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Change of the order of solution and interaction of simple waves
for two independent variables

M. BURNAT (WARSZAWA)

THE SOLUTION u = u(x), x € D of the system (1.1) is of rank k if its set of values u(D) represents
a k-dimensional manifold. We consider in the paper the classes of solutions for which the change
of the rank Ak, when we pass from one region to the other, fulfills the inequality |dk] < 1.
In our consideration we use the method of simple wave interaction. As the examples of the
system (1.1) we use the systems of gas dynamics and plasticity theory.

Rozwiazanie ukladu (1.1) # = u(x), x € D jest rzedu k, jesli zbiér jego wartosci u(D) jest k,
wymiarowa rozmaitoscia. W pracy rozpatrzono przy uzyciu metody wspoldzialania fal prostych
klasy takich rozwiazan ukladu (1.1), dla ktérych zmiana rzedu Ak przy przejéciu z jednego
obszaru do drugiego spelnia nieréwno$¢ |4k| < 1. Rozpatrzono przyklady ukladow (1.1),
wystepujacych w dynamice gazoéw i teorii plastycznosci.

Pemenune cucremer (1.1) u = u(x), x € D nmeer paur k, eclim MHO)KeCTBO ero sHaueHuu u (D)
ABNAeTCA Kk-MepHBIM MHorooOpasmem. B paGoTe paccmaTpHBAIOTCA KIACCHI TAKHMX peIeHMH
cucremet (1.1), [UIA KOTOPBIX mepemeHa parra Ak mpH mepexone ¢ ofHOM o6JIACTH B APYIYIO
ygoeinerBopser HepaseHcTeo: |dk| < 1. Ilpumensercs MeTox B3amMOMEMCTBHA MPOCTHIX
BoyH. B KauecrBe npmmepoB cucremil (1.]1) paccMOTPHEBAIOTCA CHCTEMBI JAHHAMHKH [asoB
M TeOpHMH IUHACTHUHOCTH.

1. Introduction

IN THE CASE of the hyperbolic systems

aj't(ul’ uz)uii =0, s, i,j= 1,2,
the following fact is well known: if the solution is constant in a certain region, then in
an adjacent region the solution must be degenerated—that is, the Jacobian matrix rank
must satisfy the inequality

R = rldi(ll < 2.

In other words, the rank of solution u(x) may be varied only by one involving passing
from a region in which #(x) = const to a region where u(x) # const.

This phenomenon is of considerable interest from the physical point of view, since it
simplifies the construction of solutions in the regions adjoining the regions of u(x) = const
(cf. e.g. [1].

In connection with the above observation, a number of interesting questions arises
as regards the system of equations of the form

(1.1) af@, ..., 8)uh =0, s,j=s,..,1, i=1,.,n

concerning the problem as to under which conditions their solutions have analogous
properties (cf. [1], pp. 75-78). In what follows, the point space x = (x%, ..., x") will be
denoted by R", and the point space u = (&, ..., ')—by H'.
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Let us consider the region G = R" which is cut by the (n—1)-dimensional manifold
N,_, into two regions D, and D. It is assumed that

1.2) u(x) e C(G) ~ C'(D,) n C'(D)
and
(1.3) R,(x) = const = .

xeD,

The question arises as to what may be locally stated on R,(x) for x € D, provided
the solution u(x) satisfies the conditions (1.2) and (1.3). This concerns the upper and
lower bound estimates of R,(x) for x € D depending on the value of w.

The assumption (1.3) means that the set of values of the solution u(D,) = H'is locally
a o-dimensional manifold in H'. Thus our general question may be formulated as follows:
what can be stated concerning dimensions of manifolds M, M < H' satisfying, in the case
of solutions having the properties (1.2), (1.3), the condition

M cuD)c M.
Our considerations are aimed at the proof of existence of the manifolds M and M the
dimensions of which differ as little as possible from each other.

Let us now formulate the particular problem which is of fundamental importance
for our further considerations. The set of Egs. (1.1) or a class of solutions possesses
the w-property if for each solution satisfying the conditions (1.2), (1.3) and each
neighbourhood ¥V < N,_, there exists a certain neighbourhood I = ¥V such that two
manifolds M, M exist satisfying the condition

Mcu( DeM,

where Dy < D is a certain one-sided neighbourhood of I (Fig. 1), and
o—1<dimM, dimM<o+l.

In a slightly weaker approach, the w-property may be defined by the inéquality

wo—1< R,(x¥) €w+1, xeD,.
Hence, the w-property is satisfied if the jump of the rank does not exceed unity.

It is necessary to answer the question, when the system or the class of solutions
has the w-property? We do not know very much about the problems just stated except
the result obtained by LAX [2], who established the fact that a strongly hyperbolic system
(1.1) has the O-property for n = 2.

In order to clarify the formulation of w-properties, the following simple lemma proves
to be important:
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LEMMA 1. If for the mapping of class C', u = u(x), x € G, G —» H', G being the region
(ar closed region) in which the condition is satisfied,

R,(x):a const = d,

then for each (n— 1)-dimensional manifold L,_; c G such that the set u(L,_,) is a manifold
of fixed dimension we have

dimu(L,_,)=d or d-1.

From the assumption (1.3) it follows that in each neighbourhood V < N,_, there
exists such a neighbourhood I = V that u(J) represents a manifold of fixed dimension
in H'. If then it is additionally assumed that

(1.4) R,(x) = const.= d,
xD

so applying the Lemma 1 first to D, and next to D we obtain

dimu(l) = w,w—1,dimu(l) = d,d-1,
which immediately yields the only three. possibiliteies: d = w—1, d =w, d =w+1.
The additional assumption (1.4) proves that an arbitrary. mapping has the w-property.

From our considerations it follows that the essential features of w-properties are as
follows: nothing is assumed on the behaviour of the rank of soluti_on in D, and the construc-

tion of manifolds M, M defines to a high degree the set of values of the solution in D.
Our principal aim will be to determine which systems of the form of (1.1) or which classes
of solutions have the w-property. The case n = 2 will be considered in this paper, the
cases of arbitrary numbers of independent variables will be dealt with in a subsequent
paper.

In what follows, the method of interaction of simple waves is used, called also the
method of Riemann invariants (cf. [3-12]). The method is confined to the case of n = 2.

It is shown that the w-property expressed in the language of wave interaction occurs
when the solutions constitute “the interaction of independent simple waves”. The property
does not occur if the solutions may constitute “the interaction of simple waves which
are not independent”, which means that the interaction is not regular in a certain sense.

In particular, the result by Lax [2] is formulated in the language of wave interaction.
In the cases considered in which the w-property occurs, the manifolds M and M are uniquely
determined by the set u([).

All the functions, curves, surfaces and manifolds dealt with in the paper will be assumed
to be of the C! class.

2. Simple waves

The solution u# = u(x), xe D = R" will be called a k-fold wave if its hodograph
(set of values) is a locally k-dimensional manifold. This condition may be written by means
of the equation

R,(x) =, const = k.
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It is easily verified that a solution u = u(x), x € D represents a k-fold wave if, and only
if, it may be represented, in the neighbourhood of every point belonging to D, in the form:

W =P, bl @) F=1 wul,
where
rliflell =k, rllulll = k.

Two sets of characteristic vectors will be considered in connection with the system
(1.1): the characteristic vectors A(#) = (4;(4), ..., A,(#)) in the space R" determined by

@1 det(laf @, ..., u) 4| = 0
and the characteristic vectors y(u) = (¥'(), ..., ¥'(@)) in the space H' determined by
the condition
PG, ..., d)pl| < n.

Two characteristic vectors A and y are called to be knotted and denote it by 4 &y

if
aG@Wiy =0, s=1,..,1

At least one vector A corresponds to each vector y and vice versa. It proves convenient
to introduce the space

Al = {A: Ao}

Curves I" = H' of the class C'-tangent to the characteristic vectors y will be called char-
acteristic curves in the space H'. It is easily seen (cf. [3, 6, 12]) that each simple wave
may be written in the form

22) W=w@ =), j=1,..,1

Here u = f{s) is a parametric representation of the characteristic curve I,
Our considerations will be confined to such curves I" for which

dim A[£(s)] = const = d(I).
The following theorem holds true (cf. [3, 6, 12]):
THEOREM 1. If u = f{s) is the parametric representation of the characteristic curve I,
then the mapping u = u(x), xe D, D SHisa simple wave provided
u(x) = const = f{s,)
for x belonging to the (n—o)-dimensional planes n,_,, 1 < p < d(I") described by the

equations

M) W—x) =0, o=1,..,0.
Here
i) e ALFO))

In order to prove the theorem it is sufficient to observe that u(x) = f[u(x)] represents
a solution if, and only if, the condition

grad u(x) € A[f (u()]
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is satisfied. The condition is equivalent to
(2.3) af uli = a}"ff(u(x)),u,i =0.
From the Theorem 1 it follows that each characteristic curve I' is a set of values of an
infinite family of simple waves. It may be verified that, conversely, the set of values of
every simple wave is a characteristic curve I

Integral elements of the system (1.1) at u € H' will be called the matrices L] (1) satisfy-
ing the conditions

aji(“)L{(“)‘_"‘O: s=1,..,1

Solution u(x) will be called to be constructed at a point p of the integral element LJ(x)

if
uli (p) = L{(u(p).

The following simple theorem holds:

THEOREM 2. Simple waves are constructed of integral elements of the form
2.4) L =y,
where A = (Ay, ..., A,) is the characteristic vector in E", and y = (%', ..., ¥")-characteristic
vector in H', and y < A.

The proof follows immediately from the correspondence definition and from the
Eq. (2.3).

Obviously, a matrix of the form of (2.4) as also any linear combination of such matrices,
is also an integral element. The elements of the form (2.4) will be called simple integral
elements.

3. Interaction of simple waves for n = 2. Lax theorem

The notion of interaction of simple waves will be discussed first on the example of the
hyperbolic system (1.1) in which n = I = 2. Such a system has in the R?-plane two linearly

independent characteristic vectors i(u), A(u), and two linearly independent -charactistic
vectors '}(_u), ¥(u) in the space H?, and PN :1, 7 < A Every po int of H? is crossed by

& + P
exactly two characteristic curves I', I" which satisfy the condition d(I") = d(I') = 1, so
that the simple waves (Theorem 1) are constant along straight lines.

+ - : i
As the base of characteristic vectors 4, A let us introduce the co-base of characteristic
vectors ¢ , C, that is

(E’I)=0’ (E,i-)=0

+
By C, C denote the characteristic curves in R? tangent to the respective vectors E(u(x))
and ¢ (u(x)).
A solution u = u(x), x € D will be said to represent a regular interaction of simple
: + - - y
waves if in the nefghbourhood of each characteristic curve C, C = D a simple wave exists

which assumes at 6, C the values of the solution u(x).
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The geometric and physical sense of interaction is illustrated in Fig. 2. Characteristic

curves E‘, C are drawn through an arbitrary point P € D; they cut a region G(P) from the
region D. Simple waves occurring in the definition of interaction exist within the regions
(1}' and g (Fig. 2). The solution in G(P) may be considered as a result of interaction of simple
waves defined in lG and gr'

It is easily seen that the solution is a regular interaction of simple waves if, and only
if, it is a double wave. It may be demonstrated (cf. e.g. [8]) that for #» = / = 2 every solution
is with accuracy up to a set of zero measure either a simple or a double wave. Each solu-

t

6(P)

FiG. 2.

tion of the system (1.1), n = / = 2, is then, with accuracy up to a set of zero measure,
either a simple wave or a regular interaction of simple waves. This fact is equivalent to
the following theorem:

THEOREM 3. Mapping u = u(x) determined in the region D, D 5 H' is a solution of
the Eq. (1.1) if, and only if, for each of the characteristics C < D and € <= D the condition
3.1) u(C+) c f’, uC e
is satisfied.

The theorem makes possible simple construction of the set of values of the solution
of an arbitrary Cauchy problem, which simplifies its determination and qualitative analysis.
This fact is of particular importance for the supersonic gasdynamics [1].

Theorem 3 may, also in the language of integral elements, be formulated as follows:

THEOREM 3,. All integral elements of Egs. (1.1), n = | = 2, have the form

(.2 L = &, 4577,
where
i = + + -+ e a i
=043, F=06%9), A=, 4), A=, k)

and —oo <$E, o < +o00.
The solution is a simple wave if it is constructed of the integral elements for which

=0, #0, or x # 0, « = 0. The solution is an interaction of simple waves if x #0,
# 0.

/]l "]+
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Let us now consider the hyperbolic system (1.1) for n» = 2 and arbitrary / > 2. Then
we have to deal with a system of pairwise linearly independent characteristic vectors

1 k
4@, ..., Mw), k<l

An infinite number of vectors y(u) may appear in H' [8]—that is, with a single % may be

knotted a family of vectors depending on several parameters.

Three types of interaction of simple waves are introduced for the system (1.1), n = 2,
1> 2.

The solution u(x) is an interaction of simple waves if it is constructed of integral elements
having the form®

(3.3) 2 @ i,

a
where ¥ « 1, g—a finite number. The class of such solutions is denoted by F.
o

Let @,, r > 2, denote a r-dimensional manifold in H', which at every point of u € ®,
is tangent to r linearly independent characteristic vectors (), ..., y(u). It is additionally
1 r

1 k
assumed that there exists the system of pairwise linearly independent vectors A(4), ..., A(u)

such that y « 4. Hence each manifold ®, defines the following set of integral elements

«
r

(3.4) L) = Y a Y@ i), ue,.

a=1

A solution u(x) is said to be the interaction of independent simple waves if such a mani-
fold ®, exists that u(x) is constructed of the integral elements (3.4). The set of such
solutions corresponding to the manifold ®, prescribed is denoted by F(®,).

Two-dimensional manifolds ®, are termed the characteristic surfaces and denoted
by 9,.

A solution u(x) is a regular interaction of two simple waves if there exists a character-
istic surface $, such that u(x) € F($,).

Solutions of the class F($,) are called regular interactions of simple waves because
it may be seen that a theorem analogous to the Theorem 3 also holds in that case and,
consequently, the solutions u € F($,) are regular interactions in the sense illustrated
in Fig. 2.

Let us first discuss the properties: of solutions of the class F($,). First of all let us
observe that in the case of the Eqgs. (1.1) and n = / = 2, the only characteristic surface
is the plane H?, and that all solutions are of the class F(H?).

Let u(x), x € D be a solution of the Egs. (1.1), n = 2, I > 2, u(x) € F($,). The base
12
of the characteristic vectors A, 4 in the R%-space is complemented by the co-base ::, g,

1 2 21
(c, ;{) =0, (C, j’) =0.
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-
C, C < D will denote the characteristic curves tangent to ¢ (u(x)) and ¢ (u(x)), respec-
tively. The following theorem constitutes a simple generalization of Theorem 3:

THEOREM 4. Mappmg u=u(x), xeD, D it 9, belongs to F($,) if, and only if, the

characteristics C C < D satisfy the conditions:

2
u(C)CP, u(C)cP.
The proof follows from the observation that in the case of a matrix (3.4)

Lé=ﬁy, Lz=6y,
1 2

B, & being real numbers.

It may also be proved that the double waves of class F($,) are interactions of simple
waves in the sense illustrated by Fig. 2. The proof is the same as in the case of the Eqgs. (1),
n = | = 2. The following theorem may be formulated:

THEOREM 5. ‘Classes F($,) have the w-property for w = 0,1.

Proof. With w = 0 the set u() reduces to a point, #(I) = P. From Theorem 4 it
follows that

M=P, H=F(P);

12
I'(p) denoting one of the characteristics I', I' ¢ $, passing through P.
If o = 1, then u(x) is a simple wave in D,—that is,
R,(x) =const =1, xeD,.
From Lemma 1 it follows that we are dealing with two possibilities:

(1) u(l)is the point P,

@ u(l) = I'(P).

In the first case

M=P, M=I(P)
and in the-second case

M =I'(P), M= K5 P
thus the theorem is proved.

For each characteristic surface $, the family F($,) contains an infinite number of
solutions depending on two arbitrary functions of a single variable. This results from
the fact that, due to the Theorem 4, construction of the solutions u € F($,) reduces,
independently of /, to the solution of a hyperbolic system of first order with two dependent

and independent variables, [8]. Also derivative from the theorem is the fact that for a given
$, each non-characteristic Cauchy problem

W (x1(s), ¥*()) = ¢’(s), j=1,..,1

such that ¢(s) € H, has a solution in the class F($,). The set of values of that solution
is easily determined, simplifies the construction and enables analysis of the solution of the
class F(9,).
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A question arises as to how the surfaces $, should be constructed and how many

surfaces of that kind exist for a given hyperbolic system? If the system is strongly hyper-

1 !
bolic, then it has / pairwise linearly independent characteristic vectors 20, xel %, and

(3.5) rllafdll = 1-1, o =1,..,1

Thus for each ‘:1 there exists exactly one characteristic vector y € H* such that y < 5.,
‘the vectors y, .t.‘.,? being linearly independent. It follows thatﬂthe problem of :xistcn-
ce of the st:rface $, is reduced to the problem of integrability of the Pfaff forms
(3.6) m@ded =0, p=1,..,1-2

such that for certain ¢ # ¢”, 1<, 0" <, ;‘?”J = ;:ja;::’ = 0. Each pair o # ¢,

corresponds one system (3.6) and if it is integrable a family of characteristic surfaces
$,. For instance, in a strongly hyperbolic system
ua,+va,+ka(u,+v,) =0,
uvs+ou,+aa, 1k =0,
uvy+ov,+aa, 1/k =0,
describing a stationary, isentropic, plane supersonic gas flow, each of the systems (3.6)
reduces to a single form, and only one of them proves to be integrable. Consequently,
in the space H? of points (a, v, v) the characteristic surfaces $4 are given by-the equa-
tion
a? = A—k(u*+v?), A = const (Bernoulli’s law).
Classes F($%) contain the potential supersonic flows.
If the system is not strongly hyperbolic, characteristic vectors A will appear which
correspond to the characteristic vector families » depending on o> 1 parameters. The

more multi-parameter vector families y a system has, the more surfaces $, exist.
A limiting case is a offered by the “simple hyperbolic systems” which possess only

1 2
two linearly independent vectors .g., % (cf. [8]), and "hence the vector families y depend

on maximal numbers of parameters. In such systems (cf. [8]), exactly one surface $,
passes through every non-characteristic curve K < H', and infinitely many such surfaces
pass through every characteristic curve I" = H'. Moreover, to each solution u(x) may be
described such a surface $, that u(x) € F(9,).

As an example of a “simple hyperbolic system” let us consider the case of flow of a per-
fectly plastic material

0x — k(9. cos 20 +B,sin2¥) = 0,
a,—k(¥,sin2d —dycos29) = 0,
(uy+v,)8in 283 + (4, —v,)cos 28 = 0,

U+, = 0.
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The observation that classes F($,) exhaust all the solutions of the system considerably
simplifies the solutions of the boundary-value problems of plasticity [8].

Let us now pass to the discussion of the Lax theorem and the problem of interaction
of simple waves which are not necessarily regular.

Theorems 4 and 3 do not apply, in general, to the classes F and F(®,), r > 2. Let us
prove the following theorem:

THEOREM 6 (cf. [10]). The system (1.1), n = 2, I = 2 is strongly hyperbolic in the region
T < H' if, and only if, all its solutions are of the class F(®,), where ®, = T.

If the system is hyperbolic, then all its solutions are of the class F.

Proof. The system (1.1), n = 2,1> 2 is strongly hyperbolic if, and only if, the
following conditions are satisfied:

1 !
(1) There exist / pairwise linearly independent characteristic vectors A(u), ..., A(u),
ueT, and
(2) Vectors y(u), ..., y(u), ue T such that y < A are linearly independent.
i I

It follows that if the system is strongly hyperbolic in T, then T represents the mani-
fold ®,.

Denote by M a 2/-dimensional space of matrices M{, j=1,...,/; i=1,2. Let
J(u) = M denote the subspace of integral elements of the system. Then,

dimJ(u) = I.

Let Q,(u) = J(u) denote the set of integral elements of the form (3.4) for & = T. From
the linear independence of vectors y, ..., , it follows that
1 i

dimQ,(w) =/,

and hence Q, = J, which concludes the first part of the proof. The second part follows
in a similar way from the fact that for an arbitrary hyperbolic system (1.1),n = 2,/ > 2,
the characteristic vectors stretch H' in spite of T not being, in general, the manifold &,.
Theorem 6 yields the conclusion that the Lax theorem may be formulated as follows:
THEOREM 7. For arbitrary system (1.1) the classes F(®,), | < r, have the o-property.
The proof is the simple consequence of the fact that for each &, the construction
of u(x) e F(®,) reduces to the solution of some strongly hyperbolic system with r un-
known functions. If the manifold ®, is given:

u= U@, .., @
in the way that Ui = p(u' <> A(u), then each solution u € F(®,) is of the form:
i i
u(x) = U(:ul(x)’ ey :“l(x))i
where grad u(x) = o’ (x) A*(u(x)). Indeed, only in that case we have

uli = Ulspsi = Za’;ﬂlf.

s=ml ¥ 5
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Hence for the construction of the solution u € F(®,), we have to solve the following
strongly hyperbolic system

(c(w),gradp®) =0, s=1,..,r,

2 1
where (tlt(p), Ap) = (g(,u), A(@)) = 0, what ends the proof of the Theorem.
It is easily observed that the theorem does not hold for the class F. To this end, let
us consider a simple system
u;l'fﬂlu;::-uz x1 = 0,
(37) u::—uzugz"‘uluix = 0,
u:; = 0.
The system is strongly hyperbolic within the regions T, = H? defined by the condition
(u')*+ (@?)? > e. All T, are the ®;-manifolds. The system is hyperbolic along the line

u' =0, u* = 0 but ceases to be strongly hyperbolic. It follows from the observation
of the system (3.7) to have the following characteristic vectors:

y=(1,0,0 1= (-u,1),
1 1

i

= (0,1,0)H§= @ 1),

i

= (HZ,HI,I)H.;. = (1, 0).

Thus all the solutidns are of the class F. An example of solution of the system (3.7) such
that

(3.8) u(x)e (T)nF, &>0,
u(x) not being, however, the interaction of independent simple waves, is the solution
3.9 w=pux',x?), w=pux,Lx?), =0
1 2
which is determined in the neighbourhood of the segment (1/2, 3/2) of the x!-axis as
follows:
p(x', x?) = const = « along the straight lines x'a—x? = 0,
1
u(x', x¥) = const = « along the straight lines (x!—=2)a+x? = 0.
2

The solution is constructed of the integral elements

1 2
L{ = _3"1‘1'1+3"“"i!
where

¥ (1,0,0) & i(x) = (-—-;.:(x), 1) = agrad,tlz,

2
y= 0,1,0) & A(x) = (é;(x), 1) = bgrad,g.
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1 2
The vectors A(x', x?), A(x’,x?) are linearly independent for x* % 0, and linearly
dependent for x? = 0. It instantaneously follows that the solution (3.9) satisfies the condi-
tion (3.8) but is not an interaction of independent simple waves.
It may also be verified that the solution of the Egs, (3.7) given by
pxt, x?),x2 20 px', x?),x2 20
1 2

, W= ,
0 x* <0 0, x2 <0

satisfies the conditions (1.2), (1.3) for @ = 0 but does not possess the w-property.

S =0,

References

1. R. CoUrANnT, K. O. FRIEDRICHS, Supersonic flow and shock waves, New York 1948.

2. P.D. Lax, Hyperbolic systems of conservation laws. 1I. Comm. Pure and Applied Math., 10, 1957.

3. M. BurNAT, Theory of simple waves for non-linear systems of partial differential equations and applica-
tions to gasdynamic, Arch, Mech, Stos., 18, 4, 1966.

4, M. BURNAT, The method of solution of hyperbolic systems by means of combining simple waves, Fluid
Dynamics Transactions, 3, 1967.

5. M. BurnaT, Hyperbolic double waves, Bull. Acad. Polon. Sci., Série Sci. Techn., 16, 10, 1968.

6. M. BURNAT, The method of characteristics and Riemann invariants for multidimensional hyperbolic
systems [in Russian], Math. Sibirian Journal, 11, 2, 1970.

7. M. BURNAT, The method of Riemann invariants for multidimensional nonelliptic systems, Bull. Acad.
Polon. Sci., Série Sci. Techn., 17, 11-12, 1969.

8. M. BURNAT, The method of Riemann invariants and its applications to the theory of plasticity, Arch.
Mech, Stos., Part I, 23, 6, 1971. Part II, 24, 6, 1972. '

9. M. BURNAT, Geometrical methods in fluid mechanics, Fluid Dynamics Transactions, 6, Fart I, 1971.

10. Z. PERADZYNSKI, On algebraic aspects of the generalised Riemann invariants method, Bull. Acad. Polon.
Sci., Série Sci. Techn., 18, 4, 1970.

11. Z. PERADZYNSKI, On certain classes of exact solutions for gasdynamics equations, Arch, Mech. Stos.,
24, 2, 1972,

12. Z. PErADZYNSKI, Non-linear plane k-waves and Riemann invariants, Bull. Acad. Polon. Sci., Série Sci.
Techn., 19, 9, 1971.

UNIVERSITY OF WARSAW.

Received November 23, 1972,





