Dynamika biologicznej redukcji związków fosforu i azotu w modelowym systemie UCT

Bernadeta Czerska Korneliusz Miksch Joanna Surmacz-Górska Zuzanna Dębkowska Wydział Inżynierii Środowiska Politechnika Śląska Gliwice

1. Wprowadzenie

edną z głównych przyczyn eutrofizacji wód powierzchniowych jest niewystarczające usuniecie azotu i fosforu podczas oczyszczania ścieków. W procesach technologicznych stosowanych do redukcji związkow biogennych coraz częściej wykorzystywane są metody biologiczne. Biologiczna redukcja fosforu ze ścieków odbywa się w oparciu o populację bakterii posiadajacych zdolność pobierania i akumulacji nadmiernej ilości fosforu w warunkach aerobowych oraz wydzielania fosforu z komórki w warunkach beztlenowych (2). Także inne grupy mikrorganizmów osadu czynnego uczestniczą w procesach nitryfikacji w warunkach tlenowych i denitryfikacji w warunkach anoksycznych (8). Proces biologicznego oczyszczania ściekow metodą osadu czynnego można wykorzystać do usuwania zwiazkow azotu i fosforu poprzez stworzenie odpowiedniej sekwencji bioreaktorów. Jednym z systemów biologicznej redukcji zwiazków organicznych oraz biogennych jest system UCT (5). W systemie tym procesy metaboliczne zachodzą kolejno w warunkach anaerobowych, anoksycznych i aerobowych. W reaktorze anaerobowym nastepuje wydzielanie fosforu z komórek bakterii, natomiast w aerobowym nadmierne jego pobieranie oraz nitryfikacja. Proces denitryfikacji odbywa się w warunkach anoksycznych przy recyrkulacji z reaktora tlenowego.

2. Opis doświadczeń

Badania biologicznej redukcji N i P prowadzono w modelowym układzie laboratoryjnym funkcjonującym według systemu UCT (rys. 1).

Układ zasilano syntetyczną pożywką, pozwalającą na rozwój bakterii akumulujących polifosforany (3). Źródłem węgla organicznego był octan sodu (I etap) oraz glukoza i octan sodu (II etap), azotu — NH_4^+ i fosforu — PO_4^{3-} . Dynamika biologicznej redukcji związków fosforu i azotu

Rys. 1. Schemat systemu UCT: AN — reaktor beztlenowy, ANOX — reaktor anoksyczny, AERO — reaktor tlenowy, OWt — osadnik wtórny.

Etap wstępny badań obejmował fazę adaptacji mikroorganizmów osadu czynnego do nadmiernego pobierania fosforu. Stężenie PO_4^{3-} w dopływie wynosiło wówczas 30 mg/l, NH_4^+ — 60 mg/l, a ChZT — 350 – 450 mg/l.

Druga część badań dotyczyła wyznaczania dynamiki procesu redukcji fosforu i azotu. Stężenie $PO_4^{3^-}$ utrzymywano na poziomie 15 mg/l, natomiast stężenie NH₄⁺ i zakres ChZT pozostawiono takie, jak w fazie adaptacyjnej. Zmiany obciążenia substratowego (O_x), następowały w wyniku zmian ChZT dopływającej pożywki, natomiast czas zatrzymania substratu w reaktorach — (T_z), zależny był od hydraulicznych zmian przepływów. Parametry technologiczne badanego systemu UCT w obydwu fazach przedstawia tab. 1. Analizy chemiczne w przeprowadzonych badaniach obejmowały ChZT, NH₄⁺, NO₃⁻, PO₄³⁻ i suchej masy (4).

3. Analiza i dyskusja wyników

Badania przeprowadzone podczas adaptacji osadu czynnego, trwającej 21 dni, wykazały zdolność populacji mikroorganizmów do ~50% redukcji ChZT już w warunkach beztlenowych, a końcowy efekt usunięcia ChZT wynosił 80-90% (rys.2). Efekt ten wynikał głównie ze specyfiki octanu, który jest substratem łatwo przyswajanym w warunkach beztlenowych. Kwas octowy jest także najłatwiej przyswajalnym źródłem węgla dla bakterii akumulujących polifosforany (8). Przemiany tych polimerów są ściśle związane z nadmiernym pobieraniem fosforu.

Zjawisko nadmiernego pobierania fosforu zaczęło sie w dziesiątym dniu okresu adaptacji (rys.3). Ilość fosforanów wydzielonych w warunkach beztlenowych wzrosła z 30 mg/l w dopływie do 42,1 mg/l w reaktorze anaerobowym, a w odpływie zmniejszyła sie do 20,8 mg/l. W końcowej części fazy adaptacji stężenie PO_4^{3-} uległo redukcji w badanym systemie UCT z 30 mg/l do 7 mg/l (87%). Fakt ten wskazywał na wykształcenie się populacji osadu czynnego zdolnej do redukcji fosforu na drodze biologicznej.

Parametry	Faza I (adaptacyjna)	Faza II
stężenie osadu qsm/m ³	2500 - 4000	2000 - 4000
obciążenie osadu ładunkiem	0, 1 - 0, 2	0, 1 - 0, 2
ChZT [kgO ₂ /kg sm. d]		
czas zatrzymania w reaktorach: beztlenowym [h]	3,0	2,0 - 3,0
anoksycznym [h]	3,0	3,0-4,0
tlenowym [h]	6,0	6,0 - 7,0
osad recyrkulowany Qr [%]	100 - 150	100
recyrkulacja wewnętrzna QrI [%]	100	100
recyrkulacja wewnętrzna QrII [%]	250 - 300	300

TABELA 1 CHARAKTERYSTYCZNE PARAMETRY TECHNOLOGICZNE W SYSTEMIE UCT

Pomiary stężenia azotanów w kolejnych reaktorach badanego układu wykazały zdolność mikroorganizmów do nitryfikacji w całym okresie adaptacji (rys.4). Wstępny etap badań zakończono, gdy mikrorganizmy osadu czynnego przeprowadzały równocześnie procesy redukcji węgla organicznego, azotu i fosforu.

W drugiej części doświadczeń źródłem węgla była glukoza i octan sodu, steżenie PO_4^{3-} wynosiło 15 mg/l, a NH_4^+ — 60 mg/l. Zastosowanie dodatkowego substratu (glukozy) nie wywołało wyraźnych zmian efektów redukcji ChZT w kolejnych reaktorach (rys. 5). W warunkach beztlenowych ulegało rozkładowi ok. 50% ładunku, natomiast całkowita redukcja ChZT w układzie wynosiła 80 - 90 %. Obniżenie stężenia fosforanów w dopływie, a także zmiana substratu organicznego, spowodowały poczatkowo mniejszą efektywność wydzielania fosforu w warunkach anaerobowych (20 mg/l). Redukcja fosforu odbywała się w dalszym ciągu w procesie nadmiernego pobierania (rys.6). W drugiej połowie obserwacji wydzielanie PO43-. w reaktorze anaerobowym wzrosło dwukrotnie (42 mg/l). Jednocześnie stężenie w odpływie zwiększyło sie do 2 – 4 mg/l, podczas gdy wcześniej nie przekraczało 0,5 mg/l. Można stad wnioskować, że możliwości akumulacji polifosforanów w komórkach bakterii są ograniczone. Istotny, jak się wydaje, był dobór wieku osadu najkorzystniejszego dla maksymalnego wykorzystania zdolności akumulacyjnych bakterii. Przemiany azotu w badanym systemie odbywały się poprzez nitryfikacje w warunkach aerobowych oraz denitryfikacje w reaktorze anoksycznym Dynamika biologicznej redukcji związków fosforu i azotu

biotechnologia ____ 3 (22) '93

Rys. 4. Wykres zmian stężeń PO4 w systemie UCT podczas fazy adaptacji.

Rys. 5. Wykres zmian stężeń ChZT w systemie UCT podczas przemian pierwiastków biogennych.

112

Rys. 6. Wykres zmian stężenia NO3 podczas nitryfikacji i denitryfikacji w systemie UCT.

Rys. 7. Wykres zmian stężenia PO4 w kolejnych reaktorach systemiu UCT.

biotechnologia ____ 3 (22) '93

(rys.7). Po nitryfikacji i wzroście stężenia azotanów do 7 – 12 mg/l, występowała całkowita redukcja NO_3^- w procesie oddychania azotanowego. Wzrost azotanów powyżej 15 mg/l powodował pogorszenie efektów denitryfikacji. Stężenia NO_3^- w reaktorze anoksycznym wynosiło wówczas 5 – 7 mg/l, podczas gdy w pozostałych przypadkach było równe lub bliskie zeru (0,13 – 0,51 mg/l).

4. Podsumowanie

Przeprowadzone doświadczenia potwierdziły wspołistnienie oraz wspłlzależność przemian związków azotu i fosforu podczas ich biologicznej redukcji w systemie UCT. Sekwencja warunków beztlenowych, anoksycznych i tlenowych stwarza możliwości wydzielania, a następnie nadmiernego pobierania fosforu oraz redukcji azotu na drodze nitryfikacji i denitryfikacji, przez mikroorganizmy osadu czynnego. Wydzielanie fosforu w warunkach beztlenowych zależy od rodzaju źródła węgla organicznego. Dołączenie do octanu sodu dodatkowego substratu — glukozy, zmniejszyło początkowo ilość wydzielonego fosforu. Istotny jest zatem taki dobór czasu zatrzymania substratu w reaktorze anaerobowym, aby umożliwić rozkład złożonych związków organicznych do prostych kwasów organicznych. Dalszym efektem tego procesu może stać się dopiero nadmierne pobieranie fosforu i jego redukcja ze ścieków.

Konieczny jest zatem dobór parametrów technologicznych i warunków procesu w systemie UCT, umożliwiający uzyskanie maksymalnie korzystnej redukcji obydwu pierwiastków biogennych podczas oczyszczania ścieków.

Literatura

- Comeau Y., Oldham W.K., Hall K.J., (1987), Biol. Phosphate Remov. from Wastewat., ed. R. Ramadorii, Pergamon Press Oxford, 39 – 95.
- 2. Fuchs G.W., Chen M., (1975), Microb. Ecol., 2, 119-138.
- 3. Groenstijn J.W., (1989), Antonie van Leeuwenhoek, 55, 67 82.
- 4. Hermanowicz W., (1976), Fizykochemiczne badanie wody i ścieków, Arkady, Warszawa.
- 5. Matsche N, (1991), Wiener Mitteilungen, Wasser-Abwasser-Gewässer, Hg. N. Matsche, 97, F-1 G-1.
- 6. Schön G., (1987), Veröf. des Inst. für Stadtbauwesen, T. H. Braunschweig, 42, 343 348.
- 7. Steenbergen K., Vertrachter H., (1991), Int. Symp. Env. Biotech., p. I, Belgium.
- Toerien D.F., Gerber A., Lotter L.H., Cloete T.E., (1990), Adv. in Microb. Ecol., ed. K.C. Marshal, 11, 174 – 230.

The dynamics of biological reduction of phosphorus and nitrogen componeds in the UCT model system

Summary

Investigations on dynamics of phosphorus and nitrogen reduction in the UCT model system were conducted. After three-week adaptation period, population of activated sludge microor-

Dynamika biologicznej redukcji związków fosforu i azotu

ganisms indicated capacity for excessive phosphorus uptake. Source of carbon in synthetic nutrient medium was then sodium acetate (0,5 g/l), the concentration of PO_4^{3-} — 30 mg/l and the NH_4^+ concentration — 60 mg/l.

At the second stage of the studies the PO_4^3 concentration was 15 mg/l in inflow, with increased up to 40 mg/l under anaerobic conditions and decreased to 0.5 - 1.5 mg/l under aerobic conditions. Together with conversions of phosphorus compounds, nitrification processes occurred under aerobic conditions (12,10 - 23,15 mg/l) and denitrification in an anoxic reactor (0,1 - 9,5 mg/l). Intensity of the phosphorus and nitrogen conversions depended upon biomass loading, degree of recirculation and retention times in the reactors.

key words:

excessive phosphorus uptake, UCT model system, denitrification, nitrification, activated sludge.

Adres dla korespondencji:

Bernadeta Czerska, Wydział Inżynierii Środowiska, Politechnika Śląska, ul. Kuczewskiego 2, 44–100 Gliwice.