single pulse, because the first transmitted

pulse makes the barrier impenetrable for the subsequent ones (note that in

Fig. 31 the first of incident pulses gets through the barrier).
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Figure 31. The time evolution of activator’s concentration at the grid point i1

(the upper curve 1) and at the grid point i2 (curves 2-4). The evolutions at i2

correspond to no barrier (curve 2), a narrow transparent barrier (curve 3) and a

barrier for which frequency transformation occurs (curve 4). Results for the Oreg-

onator model (Eqs. (2.17-2.20)), tp=10.4 (fp=0.096), d=1.867 (curve 3), d=3.733

(curve 4).
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2.4.7 Implications of frequency transforming for se-

lected signal processing reactors.

Having in mind the results of previous sections one may expect that the

properties of signal processing reactors which include a passive barrier should

depend on input signal frequency. In this chapter the effect of frequency of

input signal on two of such devices is discussed.

A chemical diode is an asymmetric junction of two active areas, which

transmits pulses of excitation coming from one direction and stops those ar-

riving from the other one. The structure of the diode, as proposed by I.

Motoike and K. Yoshikawa in [86] is shown schematically in Figure 32, where

the darker area stands for the passive medium and the brighter areas cor-

respond to the active one. The left edge of the passive region is a straight

line, while the lines bounding of the active region on the right are perpen-

dicular and form a tip. The shortest distance between the active areas is

dn >0. No flux boundary conditions at all borders of the structure presented

in Fig. 32 and free flow of mobile reagents between active and passive areas

are assumed. Plain pulses of excitation may be initiated at the left hand side

border and travel to the right or they can be excited on the right hand side

border and travel to the left. The dashed lines on both sides of the junction,

denoted by i1 and i2, mark the indicators. The propagation of pulses through

the junction is studied by measuring the mean value of the concentration of

the activator (u or x ) along these lines. Indicators i1 and i2 are located

symmetrically with respect to the longitudinal axis of the junction and their

length is about half of the width of the whole device. A travelling pulse of

excitation may get from one active area to the other one through the passive

gap, provided that the gap is not too wide.

As already mentioned (Section 2.2), I. Motoike and K. Yoshikawa found
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i1 i2

n1

Figure 32. The scheme of a chemical diode. Brighter areas correspond to active

regions, darker ones show the passive gap. The gap starts to the right from line

n1 of the grid (excluding n1). Two dashed lines on both sides of the junction show

the position of ”indicators”, at which the mean values of u (for the FH-N model)

or x (for the R-Z model) as functions of time are recorded. For such geometry of

the diode a single pulse of excitation may travel through the junction from left to

right, but not in the opposite direction.
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[86] that the penetration depth strongly depends on the geometry of the

boundary between active and passive media. They used the FH-N model

(Eqs. (2.1-2.4)) and studied the propagation of pulses in a junction shown

in Fig. 32. According to their results [86], if the penetration depth for

a pulse propagating to the right is denoted by dc, then the penetration

depth for a pulse travelling in the opposite direction is only 0.63·dc. Re-

sults obtained for the passive barrier within the FH-N model (Section 2.2)

give dc,FH−N≈0.163. Now building a diode is very easy, because it is sufficient

to separate the active areas by a passive field characterized by appropriate

dn, such that 0.63·dc,FH−N<dn,FH−N <dc,FH−N . For the purpose of tis work

dn,FH−N=0.1152 has been selected. A similar geometry of the reactor, which

works as a signal diode, may be used in the case of Rovinsky - Zhabotinsky

model. Here dn,R−Z=3.0 (0.02765·
√

DX

DX0
cm) has been used. This is slightly

smaller than the penetration depth dc,R−Z=3.295 (0.03037·
√

DX

DX0
cm).

The work of a chemical diode is illustrated in Figure 33 (for the FH-N

model) and Figure 34 (for the R-Z model). In both figures two upper curves

(no. 1 and 2) correspond to a single plain pulse, excited on the left hand

side boundary of the system and travelling to the right. The mean values of

activator (u or x ) along i1 (curve 1) and i2 (curve 2) are plotted as functions

of time given at the top axis. The pulse which arrives first at i1, gets through

the passive gap and a moment later it is observed at i2 (curve 2). The two

lower curves (no. 3 and 4) illustrate the propagation of a pulse initiated on

the right hand side boundary and travelling to the left. The mean values

of u (or x ) along i2 (curve 3) and i1 (curve 4) are plotted as functions of

time shown on the bottom axis. In this case the pulse is first observed at i2

(curve 3), but then it ”dies out” within the passive area (curve 4 is just a

straight line). The arrows mark the direction of propagation of the pulses,
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Figure 33. The time evolution of the value of u at the indicators i1 (curves 1

and 4) and i2 (curves 2 and 3). The two upper curves (no. 1 and 2) correspond

to a pulse propagating from left to right (orientation defined by Fig. 32) and the

corresponding time scale is at the top axis. In this case the diode transmits the

pulse. The two lower curves (no. 3 and 4) correspond to a pulse propagating

from right to left (cf. Fig. 32). In this case the pulse is stopped. The arrows

mark the direction of propagation. Results for the FitzHugh - Nagumo model,

dn,FH−N=0.1152.
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Figure 34. The time evolution of activator’s concentration at the indicators i1

(curves 1 and 4) and i2 (curves 2 and 3). The two upper curves (no. 1 and 2)

correspond to a pulse propagating from left to right (orientation defined by Fig.

32) and the corresponding time scale is at the top axis. In this case the diode

transmits the pulse. The two lower curves (no. 3 and 4) correspond to a pulse

propagating from right to left (cf. Fig. 32). In this case the pulse is stopped. The

arrows mark the direction of propagation. Results for the Rovinsky - Zhabotinsky

model, dn,R−Z=3.0 (0.02765·
√

DX
DX0

cm).
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where the orientation is defined by Fig. 32. In Fig. 34 the mean values of x

at the indicators are plotted versus dimensionless time τ (τ=1 corresponds

to 8.5sec).15

The results presented in Figs. 33 - 34 have been calculated using the im-

plicit method already mentioned. For the FH-N model a rectangular area of

4.80x0.9792 covered with a square grid of 251x52 points has been considered

(including borders, thus dl=0.0192). Indexing the vertical lines of the grid

from 0 (left hand side border) to 250 (right hand side one) it may be speci-

fied that indicators are placed along i1=80 and i2=126. Both of them include

25 nodes. The passive area starts to the right from line n1=100 (this line

of the grid is still characterized by the active dynamics). The shortest dis-

tance between active areas is dn,FH−N=0.1152, which is covered by six nodes.

Time integration step dt=5·10−3 has been used. For the R-Z model the area

of 240x38.25 has been covered with a square grid of 321x52 points, hence

dl=0.75. The other parameters are respectively: i1=130, i2=175, n1=150

and dn,R−Z=3.0 (0.02765·
√

DX

DX0
cm - four nodes included). In this case the

time integration step dt=1·10−3.

For the same values of parameters, calculations for a regular train of

pulses arriving at a diode have been performed. The results are presented in

Figures 35 - 37, which have exactly the same structure and symbols as Figs.

33 - 34.

For the FH-N model the input signal with frequency fp=0.278 (corre-

sponding to the time shift between consecutive pulses tp=3.6) has been cho-

15The animated illustrations to Figures 33 - 34, showing the propagation of single pulses

through the chemical diode, can be found on the CD-ROM (folder Figures). Fig 33a.htm -

FH-N model, pulse propagating to the right; Fig 33b.htm - FH-N model, pulse propagating

to the left (stopped by the diode); Fig 34a.htm - R-Z model, pulse propagating to the right;

Fig 34b.htm - R-Z model, pulse propagating to the left (stopped by the diode).
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sen. The time evolution of the values of u at i1 and i2 are plotted in Fig.

35. As expected, the diode is transparent to all pulses travelling to the right

(in the forward direction) - curves 1 and 2. However, for the chosen values

of parameters the junction becomes transparent to some of the pulses trav-

elling in the reverse direction (to the left - curves 3 and 4) . Therefore, the

diode works as a transformer of chemical signal frequency.16 It is easy to

explain this observation. In this case the barrier (dn,FH−N=0.1152) is nar-

rower than the penetration depth in the forward direction (dc,FH−N=0.163),

therefore each pulse coming from this direction is transmitted. On the other

hand it has been selected as being only slightly wider than the penetration

depth in the reverse direction: 0.63·dc,FH−N=0.1027. Consequently, the gap

demonstrates the same type of frequency transforming as the passive barrier

discussed previously (see Section 2.4.2).

For the R-Z model the input signal with dimensionless frequency fp=0.023

has been used (this corresponds to the time shift between consecutive pulses

τp=44, ie. 374sec). The results are plotted in Figure 36. Comparing curves

3 and 4 (in Fig. 36) one can see that in this case the diode stops all the

pulses propagating in the reverse direction. As shown in Fig. 34, dn,R−Z=3.0

is larger than the penetration depth in this direction. The results of Section

2.4.5 for the R-Z model (Fig. 29) indicate that such system becomes less

”transparent” at higher signal frequencies. Therefore, it is natural that all

pulses propagating in the reverse direction are stopped. However, the diode

fails to transmit some pulses propagating in the forward direction (here: the

2nd and 4th ones, see curves 1 and 2). This result can be easily explained

16The animated illustrations to Figure 35, showing the propagation of this short train

of pulses through the chemical diode, can be found on the CD-ROM (folder Figures).

Fig 35a.htm - FH-N model, pulses propagating to the right; Fig 35b.htm - FH-N model,

pulses propagating to the left (note that not all of them are stopped by the diode).
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Figure 35. The time evolution of the value of u at the indicators i1 (curves 1

and 4) and i2 (curves 2 and 3). The two upper curves (no. 1 and 2) correspond

to a train of pulses propagating from left to right (orientation defined by Fig.

32) and the corresponding time scale is at the top. The two lower curves (no.

3 and 4) correspond to a train of pulses propagating from right to left (cf. Fig.

32). The arrows mark the direction of propagation. Results for the FitzHugh -

Nagumo model, dn,FH−N=0.1152, tp=3.60 (fp=0.278). Although the diode works

still properly in the forward direction (curves 1 and 2), some pulses may cross it

also in the reverse direction (curves 3 and 4).http://rcin.org.pl
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Figure 36. The time evolution of activator’s concentration at the indicators i1

(curves 1 and 4) and i2 (curves 2 and 3). The two upper curves (no. 1 and 2)

correspond to a train of pulses propagating from left to right (orientation defined

by Fig. 32) and the corresponding time scale is at the top. The two lower curves

(no. 3 and 4) correspond to a train of pulses propagating from right to left (cf.

Fig. 32). The arrows mark the direction of propagation. Results for the Rovinsky

- Zhabotinsky model, dn,R−Z=3.0 (0.02765·
√

DX
DX0

cm), τp=44 (fp=0.023). τp=44

corresponds to 374sec. In this case the diode stops every second pulse travelling

in the forward direction (curves 1 and 2), while it works correctly in the reverse

direction (curves 3 and 4).
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by what is already known from Section 2.4.5. Although dn,R−Z <dc,R−Z (as

3.0<3.295), the gap is still in the region for which the frequency transforming

in the R-Z model occurs.17

When the frequency of the input signal is increased - only the first pulse

of the train is able to get through the diode in the forward direction and

all subsequent pulses are stopped. This situation is shown in Figure 37,

where the frequency of the incoming signal fp=0.05 has been used (τp=20,

corresponding to 170sec).18

The response of the cross junction (Section 2.3, Fig. 3) to a train of pulses

travelling inside a channel has also been studied. It has been found that if the

time shift between consecutive pulses in a train is small, the characteristics

of the junction changes (with respect to the results given in Sections 2.3.1 -

2.3.2, concerning single pulses). A part of the cross junction has been studied,

for the FH-N model with the inner width of the channel equal to 1.02 and

the width of the passive stripes of 0.16 (exactly as in Section 2.3.1), using

the implicit method with dl=0.02 and dt=5·10−3. The pulses inside one of

the signal channels have been initiated with the time shift equal to tp=3.6.

The result of calculations is presented in Figure 38, where brighter colors

correspond to higher values of u. The first pulse behaves exactly as expected:

it remains within the channel (as the width of the passive stripes is just above

17The animated illustrations to Figure 36, showing the propagation of this short train

of pulses through the chemical diode, can be found on the CD-ROM (folder Figures).

Fig 36a.htm - R-Z model, pulses propagating to the right (note that the second and fourth

of them are stopped by the diode); Fig 36b.htm - FH-N model, pulses propagating to the

left.
18The animated illustrations to Figure 37, showing the propagation of this short train

of pulses through the chemical diode, can be found on the CD-ROM (folder Figures).

Fig 37a.htm - R-Z model, pulses propagating to the right (note that all but the first one

are stopped by the diode); Fig 37b.htm - FH-N model, pulses propagating to the left.
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Figure 37. The time evolution of activator’s concentration at the indicators i1

(curves 1 and 4) and i2 (curves 2 and 3). The two upper curves (no. 1 and 2)

correspond to a train of pulses propagating from left to right (orientation defined

by Fig. 32) and the corresponding time scale is at the top. The two lower curves

(no. 3 and 4) correspond to a train of pulses propagating from right to left (cf.

Fig. 32). The arrows mark the direction of propagation. Results for the Rovinsky

- Zhabotinsky model, dn,R−Z=3.0 (0.02765·
√

DX
DX0

cm), τp=20 (fp=0.05). τp=20

corresponds to 170sec. In this case the diode stops all pulses but the first one

from the train in the forward direction (curves 1 and 2). It works properly in the

reverse direction (curves 3 and 4).
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Figure 38. A snapshot showing the propagation of two consecutive pulses

in a fragment of the cross junction structure. Brighter colors correspond to

higher concentration of activator (u) The picture has been obtained for the

FitzHugh - Nagumo model. The width of the passive stripes is 0.16 and the

width of the active medium inside the channel equals to 1.02. The time shift

between the pulses is tp=3.60 (fp=0.278).
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the penetration depth for a pulse travelling along the stripes), but it is able

to get through the perpendicular ”obstacle” (as the penetration depth in this

direction is greater that the width of the passive stripes). However, the first

pulse ”opens” the stripes which bound the channel for the following pulses.

One can see that the next pulse ”leaks out” of the channel and excites the

neighboring areas (cf. the second pulse in Fig. 38). Of course, for the

FH-N model all the pulses in a train are able to cross the passive stripe

perpendicular to the direction of motion.

Similar computations have been carried out for the R-Z model with the

width of the passive stripes of 3.291 (0.03034·
√

DX

DX0
cm) and the inner width

of the active channel equal to 50.192 (0.4627·
√

DX

DX0
cm). They have shown

that for signals of high frequency (eg. for τp=20, corresponding to 170sec) the

individual pulses propagate within the signal channel, but some of them may

be stopped by the perpendicular passive stripe. Thus, the cross junctions

described by both FH-N and R-Z types of dynamics are sensitive to the

frequency of input signals.

2.4.8 Discussion.

This part of the work is concerned with the signals obtained after a regular

train of pulses crosses a barrier of a passive medium. The most thorough

calculations have been performed for the excitable medium described by the

FH-N model, but qualitatively similar results may be obtained for the models

of the BZ reaction (eg. the R-Z model and the Oregonator model considered

here).

Two facts are obvious: if the barrier is narrow - it is transparent to

the pulses, if it is wide - it is impenetrable. However, it has been found that

between these two limiting cases there is a range of barrier’s widths for which
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it works as a transformer of signal frequency. It means that every second,

third etc. pulse from the incoming signal is transmitted and all the others are

stopped at the barrier. The number of transmitted pulses decreases with the

barrier’s width. More complex examples of signal transformation have also

been observed, like eg. a selection of two pulses out of every five arriving,

shown in Fig. 20. Unfortunately, such interesting, complex behavior occurs

in a narrow range of barrier’s width and it is not as robust as the simple

division of the number of input pulses by two or three.

The calculations have been performed for the FH-N model of an excitable

system as well as for the R-Z and Oregonator models of the ferroin/cerium

catalyzed BZ reaction. For all these models an interval of barrier’s width has

been found in which the barrier works as a transformer of frequency of the

input signal. The filtering ratio equal to 1/2 is dominant among the nontrivial

filtering. It corresponds to elimination of every second pulse from the train

by the barrier. In case of the FH-N model, this process may occur for barriers

which are narrower or wider than the penetration depth for a single pulse

(dc,FH−N=0.163). The ”scenario” of such elimination for barriers wider than

dc,FH−N in the FitzHugh - Nagumo model is shown in Fig. 17. In this case

the first incident pulse ”dies” at the barrier, but the next one is transmitted,

another one dies etc. Apparently a pulse stopped at the barrier increases the

value of u inside the barrier for a short period of time, so the ”activator” is

accumulated within the passive area. This helps the next incident pulse to

get through the barrier. This mechanism is absent in the models of Belousov -

Zhabotinsky reaction considered, where the frequency transforming has only

been observed for barriers which are narrower than the penetration depth

for a single pulse. In this case the stable elimination of every second pulse

from a train means that the first incident pulse crosses the barrier, the next
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one ”dies” etc. For division by 3 - the first pulse gets through and then two

pulses ”die” etc. (cf. Figs. 28 and 31).19

A family of transmitted signals has been found in which one signal out

of n arriving gets through the barrier ((0)n−1(1) mode) . These signals,

characterized by the firing number 1/n, contribute to the devil’s-staircase-like

behavior of the firing number, expected on the basis of the ”naive” model of a

perturbed excitable system (Section 1.2.2). However, less trivial patterns of

the transmitted signal have also been observed. Another interesting family of

transmitted signals, which can be described as (0)(1)n−1, corresponds to the

case when only one signal is not transmitted out of every n arriving. Such

behavior cannot be described by the ”naive” model, but comes out quite

naturally, if one assumes that an excitable system which has not reached its

stationary state may be re-excited by a perturbation which is strong enough

(see discussion in [69]). Finally, many complex structures of the output signal

have been observed. They follow the structure of the Farey tree [130, 131]

(take for example points a - h in Fig. 22).

From the point of view of numerical integration techniques, it is important

to stress that the results concerning the complex transformations of chemical

signals passing through a passive barrier are quite sensitive with respect to

the time and space integration steps used. The exact position of plateaus in

19It has been suggested [129], that the different behavior of the FH-N and R-Z models

may be the result of different scales, within which the values of variables change in these

models. Looking at Figs. 1 - 2 one may notice, that in case of the FH-N model the scale

is the same for its both variables (u and v), while for the R-Z model the relative change

of one of the variables (x ) during the excitation cycle is several orders of magnitude larger

than for the other variable (z ). The author of this work has tried to adjust the parameters

of the FH-N model to make its nullclines qualitatively similar to those of the R-Z model.

Unfortunately, all attempts have been unsuccessful, so this hypothesis still needs to be

verified.
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the cross-sections like those presented in Figs. 22 - 24 depends on dt and

dl, although the overall structure of the cross-section remains unchanged. In

general, more exact results are obtained by means of more accurate algo-

rithms (eg. adaptive grids), but even such algorithms seem to fail at the

boundaries of plateaus (cf. Figs. 26 and 27)

As a consequence of the frequency transforming phenomenon, it has been

found that two dimensional reactors composed of active and passive regions,

designed for direct processing of chemical signal, are sensitive to the input

signal frequency. The operations performed on high frequency trains of pulses

may differ from those performed on pulses which are well separated in time.

This effect has been shown on two examples of such reactors: the chemical

diode ([83, 85, 86, 102]) and the cross junction ([111, 112, 115]), but one

should expect that the other signal processing devices (logical gates [86],

memory device [87]) would also exhibit nontrivial dependence on the input

signal frequency. Malfunction of the chemical diode, qualitatively identical

with the results of calculations for the R-Z model presented in Fig. 36, has

been observed experimentally by Y. Igarashi, K. Yoshikawa and J. Górecki

at the Department of Physics, Kyoto University, Kyoto, Japan in spring 2002

[132].20

Transformation of chemical signal frequency on a passive barrier in the

ferroin catalyzed BZ reaction has been recently reported by K. Suzuki, T.

Yoshinobu and H. Iwasaki [70]. The diagram which relates the filtering ratio

seen in their experiments with the barrier’s width and the period of excita-

tions (Figure 10 in [70]) is in a qualitative agreement with the results shown

in Fig. 29. Moreover, individual examples of frequency transforming (in the

20Thanks to courtesy of the Authors, the film showing their experiment is included on

the CD-ROM (diode 12.avi, folder Experiments)
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ferroin catalyzed BZ system, too), have been observed experimentally by the

author of this work. They correspond to several values of the filtering ratio

(0, 1/2, 2/3, 1); please refer to Section 2.7 for details.

The authors of [69] pointed out that the resonant patterns of transmitted

waves may be important in biological systems. They postulated that narrow

excitable gaps in an unexcitable tissue may be responsible for transforma-

tion in the frequency of a biological signal. The results presented in this

work show that such gaps are not necessary and the phenomenon may occur

if some reagents responsible for signal propagation can diffuse through the

unexcitable tissue.
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2.5 Excitable pulses on a ring.

Unidirectional waves on rings, described by FitzHugh-Nagumo equations,

were used to study so called circumnutation of plants in their quest for a

support [133]. A circular excitable medium with radial input and output

channels can be used as a memory device [86, 87]. Thus, the features of ex-

citable pulses propagating on a ring are important for applications of chemical

systems to information processing, but also for the biologists.

At first, a single travelling pulse on an interval [0,L] with the periodic

boundary conditions has been considered. It has been found [125] that the

velocity, width and amplitude of the pulse in its stationary shape depend on

L. The velocity and width grow remarkably with increasing L, reaching their

maximum values, corresponding to propagation on an infinite interval. As an

example, the results obtained for the FitzHugh - Nagumo model are presented

in Figures 39 (velocity) and 40 (width). Here the width of the pulse is defined

as the length of the interval in which the value of u is greater than 0.1 (cf.

Figure 41). Changes in the amplitude of the pulse are not so remarkable.

The amplitude increases together with L by several percent only and quickly

stabilizes. Real chemical systems are characterized by qualitatively the same

dependencies between velocity or width of pulses and the space available for

individual pulse. Consequently, several pulses initiated on a ring tend to

arrange themselves in a symmetrical way, using the whole space available.

This property of travelling waves was observed in real chemical experiments

[89].

Once a pulse has passed through a part of the interval [0,L] then a certain

amount of time (called the recovery time) is needed before it would be able

to propagate in this region again. If the pulse arrives earlier it cannot

propagate and disappears. Thus, there exists a minimal length Lmin, below
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Figure 39. The velocity of a single pulse in the FitzHugh-Nagumo model

for various length L of a one dimensional system with periodic boundary

conditions. Symbols mark the computational results.
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Figure 40. The width of a single pulse in the FitzHugh-Nagumo model

for various length L of a one dimensional system with periodic boundary

conditions. Symbols mark the computational results.
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Figure 41. The stationary shape of a pulse of u (”activator”) obtained for

the FitzHugh - Nagumo model on an interval of length L=20. The width of

the pulse is defined as the length of the interval in which the value of u is

greater than 0.1.
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which the time, that the pulse needs to pass through the whole interval, is

shorter than the recovery time of the medium. Consequently, for L<Lmin

no stable travelling pulse can exist. After initiation the pulse on such a ring

dies out. The critical length Lmin for one pulse has been found by numerical

calculations. Then it has been confirmed that the critical length for two,

three etc. pulses is just the corresponding multiplicity of Lmin.

Using the implicit method with n=200, dt=5·10−3 and tmax=10000 it has

been found that for the FitzHugh - Nagumo model

Lmin,FH−N ≈ 3.529 (2.23)

Similar calculations for the Rovinsky - Zhabotinsky model (n=200, dt=1·10−3,

τmax=500) have shown that

Lmin,R−Z ≈ 5.79 (0.0534 ·
√

DX

DX0

cm) (2.24)

The value of Lmin can be easily transformed into the critical radius of a

ring, supporting one stable pulse (called a ”1-pulse” ring for simplicity):

rmin =
Lmin

2π
(2.25)

The critical radii of rings, supporting two, three and more stable pulses are

just corresponding multiplicities of rmin. As a consequence of Eqs. (2.23 -

2.24) and Eq. (2.25) the critical radii of ”1-pulse” rings for the FitzHugh -

Nagumo (rmin,FH−N) and the Rovinsky - Zhabotinsky models (rmin,R−Z) are:

rmin,FH−N =≈ 0.562 (2.26)

rmin,R−Z =≈ 0.922 (0.00850 ·
√

DX

DX0

cm) (2.27)

Two dimensional ring characterized by its outer radius R and inner radius

r - as presented in Figure 42 - has been considered. The propagation of a
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R

r>rm in

R
r<rm in

A

B

Figure 42. The types of rings considered. A - a ring with RÀrmin and

r>rmin enables stable propagation of a pulse around it. B - a ring with

RÀrmin and r<rmin maker a rotating pulse change its shape during propaga-

tion, because the pulse cannot constantly propagate along the inner boundary

of the ring.
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single pulse of excitation around the ring has been studied for various values

of r and R. It is expected, that for rÀrmin, RÀrmin and R not much larger

than r the pulse should just travels around the ring in a stable way, because

in this case on the whole width of the ring the medium has enough time to

relax before the excitable pulse reappears (cf. Fig. 42A). Consequently, one

should use this kind of rings as memory devices, as proposed by I. Motoike

and K. Yoshikawa [86, 87]. However, it is also expected, that for RÀrmin and

r<rmin the pulse cannot constantly propagate along the inner boundary of

the ring, because then the time of one cycle for a pulse travelling around the

inner boundary is shorter than the refractory time of the medium (cf. Fig.

42B). Thus, after one rotation the pulse has to ”leave” the neighborhood of

the inner boundary, while it can still propagate closer to the outer boundary.

Later, when the medium in the inner part gets relaxed again, the pulse may

re-enter this area. As the result, a pulse rotating on such a ring becomes

unstable. It is constantly changing its shape, moving towards and away from

the inner boundary of the ring.

The instabilities have been investigated for the FitzHugh - Nagumo model

(Eqs. 2.1-2.2). The calculations have been carried out with the implicit

method, adapted to use two dimensional polar coordinates. The grid con-

sisting of 68 points in the radial direction and 512 points around the ring has

been applied. In the calculations dt=5·10−5 and tmax=130. No flux boundary

conditions have been assumed on both boundaries of the ring. Pulses have

been introduced to the ring using a prerecorded file, containing the station-

ary shape of a pulse on a one dimensional interval with periodic boundary

conditions. The mean values of u and v in the whole system (denoted by

ū and v̄) have been recorded as the functions of time and plotted in coor-

dinates (ū, v̄). Initial part of such trajectory, corresponding to transient
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effects, has been ignored. The stable propagation of a pulse around the ring

corresponds to a point on such a plot, as the values of ū and v̄ are constant

in time.21 Such stable propagation has been observed for R>r>rmin,FH−N

(in particular, R=3.0 or R=2.5 and r=0.57 have been used). On the other

hand, when r<rmin,FH−N the plot becomes complicated, because the rotating

pulse is constantly changing its shape, moving towards and away from the

inner boundary of the ring. Here I have used R=3.0 or R=2.5 and r=0.53.

An example of such trajectory (obtained for R=3.0 and r=0.53) is shown in

Figure 43.22 For R=3.0 or R=2.5 and r=0.55 stable propagation of pulses

around the ring has been observed. However, this is probably a transient

effect, as the evolution of pulses on (two dimensional) rings has been studied

up to tmax=130, while the value of rmin,FH−N has been established in calcula-

tions carried out up to tmax=10000. Moreover, it has been observed that for

R=2.0 pulses collapse after about two rotations, independently of the inner

radius of the ring (r=0.53, 0.55 or 0.57).

21To be very precise, this is in fact not a point, but rather a very small circle, because

the rotating pulse in its stationary form is moving with respect to the grid used in the

calculations; the diameter of this circle becomes smaller if a finer grid is used.
22An animation illustrating part of the evolution for which Fig. 43 has been obtained

can be found on the CD-ROM (Fig 43a.htm, folder Figures). For comparison, stable

propagation of a pulse around a ring with r=0.57 and R=3.0 is illustrated in Fig 43b.htm

(folder Figures).

http://rcin.org.pl



CHAPTER 2. RESULTS. 123

-0 .20 -0.10 0.00 0.10 0.20
A verage value o f u

0.12

0.16

0.20

0.24

0.28

A
ve

ra
ge

 v
al

ue
 o

f v

r=0.53

R =3.00

Figure 43. Average values of u and v (denoted by ū and v̄ in text) observed

for a single pulse rotating on a ring with r=0.53 and R=3.0. The curve shown

corresponds to t∈[30, 130]. The values of ū and v̄ are changing, because the

pulse is constantly changing its shape while rotating. The result has been

obtained for the FitzHugh - Nagumo model.

http://rcin.org.pl



CHAPTER 2. RESULTS. 124

To sum up, the instabilities appear for r≈rmin,FH−N , as expected. On the

other hand, they also seem to depend on R. The detailed mechanism leading

to instabilities and the analytical condition for stable propagation of a single

pulse on a ring are not known yet. This problem is still under investigation.23

23Even more interesting phenomena have been observed for a sphere with both ”poles”

symmetrically cut off, so that the circumference along the ”equator” is much larger than

Lmin, while the circumference along the ”parallels”, which remain after cutting off the

poles, is smaller than Lmin. However, it has only been checked so far that there are

several ”modes” of changing shape for a pulse rotating around such a sphere. The modes

are characterized by different symmetry. The problem has not been investigated any

further yet.
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2.6 When two excitable pulses meet.

Another very interesting type of complex evolution has been observed in the

system composed of two active semiplanes separated by a passive stripe for

the FitzHugh - Nagumo model [112]. It is presented in Figure 44, for which

he same color convention as for Figs. 5 - 11 is used. The horizontal stripe

of passive medium is transparent for a pulse propagating perpendicularly,

but impenetrable for a pulse propagating parallel to it (cf. Fig. 44a). The

first excitable pulse propagates along the passive stripe, to the right. The

second pulse, initially located in the bottom part of the system, crosses the

barrier and starts its propagation on the more relaxed side of the upper

part, spreading to the right (following the first pulse) and upwards (cf. Fig.

44b). On its way to the right it propagates along the passive stripe which

has just been disturbed by the incident pulse. There is some activator left

within the passive stripe, because the activator does not decompose there

due to chemical reactions and it can only diffuse out of the stripe. The

second pulse, propagating along the stripe to the right (cf. Fig. 44b), adds

even more activator to the passive area (compare the ”whiskers” sticking

out of the passive stripe, described in Section 2.3.1). Meanwhile, the active

medium on the other side of the stripe becomes relaxed and ready for a new

excitation. Because of that at some point the second pulse gets through

the parallel barrier once again and starts spinning around (cf. Fig. 44c).

While spinning, it is able to cross the passive barrier again and again (Figs.

44d-f), due to the mechanism just described. Numerically the structure is

stable. It persists in calculations lasting twenty times longer than a pulse

needs to get through the whole square. No change in the position of the

center of the pinwheel has been observed in the calculations carried out.

This phenomenon has to be taken into account for cross junctions with very
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Figure 44. The ”pinwheel” on a plane with a single stripe of diffusion field,

obtained within the FitzHugh - Nagumo model. Gray areas correspond to

the excitable field and the black stripe - to the diffusion one. Brighter colors

correspond to higher values of u. The consecutive snapshots present the

value of u at moments: a) t=4.0, b) t=7.0, c) t=10.0, d) t=12.0, e) t=14.0,

f) t=200.0.
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wide signal channels.

The result illustrated in Fig. 44 has been obtained with the implicit

method, on a 8x8 square covered with 400x400 grid. The width of the dif-

fusion stripe here has been the same as for the cross junction described in

Section 2.3.1 (dFH−N=0.16). The time integration step dt=0.005 has been

used.24

24The animated version of Fig. 44 can be found on the CD-ROM (Fig 44a.htm, folder

Figures).
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2.7 The experiments on frequency transform-

ing.

The numerical results concerning the propagation of trains of pulses through

a passive gap presented in Section 2.4 have been checked in experiments,

run by the author of this work in the Institute of Physical Chemistry of the

Wuerzburg University in Wuerzburg, Germany, in March 2002. The experi-

ments were made in a system based on the ferroin catalyzed BZ reaction.

Polysulfone membranes (PALL Corp., 47mm in diameter, 0.45µm in

width) were covered with ferroin (bathophenantroline, Fluka) exactly accord-

ing to the recipe given by Lazar, Noszticzius, Forsterling and Nagy-Ungvarai

in [89] (Sol3 and Sol4 in Section 2.1.2 of their article). At start, the BZ solu-

tion providing the oscillatory regime for the reaction was prepared, accord-

ing to [134] ([H2SO4]=1.25M, [NaBrO3]=0.07M, [CH2(COOH)2]=0.375M ).

The rest of the experiment was carried out within the excitable regime, us-

ing the BZ solution described by Suzuki, Yoshinobu and Iwasaki in [70]

([H2SO4]=0.50M, [NaBrO3]=0.4M, [CH2(COOH)2]=0.40M, [NaBr]=0.08M ).

The results presented here were obtained for the excitable regime.

In order to obtain two dimensional structures composed of active areas

(with ferroin) and passive ones (without it) the elements of desired shape

were first cut out of a ferroin covered membrane with scissors. The elements

were then arranged on the adhesive tape and fixed. Alternatively, a piece of

a ferroin covered membrane was first stick to an adhesive tape and later it

was cut in two parts with a lancet or a razor blade (both techniques enabled

to obtain very narrow passive stripes - of the order of 0.01mm - separating

the active areas). Once built, the structures were fixed to the bottom of a

Petri dish with the adhesive tape and immersed in the BZ solution. Usually
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the experimental setup had the form of a ”comb”, providing several active

(excitable) paths, along which pulses could propagate; on each path there

was one passive barrier, ie. a slit between two pieces of a ferroin covered

membrane.25 Pulses of excitation were initiated by touching the membrane

with a silver wire and they were destroyed or broken by pouring distilled

water (water purified with Millipore Milli-Q filtering system was used for

this purpose, as well as for preparing solutions; the resistivity of the water

was 18.2MΩ·cm). This way it was eventually possible to obtain a rotating

spiral in a desired place of the system. The spiral was the source of a stable,

regular train of pulses arriving at the passive barrier. The experiments were

recorded with a CCD camera connected to a PC.26

The method of building the investigated systems did not allow to control

precisely the width of passive gaps. However, once a device was constructed,

it was possible to measure the distance between the active areas precisely

under a microscope. Building a cross junction (as described in Section 2.3)

was impossible with such a crude method of constructing the systems, so only

the propagation of trains of pulses through a passive gap was investigated.

The experimental observations are in qualitative agreement with the results

presented in this work (Section 2.4): the frequency transforming effect has

been observed.27 For example, filtering ratio fo/fp=2/3 was found for pulses

of excitation arriving in about 60sec intervals at a passive barrier which

was 0.016mm wide. It corresponds to elimination of every third of arriving

25A picture showing one of such structures as an example can be found on the CD-ROM

(Example.htm, folder Experiments)
26In such experiments the pulses are visible as blue stripes moving on a pink background.

Blue and pink colors correspond to oxidized and reduced form of the catalyst (Fe(phen)3+3

and Fe(phen)2+3 respectively), compare [3] p. 183 or [4] p. 337.
27Note that the concentrations of reagents used in these experiments were different from

those assumed in the calculations for the R-Z model (Section 2.3.2).
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pulses by the barrier.28 The ”classical” division of the original frequency of

incident pulses by 2 (fo/fp=1/2) was observed for pulses arriving every 46sec

at a barrier 0.065mm in width.29 Trivial examples of fo/fp=1 (all pulses

get through the barrier) and fo/fp=0 (no pulse can cross the barrier) were

observed for tp=26sec, d=0.016mm and tp=32sec, d=0.258mm respectively.30

Moreover, the velocity of free propagation of a single pulse of excitation

on a plain ferroin covered membrane was measured, giving 9.4mm/min. It is

of the same order of magnitude as the value obtained from the calculations for

the R-Z model (2.686mm/min for DX=10−5cm2/sec, see Section 2.3.2), al-

though the values of parameters used in computations (fixed concentrations,

diffusion coefficients) were different from experimental ones.

28The recording of this experiment can be found on the CD-ROM (2 3.bat, folder Ex-

periments)
291 2.bat, folder Experiments on the CD-ROM.
301 1.bat and 0.bat respectively in folder Experiments on the CD-ROM.
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Possible applications of

described devices to direct

information processing.

This section contains some ideas on potential future applications of reactors

composed of active and passive areas to direct information processing. First,

the advantages of simple structures of the cross junction and the passive

barrier (Sections 2.3 and 2.4) are described. These two simple elements,

together with the chemical diode, a logical OR gate and a memory cell (as

proposed by I. Motoike and K. Yoshikawa - see Figures 2, 3 and 7 in [86]

respectively) are combined together to build two more sophisticated devices.

The first one is an ”adding machine”, which is able to add two numbers

given in binary representation. Second one is a counter of number of pulses

that propagated in a signal channel. Both devices produce results in binary

representation. Although some of the structures presented in this section

may be hard to deploy, the author thinks that all of them can be constructed

and applied in practice.

131
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The cross junction with an extra channel, diagonal to the signal channels

(cf. Figure 45A), may be easily used as a logical AND gate. One should

concern paths i1 and i2 (Fig. 45A) as input channels and paths o1, o2 and o3

as output channels. If and only if two pulses appear simultaneously in i1 and

i2, then an output signal is produced in o3 (Fig. 5 is helpful to imagine what

happens). If a single signal appears in i1 or i2 only - it propagates through

the junction and goes out through o1 or o2 respectively (and no signal is

initiated in o3). Of course, there are no output signals at all if input signals

do not appear in i1 nor i2. Thus, a logical AND gate has been constructed.

The advantages of a simple passive barrier are even easier to show. First,

a barrier of a fixed width d may be used as a filter of frequency of a chemical

signal. If the frequency of the incoming signal fp is greater than a certain

critical frequency fcrit (where fcrit depends on d - cf. Fig. 29), then no pulse

can cross the barrier. Thus, only signals with frequency fp<fcrit may be

observed behind the barrier. The passive barrier may also be used to divide

the number of pulses in the incoming train by a desired integer number.

Knowing the frequency of pulses in the incoming train, it is enough to adjust

the barrier’s width d appropriately (cf. Figs. 18, 19 and 29). The division by

2 seems especially useful (it is used later in this section to build the counter of

pulses), so it is very convenient that it appears in a wide range of parameters

(d, fp). Last but not least, a ring ”equipped” with input and output channels

may be used to regularize a train of pulses in which the time shift between

consecutive pulses is random or unknown. First the whole train has to be

”collected” on such a ring, then one should wait until the pulses arrange

themselves symmetrically (this phenomenon is described in Section 2.5) and

finally a regular train of pulses can be read from the ring. This procedure

is limited by the ”capacity” of the ring used (so the longer trains are to be
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o1

B
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Figure 45. Simple signal processing elements. A - the logical AND gate

based on the cross junction. B - the logical OR gate. C - a memory cell (pulse

storage ring). Thick black lines in the picture correspond to passive stripes

of properly chosen width. Thin dotted lines in Figs. 45A and 45B resemble

the symbols used to indicate the corresponding elements in the schemes of

more advanced devices shown in Fig. 46.
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regularized, the larger rings should be used). On the other hand, if a ”N-

pulse” ring is used, then the frequency of the regularized train of pulses has

to be within a certain (known) range.

For the following I use two elements already built and tested. The logical

OR gate (shown schematically in Fig. 45B) produces an output signal in o1 if

an input signal appears in i1 or i2. The interference between the output signal

and the input channels is eliminated with a diode-like structure present at

the junction of i1, i2 and o1. This shape of the logical OR gate was proposed

and confirmed to work in [86]. One more ”ready-to-wear” element which is

needed is a memory cell (shown in Fig. 45C). It can be used to memorize

and regularize a train of up to N pulses if a ”N-pulse” ring is applied. The

pulses may later be read and/or erased. The structure presented in Fig. 45C

was proposed and proven to work in model calculations as well as in real

experiments in [87].

A scheme of a single segment of the adding machine is presented in Figure

46A, in which the AND gates based on the cross junction (Fig. 45A) are

indicated with squares, while circles stand for the OR gates (Fig. 45B).

The structure shown in Fig. 46A is able to add the ”numbers” (”0” or ”1”)

appearing in the input channels a0 and b0 and memorize the result (in the

form of a single pulse) in the memory cell M0 (thus, a ”1-pulse” ring is enough

to serve as the cell). If a pulse appears in the input channel a0 (for simplicity

let us write a0=1), it goes through the cross junction C1, then the OR gate

R1 and arrives at the cross junction C2. Here it may meet a pulse coming

from b0. If it happens - both pulses annihilate within C2 (so no output signal

is produced in output channels o1 and o2 of C2 - cf. Fig. 45A). Consequently

no input signal appears on the OR gate R2 and no signal (”0”) is memorized

in M0. However, an output signal is initiated in the output channel o3 of C2
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(here the mechanism shown in Fig. 5 is used). This signal goes out of the

device through the OR gate R3 and may by used as an extra input signal for

the next segment of the adding machine (e1). The extra input channel e0 is

not really necessary in the first segment of the adding machine. However, its

presence is crucial in all the other segments. An input signal appearing in

this channel means that there was an ”overflow” when adding the numbers

in the previous segment. Such ”overflow” signal should be added to a and

b input signals in the next segment. The sum between a and e channels is

performed in C1 in exactly the same way as the sum between a0 and b0 in

C2. The sum of a and e is then used as one of input signals for C2, where it

is added to b. Using N segments like the one presented in Fig. 46A one is

able to calculate the sum of two numbers given in binary representation:

a = a0 + 2 · a1 + 4 · a2 + ... + 2N−1 · aN−1 (3.1)

plus

b = b0 + 2 · b1 + 4 · b2 + ... + 2N−1 · bN−1 (3.2)

gives

M = M0 + 2 ·M1 + 4 ·M2 + ... + 2N−1 ·MN−1 + 2N · eN (3.3)

where all the ai, bi, Mi∈{0, 1}.
A single segment of the counter of pulses propagating in a signal channel

is presented in Fig. 46B. Before counting the original train of pulses should be

collected on a ”N-pulse” storage ring (like the one shown in Fig. 45C). Thus,

the counter is able to count up to N pulses. Once the train is regularized, it

may be read from the ring and put as the input signal i0 to the first segment

of the counter. The signal travels through the OR gate R1 and arrives at the

passive barrier B. The width of the barrier should be properly adjusted to

eliminate every second of the incoming pulses from the train (it is possible
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Figure 46. Advanced direct information processing reactors. A - a single

segment of the adding machine. B - a single segment of the counter. Squares

symbolize logical AND gates based on the cross junction (cf. Fig. 45A),

circles stand for the logical OR gates (cf. Fig. 45B). Lines mark the signal

paths and arrows indicate the direction of propagation of pulses. The gray

vertical interval in Fig. 46B marks the passive barrier.

http://rcin.org.pl



CHAPTER 3. POSSIBLE APPLICATIONS OF DESCRIBED DEVICES
TO DIRECT INFORMATION PROCESSING. 137

because one is able to specify the range of frequencies of the regularized

input signal). Let us also assume that the barrier’s width is set below the

penetration depth for a single pulse, so that the first pulse from the incoming

train is always able to cross the barrier. If there were K pulses in the initial

train, then one would get [K/2]+1 pulses behind the barrier (where [p] stands

for the ”floor” function, ie. the greatest integer number not greater than p).

It is very important to check whether the initial number of pulses K was odd

or even. This may be achieved by putting one more pulse of excitation in the

channel e, just after the last pulse from the incoming train has arrived at the

barrier B. The pulse from e is duplicated. First of its copies goes directly into

the cross junction C1 and the second one goes through the OR gate R1 and

arrives at the barrier B. If K was odd, then the second copy would ”die” at

the barrier. The first copy would then arrive at C1 and go through it (in the

vertical direction in Fig. 46B). Consequently a pulse would be memorized

in the memory cell M0, indicating that K was odd. Before memorizing, a

copy of this signal is produced. This copy is directed to the cross junction

C2, where it should be used to ”kill” the first of the pulses which previously

passed through the barrier B (this is achievable if a proper difference in

lengths of signal paths is provided). If K was even, then the second copy of

e would cross the barrier and annihilate together with the first copy at the

junction C1 (again, a proper difference of lengths of signal paths has to be

provided). In this case no pulse would be memorized in the memory cell M0,

indicating that K was even and none of the pulses which previously passed

through the barrier would be ”killed” at C2. Anyway, the train of pulses

going out of C2 (in the horizontal direction), should be regularized (with a

storage ring) and used as the input train for the next segment of the counter

(i1). The procedure should be iterated until all the pulses from the original
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train (i0) are eliminated. At his moment one gets the binary representation

of K in the memory cells M0, M1, M2 etc.

K = M0 + 2 ·M1 + 4 ·M2 + ... (3.4)

In case of the counter, we are not interested in the output signals which may

appear in the diagonal channels of C1 or C2 (cf. Fig. 45A) when two pulses

coming from perpendicular directions annihilate within the junction. Last

but not least, it is worth mentioning that alternative structures of counters

of pulses have already been proposed by J. Górecki, K. Yoshikawa and Y.

Igarashi [135].

The adding machine and the counter would work properly if lengths of

signal paths between their elements are chosen properly (so that the pulses

would coincide in desired places at desired moments).
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Conclusions.

The main purpose of this work was to study chemical reactors, composed

of active and passive areas, from the point of view of their applications to

direct processing of information in the form of chemical signals.

Several types of two dimensional reactors have been studied. They include

the cross junction (Section 2.3), the passive barrier (Section 2.4) and the

ring (Section 2.5). All these structures have turned out to be useful in direct

processing of chemical signals and thus the information that these signals

may carry. The junction can be applied as a logical AND gate (coincidence

detector of two pulses) or as a switch of the direction of propagation of a single

pulse. It works for both FitzHugh - Nagumo and Rovinsky - Zhabotinsky

models.

Propagation of single excitable pulses as well as trains of such pulses

through a passive barrier has been studied. It has been found that the

barrier is able to systematically eliminate pulses from a train. Consequently,

it can be used to divide the number of pulses in the train by a desired integer

number. The mechanisms of elimination have been discovered to be different

in the FitzHugh - Nagumo model and the Rovinsky - Zhabotinsky model,
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in their forms and for the values of parameters used in this work (Eqs. (2.1

- 2.4) and (2.5 - 2.8) respectively). However, it is not certain whether the

observed differences come as the result of different parameters used, or is

there a generic difference between the models. On the other hand, the fact

that the elimination has been observed for three different models (FH-N,

R-Z and the Oregonator) suggests that the phenomenon might be typical

for all excitable systems, especially because it appears in the ”naive” model

presented in Section 1.2.2. The phenomenon of systematical elimination of

pulses from a train has turned out to be crucial for several signal processing

devices (such as the chemical diode, logical gates etc.) previously proposed

by other researchers, as well as for the cross junction proposed here (Section

2.4.7). The results concerning stability of pulses on a ring may be important

when such rings are used as memory cells.

The numerical results concerning frequency transformations of regular

trains of pulses by a passive barrier (Section 2.4) have been confirmed ex-

perimentally. The results of experiments described in Section 2.7 are in

excellent qualitative agreement with the numerical predictions. In particu-

lar, frequency transformations corresponding to fo/fp=1, 2/3, 1/2 and 0 have

been observed. These experimental observations are only some examples

confirming the numerical results obtained. They imply that the Rovinsky

- Zhabotinsky model used in this work describes pretty well systems based

on the ferroin catalyzed BZ reaction. This conclusion is further supported

by results of other experiments with chemical diodes (mentioned in Section

2.4.7) and with passive barriers (eg. [70]).

Two complex devices performing nontrivial operations, ie. adding two

numbers or counting the pulses in a channel, have been proposed (Chapter

3). Both of them utilize the basic signal processing elements, like the cross
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junction and the passive barrier (discussed in this work) or the memory cell

and the logical OR gate (known from the literature). The construction of the

adding machine and the counter seems feasible, although it does not have to

be easy.

One final word of conclusion, coming from the last two paragraphs, is that

once quite advanced information processing devices have been proposed and

the model, within which these devices were ”born”, properly describes real

chemical reactors (as the experiments suggest), we should expect to find such

systems applied, for example in new generations of ”intelligent” materials or

medicaments. Maybe in not so distant future.

http://rcin.org.pl



Bibliography

[1] J. D. Murray, Mathematical Biology (Springer Verlag, New York, USA,

1993).

[2] T. Tlaczala, Wiadomosci Chemiczne 38 219 (1984) (in Polish).

[3] A. L. Kawczynski, Reakcje chemiczne - od rownowagi przez struktury

dyssypatywne do chaosu (Wydawnictwa Naukowo - Techniczne, War-

saw, Poland, 1990) (in Polish).

[4] M. Orlik, Reakcje oscylacyjne - porzadek i chaos (Wydawnictwa

Naukowo - Techniczne, Warsaw, Poland, 1996) (in Polish).

[5] A. L. Lehninger, Biochemie (Verlag Chemie, Weinheim, Germany,

1979) (in German).

[6] O. Gurel and D. Gurel, Types of Oscillations in Chemical Reactions

(Akademie - Verlag, Berlin, Germany, 1984).

[7] D. Gurel and O. Gurel, Recent Developments in Chemical Oscillations

(Akademie - Verlag, Berlin, Germany, 1984).

[8] W. C. Bray, J. Am. Chem. Soc. 43, 1262 (1921).

[9] B. P. Belousov, Sbornik referatov po radiacjonnoj medicynie za 1958 g.

(Medgiz, Moscow, USSR, 1959), p. 145 (in Russian).

142
http://rcin.org.pl



BIBLIOGRAPHY 143

[10] A. Zaikin and A. M. Zhabotinsky, Nature 225, 535 (1970).

[11] A. M. Zhabotinsky, Koncentracjonnyje avtokolebanija (Nauka,

Moscow, USSR, 1974) (in Russian).

[12] A. M. Turing, Phil. Trans. Roy. Soc. London B237, 37 (1952).

[13] B. Rudovics, J.-J. Perraud, P. De Kepper and E. Dulos, Turing

Structures and Wave Patterns in The Cima Reaction in Far-from-

equilibrium Dynamics of Chemical Systems - Proceedings of The Third
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[116] J. Sielewiesiuk and J. Górecki, J. Phys. Chem. A 106, 4068 (2002).
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Appendix A

From the Field - Körös - Noyes

mechanism of the BZ reaction

to the Rovinsky - Zhabotinsky

model.

The contents of this part of the dissertation has been published as the sup-

porting material for our publication in the Journal of Physical Chemistry A

[115]. It is available at http://pubs.acs.org.

When I prepared programs for numerical calculations I discovered that

many papers which use the Rovinsky - Zhabotinsky model of the ferroin

catalyzed Belousov - Zhabotinsky reaction contain simple mistakes in formu-

las, which may significantly affect the results. Here I provide a step-by-step

derivation of the dimensionless Eqs. (2.5-2.8) from the Field - Körös - Noyes

(FKN) reaction scheme and give the definitions of the scaling constants.

Let us start from the modified Field - Körös - Noyes [42, 136] mechanism

of the Belousov - Zhabotinsky reaction [44] completed by reaction (R13) (in
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[45]):

H+ + HBrO3 + HBrO2 À HBrO+
2 + BrO2 ·+H2O (R1)

BrO2 ·+H+ À HBrO+
2 (R2)

Fe(phen)2+
3 + HBrO+

2 À Fe(phen)3+
3 + HBrO2 (R3)

2HBrO2 → HOBr + HBrO3 (R4)

H+ + Br− + HBrO2 → 2HOBr (R5)

H+ + Br− + HOBr À Br2 + H2O (R6)

H+ + Br− + HBrO3 → HBrO2 + HOBr (R7)

Fe(phen)3+
3 +CHBr(COOH)2 À Fe(phen)2+

3 +H++·CBr(COOH)2 (R8)

H2O + ·CBr(COOH)2 → H+ + Br− + ·COH(COOH)2 (R9)

HOBr + CHBr(COOH)2 À CBr2(COOH)2 + H2O (R10)

Br2 + CHBr(COOH)2 À CBr2(COOH)2 + H+ + Br− (R11)

CHBr(COOH)2 + H2O → CHOH(COOH)2 + H+ + Br− (R13)

We use the notation as in [44]: A = [HBrO3], B = [CHBr(COOH)2],

C = [Fe(phen)2+
3 ] + [Fe(phen)3+

3 ], R = [·CBr(COOH)2], U = [HBrO+
2 ],

X = [HBrO2], Y = [Br−], Z = [Fe(phen)3+
3 ], h0 is the Hammett acidity

function [119, 120] and q is the stoichiometric factor. The kinetic equations

introduced in [44, 45] read:

∂X

∂t
= −k1h0AX+k−1U

2+k3U(C−Z)−k−3XZ−2k4h0X
2−k5h0XY +k7h0AY

(A1)
∂Y

∂t
= −k5h0XY − k7h0AY + qk9R + k13B (A2)

∂Z

∂t
= k3U(C − Z)− k−3XZ − k8BZ + k−8h0R(C − Z) (A3)

∂U

∂t
= −2k−1U

2 + 2k1h0AX − k3U(C − Z) + k−3XZ (A4)

http://rcin.org.pl



APPENDIX A. FROM THE FIELD - KÖRÖS - NOYES MECHANISM
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∂R

∂t
= k8BZ − k−8h0R(C − Z)− k9R (A5)

where k±i are the rate constants of the corresponding reactions.

These kinetic equations can be simplified. First, let us neglect the term

k−1·U2 in Eqs. (A1, A4) (as U is small [44]). Next, assuming that U and R

are rapid variables comparing to X, Y and Z, from Eq. (A4) we get:

U =
2k1h0AX + k−3XZ

k3(C − Z)
(A6)

and from Eq. (A5):

R =
k8BZ

k−8h0(C − Z) + k9

(A7)

In the denominator of the last formula we can neglect k9, because k9¿k−8h0(C-

Z). All these approximations are based on experimental observations, quoted

in [44].

Substituting (A6, A7) to (A1 - A3) one obtains:

∂X

∂t
= k1h0AX − 2k4h0X

2 − k5h0XY + k7h0AY (A8)

∂Y

∂t
= q

K8BZ

h0(C − Z)
− k5h0XY − k7h0AY + k13B (A9)

∂Z

∂t
= 2k1h0AX − K8BZ

h0(C − Z)
(A10)

where

K8 =
k8k9

k−8

(A11)

Up to this point the procedure presented here is identical as in [44]. Basing

on Eqs. (A8 - A10) we derive the dimensionless reaction - diffusion equations

for active and passive fields.
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For the active field we eliminate Y as a fast variable using Eq. (A9) (see

[44]) and get:

Y = (q
K8BZ

h0(C − Z)
+ k13B) · 1

k5h0X + k7h0A
(A12)

which can be substituted to Eqs. (A8) and (A10). It follows that:

∂X

∂t
= k1h0AX − 2k4h0X

2 − (
k5X − k7A

k5X + k7A
) · (q K8BZ

h0(C − Z)
+ k13B) (A13)

∂Z

∂t
= 2k1h0AX − K8BZ

h0(C − Z)
(A14)

In the passive field we have Z=C≡0 and so R≡0. This reduces Eqs. (A8 -

A9) to:
∂X

∂t
= −2k4h0X

2 − k5h0XY + k7h0AY (A15)

∂Y

∂t
= −k5h0XY − k7h0AY + k13B (A16)

Once again the fast variable Y is eliminated. From (A16) we receive:

Y =
k13B

k5h0X + k7h0A
(A17)

and after substitution to (A15) we end up with the following kinetics for the

passive field:
∂X

∂t
= −2k4h0X

2 − k5X − k7A

k5X + k7A
k13B (A18)

Z ≡ 0 (A19)

In our model the activator X diffuses, while the catalyst Z is immobilized.

Thus, we add the diffusion of X to the kinetic equations (A13-A14) for the

active and (A18 - A19) for the passive regions and get:

∂X

∂t
= k1h0AX − 2k4h0X

2− (
k5X − k7A

k5X + k7A
) · (q K8BZ

h0(C − Z)
+ k13B) + DX∇2

rX

(A20)

http://rcin.org.pl



APPENDIX A. FROM THE FIELD - KÖRÖS - NOYES MECHANISM
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∂Z

∂t
= 2k1h0AX − K8BZ

h0(C − Z)
(A21)

for the active field and

∂X

∂t
= −2k4h0X

2 − k5X − k7A

k5X + k7A
k13B + DX∇2

rX (A22)

Z ≡ 0 (A23)

for the passive one.

If one introduces dimensionless variables x, z, τ and ρ, so that

X =
k1A

2k4

x (A24)

Z = Cz (A25)

t =
k4C

k2
1A

2h0

τ (A26)

r =

√
k4C

h0

· 1

k1A
·
√

DX · ρ (A27)

and coefficients:

α =
k4K8B

k2
1A

2h2
0

(A28)

β =
2k4k13B

k2
1A

2h0

(A29)

µ =
2k4k7

k1k5

(A30)

ε =
k1A

k4C
(A31)

then Eqs. (A20 - A21) and (A22 - A23) turn into:

∂x

∂τ
=

1

ε
[x(1− x)− (2qα

z

1− z
+ β)

x− µ

x + µ
] +∇2

ρx (A32)

∂z

∂τ
= x− α

z

1− z
(A33)

for the active medium and

∂x

∂τ
= −1

ε
[x2 + β

x− µ

x + µ
] +∇2

ρx (A34)
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z ≡ 0 (A35)

for the passive medium. Eqs. (A32 - A33) and (A34 - A35) are identical

with Eqs. (2.5-2.6) and (2.7-2.8) in Section 2.1.2, respectively.

Now let me point out the differences between my results and the other

papers. The scaling of time (Eq. (A27)) and definition of β (Eq. (A29)) differ

from those given in [44, 45] by the factor h0 in the denominator, although

the remaining scaling constants (Eqs. (A24), (A25), (A28), (A30), (A31))

and the reaction - diffusion equations (A32 - A33) are identical with those

given in [44, 45].

The Rovinsky - Zhabotinsky model was also used by Kusumi et. al. in

[84]. Their kinetic equations for the active field are identical with (A32 -

A33), however the definition of µ they give differs from (A30) by the factor

of 2 and the scaling of ρ is different from (A27) by the factor h
1/2
0 in the

denominator. The passive medium in [84] is described by kinetic equations

simpler than (A34 - A35). The simpler equations were however not sufficient

for my study, because for the values of parameters considered in this work

they lead to excitations of active areas at the boundary of active and passive

media.
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Integration schemes used.

Let us consider a reaction - diffusion equation in one dimension in the most

general form (B1):
∂c

∂t
= D

∂2c

∂x2
+ r(c) (B1)

where c is the concentration of a chemical reagent, t and x are the time

and space variables respectively, D stands for the diffusion coefficient of the

reagent and r(c) is the kinetic term, describing the chemical reaction.

Let us assume that the values of c are discretized on a grid. Let us denote

the current value of c at the i-th grid point (i=0,1,...,n,n+1 ) by ci
0 (known)

and the corresponding value after time dt by ci
t (unknown). Let us assume

that the grid is uniform and the distance between consecutive grid points is

dx.

In general ci
t can be calculated as:

ct
i = c0

i + ∆ci + dt ·D ∂2c

∂x2
|i (B2)

where ∆ci corresponds to the change of c at the i-th grid point due to the

chemical reaction.

In the Euler explicit method the calculations of ci
t are fully based on the
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current state of the system ci
0. Consequently:

ct
i = c0

i + dt · r(c0
i ) + dt ·D ∂2c

∂x2
|i (B3)

where:
∂2c

∂x2
|i =

c0
i+1 + c0

i−1 − 2 · c0
i

(dx)2
(B4)

In the Crank - Nicolson method the diffusion term is approximated as:

∂2c

∂x2
|i =

1

2
[
c0
i+1 + c0

i−1 − 2 · c0
i

(dx)2
+

ct
i+1 + ct

i−1 − 2 · ct
i

(dx)2
] (B5)

This makes ci
t occur on both sides of Eq. (B2) and shows that the methods

based on the Crank - Nicolson discretization of the Laplace operator are

implicit methods.

Equation (B2) can be solved with respect to ci
t giving:

ct
i = Ai · ct

i+1 + Bi i = 0, 1, ..., n (B6)

where

Ai =

Ddt
2(dx)2

1− Ddt
2(dx)2

(Ai−1 − 2)
(B7)

Bi =

Ddt
2(dx)2

(Bi−1 + c0
i+1 + c0

i−1 − 2c0
i ) + ∆ci + c0

i

1− Ddt
2(dx)2

(Ai−1 − 2)
(B8)

Additional constraints are imposed on the coefficients Ai, Bi by the boundary

conditions used.

In case of no flux boundary conditions we have A0=1 and B0=0 (from

Eq. (B6), because c0
t=c1

t). Consequently, all the Ai, Bi up to An, Bn can

be calculated using Eqs. (B7 - B8). At the other boundary of the system,

according to Eq. (B6) we have:

ct
n = An · ct

n+1 + Bn (B9)
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but due to no flux boundary conditions cn
t=cn+1

t, so:

ct
n+1 =

Bn

1− An

(B10)

Having cn+1
t, the values of ci

t for i=n,n-1,...,1,0 can be calculated by back-

substitution, using Eq. (B6).

In case of periodic boundary conditions, one has to solve a more compli-

cated set of equations:

ct
0 = A0 · ct

1 + B0 (B11a)

ct
1 = A1 · ct

2 + B1 (B11b)

...................

ct
n−1 = An−1 · ct

n + Bn−1 (B11c)

ct
n = ct

0 (B11d)

A0 = A1 = ... = An−1 (B11e)

Equations (B11d - B11e) come directly as the consequence of the periodic

boundary conditions (B11d) and the fact that in this case no grid point on

the interval is distinguished (B11e).

In Section 2.4.1 a modification of the implicit method just described is

mentioned. Instead of a uniform (equally spaced) grid, an adaptive grid

is used. The adaptive grid is characterized by a smaller distance between

consecutive grid points within and near the passive barrier and longer one

far from the barrier. Let us denote the space step to the left from the i-th

grid point (ie. the distance between nodes no. i-1 and i) by dxi−1 and the

space step to the right from the i-th grid point (ie. the distance between

nodes i and i+1 ) by dxi.
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Then the Laplace operator is given by Equation (B12):

∂2c

∂x2
|i =

1

2
· 2

dxi−1 + dxi

[(
c0
i−1

dxi−1

+
c0
i+1

dxi

−dxi−1 + dxi

dxi−1dxi

c0
i )+(

ct
i−1

dxi−1

+
ct
i+1

dxi

−dxi−1 + dxi

dxi−1dxi

ct
i)]

(B12)

Equation (B6) holds and consequently the coefficients Ai, Bi have more com-

plicated forms:

Ai =

Ddt
dxi−1+dxi

· 1
dxi

1− Ddt
dxi−1+dxi

( Ai−1

dxi−1
− 1

dxi
− 1

dxi−1
)

(B13)

Bi =

Ddt
dxi−1+dxi

(
c0i+1−c0i

dxi
+

c0i−1−c0i
dxi−1

+ Bi−1

dxi−1
) + ∆ci + c0

i

1− Ddt
dxi−1+dxi

( Ai−1

dxi−1
− 1

dxi
− 1

dxi−1
)

(B14)

The kinetic term ∆ci, present in Eqs. (B8, B14), can be calculated in

many ways. For the purpose of this work, the well established Runge -

Kutta method of the fourth order has been used. For computations in two

dimensions (eg. the cross junction - Section 2.3, the rings - Section 2.5 and the

pinwheels - Section 2.6) the implicit method presented here has been applied

to individual rows of the two dimensional grid and then the procedure has

been iterated to obtain self-consistency between the rows.

The explicit Euler method becomes unstable when Ddt
(dx)2

> 1
2
, so for a

fine grid a very short time integration step is required, whereas the implicit

method is stable for all values of dx and dt.
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tion of excitable chemical media, Journal of Physical Chemistry A 105,

8189 (2001).
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conferences and seminars:
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Contents of the CD-ROM.

The CD-ROM contains supporting material for the PhD thesis. It has the

following structure:

readme.htm - table of contents of the CD-ROM.

thesis.pdf - the full version of the PhD thesis in PDF format.

\Experiments - films showing selected frequency transforming modes

observed in experiments with the ferroin catalyzed Belousov - Zhabotin-

sky reaction. Double-click the .BAT files to see the corresponding

films.1 The file diode 12.avi shows malfunction of the chemical diode,

observed experimentally by Yasuhiro Igarashi, Kenichi Yoshikawa and

Jerzy Górecki at the Department of Physics, Kyoto University, Kyoto,

Japan in spring 2002.2

\Figures - animated extensions of selected figures from the thesis and

some additional animations.

1Some computers with Windows NT 4.0 Workstation fail to display the films.
2Courtesy of the Authors of the experiment.
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