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Change of the order of solution and interaction of simple waves 
for two independent variables 

M. BURNAT (WARSZAWA) 

THE SOLUTION u = u(x), x E D of the system (1.1) is of rank k i,f its set of values u(D) represents 
a k-dimensional manifold. We consider in the paper the classes .of solutions for which the change 
of the rank Llk, when we pass from one region to the other, fulfills the inequaJity ·!Likl ~ 1. 
In our consideration we use the method of simple wave interaction. As the . examples of the 
system (1.1) we use the systems of gas dynamics and plasticity theory. 

Rozwictzanie uldadu (1.1) u = u(x), x E D jest ~du k, je81i zbi6r jego wartosci u(D) jest k, 
wymiarow<l rozmaitoscict. W pracy rozpatrzono przy uzyciu metody wsp6ldzialania fal prostych 
klasy takich rozwictzan ukladu (1.1), dla kt6rych zmiana rz~u Llk przy przejsciu z jednego 
obszaru do drugiego spelnia nier6wnosc !Likl ~ l. Rozpatrzono przyldady uklad6w (1.1), 
wystccpujctcych w dynamice gaz6w i teorii plastyczno8ci. 

PemeHu:e cu:creMbi (1.1) u = u(x), x E D HMee1 paur k, eCJIH MHomeCTBo ero SHalleHHH u(D) 
HBnHeTCH k-MepHbiM MHoroo6paau:eM. B pa6oTe pacCMaTpHBaiOTCH KJiacCbl Tai<HX pememdl 
CHCTeMbl (1.1), ,rviH KOO:OpbiX nepeMeHa paHra Llk npH nepexo,l:{e C O,l:{IIOH OOJiaCTH B ~pyryro 
Y,DOBJieTBOpHeT HepaBeHCTBO: jLJkj < 1. llpHMeHHeTCH MeTO,l:{ B3aBMO,l:{eHCTBHJI DpOCTbiX 
BOJIH. B l<alleCTBe npHMepoB CHCTeMbl (1.1) paCCMOTpBBaroTCH CHCTeMbl .D;BlUlMHKH ra30B 
H TeOpHH IJJiaCI'HliHOCTH. 

1. Introduction 

IN THE CASE of the hyperbolic systems 

aji(ul, u2)u~1 = 0, s, i,j = 1, 2, 

the following fact is well known: if the solution is constant in a certain region, then in 
an adjacent region the solution must be degenerated-that is, the Jacobian matrix rank 
must satisfy the inequality 

R11(X) = r llz4,(x)ll < 2. 
In other words, the rank of solution u(x) may be :varied only by one involving passing 
from a region in which u(x) = const to a region where u(x) ::/: const. 

This phenomenon is of considerable interest from the physical point of view, since it 
simplifies the construction of solutions in the regions adjoining the regions of u(x) = const 
(cf. e.g. [1D. 

In connection with the above observation, a number of interesting questions arises 
as regards the system of equations of the form 

(11) si( 1 ') i - 0 · - / · 1 . · a1 u , ... , u U:c~ .- , s ,J_ - s, ... , , z = , ... , n 
concerning the problem as to under which conditions their solutions have analogous 
properties (cf. [1], pp. 75-78). In what follows, the point space x = (x1

, ••• , x") will be 
denoted by R", and the point space u = (u1

, ••• , u'}-by H1
• 
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546 M. BURNAT 

Let us consider the region G c If' which is cut by the (n-1)-dimensionaJ manifold 
Nn_ 1 into two regions D. and D. It is assumed that 

(1.2) 

and 

(1.3) R.,(x) = const = w. 
.xeDw 

The question arises as to what may be locally stated on Rv{x) for x e D, provided 
the solution u(x) satisfies the conditions (1.2) and (1.3). This concerns the upper and 
lower bound estimates of R.,(x) for x e D depending on the value of w. 

The assumption (1.3) means that the set of values of the solution u(D.) c H 1 is locally 
a ro-dimensional manifold in H 1

• Thus our general question may be formulated as follows: 
what can be stated concerning dimensions of manifolds M, M c: ii' satisfying, in the case 
of solutions having the properties (1.2), (1.3), the condition 

M c u(D)c: M. 

Our considerations are aimed at the proof of existence of the manifolds M and M the 
dimensions of which differ as little as possible f~om each other. 

Let us now formulate the particular problem which is of fundamental importance 
for our further considerations; The set of Eqs. (1.1) or a class of solutions possesses 
the w-property if for each solution satisfying the conditions (1.2), (1.3) and each 
neighbourhood V c N._ 1 there exists a certain neighbourhood I c V such that two 
manifolds M, M exist satisfying the condition 

M s;;; u( I) s;;; M, 

F'Io. 1. 

where D I c D is a i:ertain one-sided neighbourhood of I (Fig. 1 ), .and 

w -l ~ dim M, dim M ~ eo+ 1. 

In a slightly weaker approach, the eo-property may be defined by the inequality 

eo-1 ~ R.,(x) ~ w+1, x e D 1 • 

Hence, the eo-property is satisfied if the jump of the rank does not exceed unity. 
It is necessary to answer the question, when the system or the class of solutions 

has thew-property? We do not know very much about the problems just stated except 
the result obtained by LA_X [2],_ who established the fact that a strongly hyperbolic system 
(1.1) has the 0-property for n = 2. 

In order to clarify the formulation of eo-properties, the following simple lemma proves 
to be important: 
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CIHANGE OF THE ORDER OF SOLUTION AND INTERACilON OF $IMPLE WAVES 547 

LEMMA 1. If for the mapping of class C1
, u = u(x), x e G, G ~ H', G being the region 

(mr closed region) in which the condition is satisfied, 

Ru(x) == const = d, 
xeG 

thten for each (n -1 )-dimensional manifold Ln- 1 c G such that the set u(Ln- 1) is a manifold 
of fixed dimension we have 

dimu(Ln_ 1)=d or d-1. 

From the assumption (1.3) it follows tb.at in each neighbourhood V s;; Nn-t there 
ex.ists such a neighbourhood I c V that u(I) represents a manifold of f.ixed dimension 
in H'. If then it is additionally assumed that 

(1..4) Ru(x) =-_ const ·= d, 
xeD 

so applying the Lemma 1 first to Dw and next to D we obtain 

dimu(J) =eo, eo-1, dimu(J) = d, d-1, 

which immediately yields the only three. possibiliteies: d = w-1, d = eo, d = eo+ 1. 
The additional assumption (1.4) proves that an arbitrary mapping has the eo-property. 

From our considerations it follows that the essential features of w-properties are as 
follows: nothing is assumed on the behaviour of the rank of solution in D; and the construc-

tion of manifolds M, M defines to a high degree the set of values of the solution in D. 
Our principal aim will be to c;letermine which systems ?f the form of (1.1) or which classes 
of solutions have the eo-property. The case n = 2 will be considered in this paper, the 
cases of arbitrary numbers of independent variables will be dealt with in a subsequent 
paper. 

In what follows; the method of interaction of simple waves is used, called also the 
method of Riemann invariants (cf. [3-12]). The method is confined to the case of n = 2. 

It is shown that the eo-property expressed in the language of wave. interaction occurs 
when the solutions constitute "the interaction of independent simple waves". The property 
does not occur if the solutions may constitute "the interaction of simple waves which 
are not independent", which means that the interaction is not regular in a certain sense. 

In particular, the result by LAX [2] is formula~ed in the language of wave interaction. 

In the cases consideredin which the eo-property occurs, the manifolds M and M are uniquely 
determined by the set u(I). 

All the functions, curves, surfaces and manifolds dealt with in the paper will be assumed 
to be of the C1 class. 

2. Simple waves 

The solution u = u(x), x e D c Rn will be caUed a k-fold wave if its hodograph 
(set of values) is a locally k-dimensional manifold. This condition may be written by means 
of the equation 

Ru(x) = const = .k. 
xeD 
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548 M. BURNAT 

It is easily verified that a solution u == u(x), x E D represents a k-fold wave if, and only 
if, it may be represented, in the neighbourhood of every point belonging to D, in the form: 

ul=fl(l-'1(x), ... ,,i(x)), j=l ... ,/, 

where 

rltfta 11 = k, r II,U~i 11 = k. 

Two sets of characteristic vectors will be considered in connection with the system 
(1.1): the characteristic vectors A.(u) = (A.1 (u), ... , A.,.(u)) in the spaee R" determined by 

(2.1) detllaji(u1, • •. , u1)A.ill = 0 

and the characteristic vectors y(u) = (y1{u), ... , y1(u)) in the space H 1 determined by 
the condition 

rllaj'(u1
, ••• , u1)y111 < n. 

Two characteristic vectors A. and y are called to be knotted and denote it by A. +-+ y 
if 

a'/(u)A.1yi = 0, s = 1, ... ,I. 

At least one vector A. corresponds to each vector y and vice versa. It proves convenient 
to introduce the space 

A[y] = {A.: A. +-+y }. 

Curves r c H 1 of the class C1 ·tangent to the characteristic vectors y will be called char­
acteristic curves in the space H1• It is easily seen (cf. [3, 6, 12]) that each simple wave 
may be written in the form 

(2.2) ul = ul(x) = fl (,u(x)), j = 1, ... , I. 

Here u = f(s) is a parametric representation of the characteristic curve r. 
Our considerations will be confined to such curves r for which 

dimA[j(s)] = const = d(I). 
8 

The following theorem holds true (cf. [3, 6, 12]): 
THEOREM 1. If u ~ f(s) is the parametric representation of the characteristic curve F, 

then the mapping u = u(x), x E D, D .! H 1 is a simple wave provided 

u(x) = const = f(s 0) 

for X belonging to the (n-e)-dimensiona/ planes 1tn-(p 1 ~ (! ~ d(F) described by the 
equations 

a=1, ... ,(!. 

Here 
a • 
A.(s) E Alf(*')]. 

In order to prove the theorem it is sufficient to observe that u(x) = f[,u(x)] represents 
a solution if, and only if, the condition 

grad,u(x) eA [i(l-'(x))] 
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ClfANGE OF THE ORDER OF SOLUTION AND INTERACTION OF SIMPLE WAVES 549 

is satisfied. The condition is equivalent to 

(2.3) aji U~i = aji/l(u(x))P,xi = 0. 

From the Theorem 1 it follows that each characteristic curve r is a set of values of an 
infinite family of simple waves. It may be verified that, conversely, the set of values of 
every simple wave is a characteristic curve r. 

Integral elements of the system (1.1) at u E H 1 will be called the matrices Lf(u) satisfy­
ing the conditions 

aji(u)L{(u) = 0, s = 1, ... ,1. 

Solution u(x) will be called to be constr"Qcted at a point p of the integral element L{(u) 
if 

U~i (p) = L{ ( u(p) . 

The following simple theorem holds: 
THEOREM 2. Simple waves are constructed of integral elements of the form 

(2.4) 

where A. = (A.1 , ... , An) is the characteristic vector in En, and y = (y1
, .•. , y1)-characteristic 

vector in H1
, and y ~ A. 

The proof follows immediately from the correspondence definition and from the 
Eq. (2.3). 

Obviously, a matrix of the form of (2.4) as also any linear combination of such matrices, 
is also an integral element. The elements of the form (2.4) will be called simple integral 
elements. 

3. Interaction of simple waves for n = 2. Lax theorem 

The notion of interaction of simple waves will be discussed first on the example of the 
hyperbolic system (1.1) in which n = l = 2. Such a system has in the R2-plane two linearly 

+ -
independent characteristic vectors J.(u), A(u), and two linearly independent .charactistic 

·vectors y(u), Y(u) in the space H 2 , and y ~ 1, y ~ 1. Every point of H 2 is crossed by 
. + - + -

exactly two characteristic curves r, r which satisfy the condition d(I) = d(I) = 1, so 
that the simple waves (Theorem 1) are constant along straight lines. 

+ 
As the base of characteristic vectors A, X let us introduce the eo-base of characteristic 

vectors . t, c, that is 
+ - + 

(c, A.)= 0, (C, A.)= 0. 

By C, C denote the characteristic curves in R2 tangent to the respective vectors ~ ( u(x)) 
and c(u(x)). 

A solution u = u(x), x E D will be said to represent a regular interaction of simple 
+ -

waves if in the neighbourhood of each characteristic curve C, C c D a simple wave exists 
+ -

which assumes at C, C the values of the solution u(x). 
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The geometric and physical sense of interaction is illustrated in Fig. 2. Characteristic 
+ -

curves C, C are drawn through · an arbitrary point P e D; they cut a region G(P) from the 
region D. Simple waves occurring in the definition of interaction exist within the regions 
G and G (Fig. 2). The solution in G(P) may be considere"d as a result of interaction of simple 
1 2 

waves defined in G and G. 
1 2 

It is easily seen that the . solution is a regular interaction of simple waves if, and only 
if, it is a double wave. It may be demonstrated (cf. e.g. [8D that for n = I= 2 every solution 
is with accuracy up to a set of zero measure either a simple or a double wave. Each solu-

FIG. 2. 

tion of the system (1.1), n = I= 2, is then, with accuracy up to a set of zero measure, 
either a simple wave or a regular interaction of simple waves. This fact is equivalent to 
the following theorem: 

THEOREM 3. Mapping u = u(x) determined in the region D, D ~ H' is a solution of 
+ -

the Eq. (1.1) if, and only if, for each of the characteristics Cc D and Cc D the condition 

(3.1) 
+ + 

u(C) c r, u(C) c f' 
is satisfied. 

The theorem makes possible simple construction of the set of values of the solution 
of an arbitrary Ca1,1chy problem, which simplifies its determination and qualitative analysis. 
This fact is of .particular importance for the supersonic gasdynamics [1]. 

Theorem 3 may, also in the language of integral elements, be formulated as follows: 
THEOREM 311 • All integral elements of Eqs. (1.1), n = I=· 2, have the form 

(3.2) 

where 

d + -an -oo <oc, oc < +oo. 
The solution is a simple wave if it is constructed of the integral elements for which 

~ = 0, ~ #: 0, or ~ #: 0, oc = 0. The solution is an interaction of simple waves if ~ #: 0, 
(i #: 0. 
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Let us now consider the hyperbolic system (1.1) for n = 2 and arbitrary I > 2. Then 
we have to deal with a system of pairwise linearly independent characteristic vectors 

1 k 

A(u), ... , A(u), k ~ I. 
0 0 

An infinite number of vectors y(u) may appear in H1 [8]-that is, with a single i. may be 
0 

knotted a family of vectors depending on several parameters. 
Three types of interaction of sill)ple waves are introduced for the ~ystem (1.1), n = 2, 

I> 2. 
The solution u(x) is an interaction of simple waves if it is constructed of integral elements 

havi~g the form': 

(3.3) 

(J 

where y +-+ A, q-a finite number. The class of such solutions is denoted by F. 
(J 

Let 03,., r ~ 2, denote a r-dimensional manifold in H 1
, which · at every point of u e 03, 

is tangent to r linearly independent characteristic vectors y(u), ... , y(u). It is additionally 
1 , 

I k 
assumed that there exists the system of pairwise linearly independent vectors A(u), ... , A(u) 

a 

such that y +-+ A. Hence each manifold 03,. defines the following set of integral elements 
a 

r 

(3.4) Lf(u) = L lluYi(u)~i(u), u E G3,. 
a=1 a 

A solution u(x) is said to be the interaction of independent simple waves if such a mani­
fold 03,. exists that u(x) is constructed of the integral elements (3.4). The set of such 
solutions corresponding to the manifold 03, prescribed is denoted by F{03,.). 

Two-dimensional manifolds 03 2 are termed the characteristic surfaces and denoted 
by nz. 

A solution u(x) is a regular interaction of two simple waves if there exists a character­
istic surface n2 such that u(x) e F(n2). 

Solutions of the class F(n2) are called regular interactions of simple waves because 
it may be seen that a theorem analogous to the Theorem 3 also holds in that case and, 
consequently, the solutions u e F(n2) are regular interactions in the sense illustrated 
in Fig. 2. 

Let us first discuss the properties· of solutions of the class F(n2). First of all let us 
observe that in the case of the Eqs. (1.1) and n = I = 2, the only characteristic surface 
is the P.lane H 2

, and that all solutions are of the class F(H2
). 

Let u(x), x e D be a solution of the Eqs. (1.1), n = 2, I> 2, u(x) e F{n2). The base 
1 2 1 2 

of the characteristic vectors A, A in the R2-space is complemented by the eo-base c, c, 

1 2 2 1 

(c,A)=O, (c,A)=O. 
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I 2 1 2 
C, Cc D will denote the characteristic curves tangent _to c(u(x)) and c(u(x)), respec• 

tively. The following theorem constitutes a simple generalization of Theorem 3 : 
. u 

THEoREM 4. Mapping u = u(x), x e D, D -. S) 2 belongs to F(S52) if, and only if, the 
1 2 

characteristics C, C c D satisfy the conditions: 

1 1 2 2 

u(C) c r, u(C) cr. 
The proof follows from the observation that in the case of a matrix (3.4) 

1 2 
Le = {Jy, Le = ~'Y, 

I 2 

{J, ~ being real numbers. 
It may also be proved that the double waves of class F(,S;2) are interactions of simple 

waves in the sense illustrated by Fig. 2. The proof is the same as in the case of the Eqs. (1), 
n = I = 2. The following theorem may be formulated: 

THEOREM 5. ·Classes F(,S;2 ) have thew-property for w = 0,1. 
P r o o f. With w = 0 the set u(l) reduces to a point, u(J) = P. From Theorem 4 it 

follows that 

M=P, M=F(P), 

1 2 
F(p) denoting one of the characteristics r, r c S)2 passing through P. 

If w = 1, then u(x) is a simple wave in Dco-that is, 

~,(x) = const = 1, x e Dco. 

From Lemma 1 it follows that we are dealing with two possibilities: 
(1) u(l) is the point P, 
(2) u(J) = F(P). 
In the first case 

M=P, M=F(P) 

and in the-second case 

thus the theorem is proved. 
For each characteristic surface S)2 the f~mily F(,S;2) contains an infinite number of 

solutions depending on two arbitrary functions of a single variable. This results from 
the fact that, due to the Theorem 4, construction of the solutions u G F(,S;2) reduces, 
independently of I, to the solution of a hyperbolic system of first order with two dependent 
and independent variables, [8]. Also derivative from the theorem is the fact that for a given 
S) 2 each non-characteristic Cauchy problem 

ui (x1(s), x2(s)) = q}(s), j = 1, ... , I 

such that q;(s) e S)2 has a solution in the class F(,S; 2). The set of values of that solution 
is easily determined, simplifies the construction and enables analysis of th~ solution of the 
class F(,S;2). 
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A question arises as to how the surfaces S':> 2 should be constructed and how many 
surfaces of that kind exist for a given hyperbolic system? If the system is strongly hyper-

1 l 
bolic, then it has I pairwise linearly independent characteristie vectors A, ... , A, and 

0 0 

a 

(3.5) r llaji Ad I = 1- 1 , a = 1 , .. . , I. 
0 

a a 

Thus for each A there exists exactly one characteristic vector ye H 1 such that y ~A, 
0 a a 

the vectors y, ... , y being linearly independent. It follows that the problem of existen-
t l 

ce of the surface S':> 2 is reduced to the problem of integrability of the Pfaff forms 

(3.6) 
p. 
n1(u)dui = 0, p, = 1, ... , /-2 

h th t c t . ' -J,. " 1 ~ ' " ~ l 11 
. J p. i - 0 E h . sue a 10r cer am a r u , '=::::: a, a '=::::: , n1y = n1y - . ac pair u' =F a', 
a' a" 

corresponds one system (3.6) and if it is integrable a family of characteristic surfaces 
S) 2 • For instance, in a strongly hyperbolic system 

Uax+Vay+ka(ux+Vy) = 0, 

uvx+vuy+aax 1/k = 0, 

UVx+VVy+aay 1/k = 0, 

describing a stationary, isentropic, plane supersonic gas flow, each of the systems (3.6) 
reduces to a single form, and only one of them proves to be integrable. Consequently, 

· in the space H 3 of points (a, u, v) the characteristic surfaces S:>1 are given by -the equa­
tion 

a2 = A-k(u2+v2), A = const (Bemoulli's law). 

Classes F(S:>1) contain the potential supersonic flows. 
If the system is not strongly hyperbolic, ~haracteristic vectors A will appear which 

correspond to the characteristic vector families y depending on ex .> 1 parameters. The 
more multi-parameter vector families y a system has, the more surfaces S':> 2 exist. 

A limiting case is a offered by the "simple hyperbolic systems'' which possess only 
1 2 

two linearly independent vectors A, A (cf. [8]), and ·hence the vector families y depend 
0 0 

on maximal n·umbers of parameters. In such systems (cf. [8]), exactly one surface S:>2 
passes through every non-characteristic curve K c H1

, and infinitely many such surfaces 
pass through every characteristic curve F c H 1• Moreover, to each solution u(x) may be 
described such a surface S':> 2 that u(x) E F(SJ2). 

As an example of a "simple hyperbolic system'' let us consider the case of flow of a per­
fectly plastic material 

Ux-k(ffxcos21J+ffysin21J) = 0, 

Uy-k(ffxsin2ff-ffycos2ff) = 0, 

(uy+vx)sin2ff+ (ux-Vy)cos2ff = 0, 

Ux+Vy = 0. 
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The observation that classes F(Y.J 2) exhaust all the solutions of the system considerably 
· simplifies the solutions of the boundary-value problems of plasticity [8]. 

Let us now pass to the discussion of the Lax theorem and the problem of interaction 
of simple waves which are not necessarily regular. 

Theorems 4 and 3 do not apply, in general, to the classes F and F(~,), r > 2~ Let ·us 
prove the following theorem: 

THEOREM 6 (cf. [10]). The system (1.1), n = 2, I~ 2 is strongly hyperbolicin the region 
T c H 1 if, and only if, all its solutions are of the class F(~1), where ~~ = T. 

If the system is hyperbolic, then all its solutions are of the class F. 
Proof. The system (1.1), n = 2, I~ 2 is strongly hyperbolic if, and only if, the 

following conditions are satisfied: 
I I 

(1) There exist I pairwise linearly independent characteristic vectors .A.(u), ... , .A.(u), 
u eT, and 

0 

(2) Vectors y(u), ... , y(u), u eT such that y +-+ A. are linearly independent. 
I I o 

It follgws that if the system is strongly hyperbolic in T, then T represents the mani-
fold~,. 

Denote by 9Jl a 21-dimensional space of matrices M{, j = 1, ... ,_1; i = 1, 2. Let 
J(u) c 9Jl denote the subspace of integral elements of the system. Then, 

dimJ(u) =I. 

Let Q 1 (u) c J(u) denote the set of integral elements of the form (3.4) for ~~ = T. From 
the linear independence of ve~tors y, ... , y, it follows that 

I . I 

dimQ1 (u) =I, 

and hence Q 1 = J, which concludes the first part of the proof. The second part follows 
in a similar way from the fact that for an arbitrary hyperbolic system (1.1 ), n = 2, I ~ 2, 
the characteristic vectors stretch H 1 in spite of T not being, in general, the manifold ~,. 

Theorem 6 yields the conclusion that the Lax theorem may be formulated as follows: 
THEOREM 7. For arbitrary system (1.1) the classes F(~,), I~ r, have the o-property. 
The proof is the simple consequence of the fact that for each ~ .. the construction 

of u(x) e F(~,.) reduces to the solution of some strongly hyperbolic system with · r un­
known functions. If the manifold ~ .. is given: 

u = U(p!, ... , fl') 

in the way that Uk; = y(fl\ +-+ .A.(ft), then each solution u e F(~,.) is of the form: 
j j 

u(x) = U(fl1 (x), .. . , fl'(x)), 

where gradfl3 (x) = cx5 (x) .A.5 (fl(x)). Indeed, only in that case we have 
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Hence for the construction of the solution u e F(<r>r), we have to solve the following 
strongly hyperbolic system 

(c(,u), grad,us) = 0, s = 1, ... , r, 
s 

2 1 
where (i(,u), A.(,u)) = (~(,u), A.(,u)) = 0, what ends the proof of the Theorem. 

It is easily observed that the theorem does not hold for the class F. To this end, let 
us consider a simple system 

u!, +u1u!1-u2u!. = 0, 

(3.7) u;1-u2u:1-u1 u~~ = 0, 

U~3 = 0. 
The system is strongly hyperbolic within the regions T, c H 3 defined by the condition 
(u1

)
2 + (u2

)
2 > e. All T, are the <rJ 3-manifolds. The system is hyperbolic along the line 

u1 = 0, u2 = 0 but ceases to be strongly hyperbolic. It follows from the observation 
of the system (3. 7) to have the following characteristic vectors: 

y = (1, 0, 0) ~ A. = (-ut, 1), 
1 1 

y = (0, 1,0) ~). = (u2,l), 
2 2 

y = (u2
, u1

, 1) ~ ). = (1, 0). 
3 3 

Thus all the solutidns are of the class F. An_ example of solution of the system (3. 7) such 
that 

(3.8) u(x) e F(T,)n F, e > 0, 

u(x) not being, however, the interaction of independent simple waves, is the solution 

(3.9) 

which is determined in the neighbourhood of the segment (1/2, 3/2) of the x1-axis as 
follows: 

p.(xl, x2
) = const = <X along the straight lines x 1<X-x2 = 0, 

1 

,u(x1
, x2

) = const = <X along the straight lines (x1 
- 2) <X+ x 2 = 0. 

2 

The solution is constructed of the integral elements 

where 
1 

y = (1, 0, 0) .-.. A.(x) = (-p.(x), 1) = agradp., 
1 1 1 

2 

y = (0, 1, 0) ~ .A.(x) = (,u(x), 1) = bgradp.. 
2 2 2 
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l 2 
The vectors .A.(x1, x 2

), A.(x1
, x 2

) are linearly independent for x 2 :1= 0, and linearly 
dependent for x2 = 0. It instantaneously follows that the solution (3.9) satisfies the condi­
tion (3.8) but- is not an interaction of independent simple waves. 

It may also be verified that the solution of the Eqs, (3.7) given by 

l
t-t(xl, x 2

), x 2 ~ 0. lt-t(x1
, x 2

), x 2 ~ 0 
ut = 1 , u2 = 2 

0 x 2 < 0 0, x2 < 0' 

satisfies the conditions (1.2), (1.3) for w = 0 but does not possess the w-property. 

References 

1. R. CoURANT, K. 0. FRIEDRICHS, Supersonic .flow and shock waves, New York 1948. 
2. P. D. LAX, Hyperbolic systems of conservation laws. IT. Comm. Pure and Applied Math'., 10, 1957. 
3. M. BuRNAT, Theory of simple waves for non-linear systems of partial differential equations and applica­

tions to gasdynamic, Arch. Mech. Stos., 18, 4, 1966. 
4. M. BURNAT, The method of solution of hyperbolic systems by means o/ combining simple waves, Fluid 

Dynamics Transactions, 3, 1967. 
5. M. BURNAT, Hyperbolic double waves, Bull. Acad. ·Polon. Sci., Serie Sci. Techn., 16, 10, 1968. 
6. M. BURNAT, The method of characteristics and Riemann invariants for multidimensional hyperbolic 

sy~te"JS [in Russian], · Math. Sibirian Journal, 11, 2, 1970. 
7. M. BURNAT, The method of Riemann invariants for multidimensional nonelliptic systems, Bull. Acad. 

Polon. Sci., Serie Sci. Techn., 17, 11-12, 1969. 
8. M. BURNAT, The method of Riemann invariants and its applications to the theory of plasticity, Arch. 

Mech. Stos., Part I, 23, 6, 1971. Part TI, 24, 6, 1972. · 
9. M. BURNAT, Geometrical methods in fluid mechanics, Fluid Dynamics Transactions, 6, Fart I, 1971. 

10. Z. PERADzrilSKI, On algebraic aspects of the generalised Riemann invariants method, Bull. Acad. Polon. 
Sci., Serie Sci. Techn., 18, 4, 1970. 

11. Z. PERADZYNSKI, On certain classes of exact solutions/or gasdynamics equations, Arch. Mech. Stos., 
24, 2, 1972. 

12. Z. PERADZYNSKI, Non-linear plane k-waves and Riemann invariants, Bu.ll. Acad. Polon. Sci., Serie Sci. 
Techn., 19, 9, .1971. 

UNIVERSITY OF WARSAW. 

Received November 23, 1972. 

http://rcin.org.pl




