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A simple atomic model of a crack

F. REJMUND and D. ROGULA (WARSZAWA)

A crAck in one-dimensional discrete medium is considered. The crystal is modelled by two
infinite rows of atoms with an appropriate interaction between them. The forces of interaction
between rows increase with distance in region I (I < A", decrease in region Il (A’ < I< A)
and vanish in region III (/ > 1), where A and A’ denote some characteristic distances. In the
rows, a nearest—neighbour interaction is assumed. Static solutions for a crack tip are given
in analytic form and their dependence on external stress and physical parameters is discussed.

W pracy rozpatruje si¢ szczeling w jednowymiarowym osrodku dyskretnym. Jako model krysztalu
przyjeto dwa rozciggajace sie¢ do nieskoriczonosci szeregi atoméw, pomiedzy ktorymi istnieja
odpowiednie oddzialywania. Sily oddzialywania migdzy szeregami rosna z odlegloscia w stre-
fiel (I < 1), maleja w strefie II (A’ < I < 4) i znikajg w strefie ITI (/ > 1), gdzie A i A’ oznaczaja
pewne odleglofci charakterystyczne. W szeregach zalozono oddzialywanie najblizszych sasiadow.
W modelu tym otrzymuje si¢ rozwiazania statyczne w formie analitycznej. W pracy zbadano
rozwigzania dla korica szczeliny w zalezno$ci od naprezenia zewnetrznego i parametréw osrodka.

B pafore paccmarpHBaeTCs LIENs B OJHOMEPHOH MHCKpeTHO cpeme. Kak momens Kpucranna
MPHHATHI [[B4, PACTATHBAIONIMECT B GECKOHEYHOCTE, PAN2 ATOMOEB, MY KOTODBIMH Cylle-
CTBYIOT COOTBETCTBYIOIIHE B3ammofeicTBHA. CHiIbl B3auMOJEHCTBHA MEXAY pPAAaMH BO3pa-
cratoT ¢ paccroauuem B I sone (I < 1), y6uiBator Bo II sone (' < I'< A) u ucuesator 8 111
sone (I > A), rae A 1 A’ — HEKOTOpBIE XapaKTEPHCTHUECKUE PacCTOSHUA, B papmax npepmo-
JioXKeHo B3aumofeiicTere caMbix GimsKux cocefieli. B aTol Mogenn moxyuaioTca CTaTHUecKHe
peLlIeHns: B aHATMTHYECKOH (opme. B pabore mccieoBalbl pelleHus AUIA KOHIA ILEJH B 3a-
BHCHMOCTH OT BHELIHETO HANP/AKEHHMA H TapaMeTpoB Cpefbl.

1. Introduction

THE MAIN aim of this work consists in constructing a simple atomic model of a crack.
The simplifications introduced are intended to allow a discussion of a crack (particularly
a crack tip) in terms of exact analytic solutions. Instead of a three-dimensional crystal, we
shall consider here a model consisting of two parallel infinite rows of atoms in xy-plane.
The rows are extended in x-direction, while the atoms are allowed to move in y-direction.
Within each of the rows, a non-central linear nearest-neighbour interaction is assumed.
In addition, a simplified central non-linear interaction between the atoms of different
rows is introduced. This is illustrated with Fig. 1, where the atoms and the corresponding
interatomic bonds are represented by dots and “springs”, respectively. The last interaction
is assumed to disappear for sufficiently large distances between the interacting atoms,
Within the range of non-vanishing interaction the row-row binding potential is' approxi-,
mated by two parabolic pieces. A similar simplification of 3 non-linear interaction turned
out to be valuable in the case of Frenkel-Kontorova model of a dislocation, INDENBOM
and ORrLov (1962), KRATOCHVIL and INDENBOM (1963), WEINER and SANDERS [(1964).
A crack model involving non-linear interaction has been presented by J. N. Goobier and
M. KANNINEN (1968). In this model, however, the crystal is replaced by two continuous
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F1G. 1. Double-row model of an ideal crystal.

half-spaces. Thus the GK model is not “atomic”: in dislocation terminology it corresponds
rather to Peierls-Nabarro model.
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Fia. 2. A crack-type configurations of atoms.

We shall investigate the behaviour of the model under action of a uniform tensile
stress g,, > 0. This stress is imitated by appropriate external forces acting upon the
upper /lower row in positive/negative y-direction, respectively.

2. Equations of the model

Let us introduce the following notation (Fig. 1): f'is the external force acting on each
atom of the upper row; the corresponding force on the lower row equal —f; u,—elongation
of the j-th vertical bond; the corresponding displacements of the upper/lower atoms
equal iu_,/.‘z.

Because of the symmetry with respect to transformation y — —y, it suffices to write
equilibrium equation for one (the upper) row of atoms. It can be written as

2.1) Suthy=1,
where f ; denotes the force of the j-th vertical bond, f,;—the force of the two succesive
horizontal bonds on the j-th atom between them.
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According to the assumption of a piece-wise parabolic potential of vertical bonds, the
force f,, as a function of bond extension u, is defined by the following equations:

au for ug ¥,
2.2 fi = a).’::—:;d? for A <u<ai,
0 for A<u,

where a, X', A are certain constants which characterize the strength and range of vertical
interactions.
The plot f, (1) is shown in Fig. 3.
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FiG. 3. Characteristics of a vertical bond.

Thus, depending on magnitude of u, three states of a vertical bond can be considered:

u < A’ —a strong bond (SB),

(2.3) A € u< A —a weak bond (WB),
A<u — a broken bond (BB).
The maximal force which can be transmitted by a vertical bond equals
24 Jasx = alk'.
From the definition of the force f,, it follows that
2.5) Say = —(b/2) (U4 1 +uj_y—2uy),

where the constant b characterizes the strength of horizontal bonds. The constant b is
related to the shear modulus G in xy-plane, while the constant a—to the Young modulus
E in y-direction.

On substituting Eq. (2.2) and (2.4) into Eq. (2.1), we obtain the following equations
for strong, weak, and broken bonds, respectively:

= BID g1+ ~2) = £, (SB)
) S (=) =By +uys~2) =/, (WB)
_(blz)(“nz‘l‘”j—f“z”j) = f. (BB)

2 Arch. Mech. Stos. nr 4/74
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Now, we are free to chose arbitrarily the units of length and force. Let these units be:
2.7 V=1, fox=1.
The Eqgs. (2.6) take the form
Viu;—Pu;+Pf =0, (SB)
2.8 Viu;+Qu;—Qf' =0, (WB)
VZu;+Pf=0, (BB)
where V2 denotes the second-order difference operator and
¥

2.9) P = 2a/b, Q=—‘-1__—2,P=P,-‘2—1,

(2.10) [ = A=-(A=-1).

As a seét of independent non-dimensional quantities one can choose P, 1 = % and
S = flfnsx- These quantities are restricted by the following inequalities

(2.11) P>0, i>1, 0<f<1.

In consequence,

(2.12) 1<f <A

3. General solutions

Any particular configuration u;, according to the inequalities (2.3), determines a division
of the chain into compact regions of strong, weak or broken bonds. Generally, several
regions of the same type may be involved. Each of these regions is governed by an appro-
priate equation from the set (2.8). The general solutions for particular regions are given
below.

1) SB—type region:
@1 uj =f+Ap~I+A'p,
where
(3.2) B =(01/2Q2+P—yYP*+4P) < 1
and A4, A’ denote arbitrary constants.

2) WB—type region:
3.3) u} = f'+ B, cosjl+ B,sinj6,
where
(3.4 cosf = 1-Q/2

and B,, B, denote arbitrary constants.
In the case of Q > 4, the angle 0 in the Eq. (3.4) must be complex. For the sake of defi-
niteness, we shall take

(3.5 0<f<nm for Q<4
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and

(3.6) 0 =n+i0’, 0<0'<c for Q=4.
3) BB—type region:

(3.7 uj = C+Cj-(Pf]2)?,

where C, C’ denote arbitrary constants.

The arbitrary constants in all the regions involved are to be calculated from inter-
region compatibility of solutions and boundary conditions at infinity.

An example of crack-type configuration is shown in Fig. 2. It involves five regions:
SB, WB, BB, WB, SB. The regions of SB-type extend to infinity on both sides of the crack.
The regions of BB and WB-type can be identified with an open crack and the crack tips,
respectively.

The model allows more complicated crack-type configurations, too. In this paper,
we shall discuss the tip region in more detail.

4. A Semi-infinite chain

Let us consider a semi-infinte chain in the configuration shown in Fig. 4. For the
sake of convenience, the atoms are numbered with half-integers.
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FiG. 4. Tip region of crack.

The configuration involves:
a SB-region from j = —ocotoj = —1/2,
a WB-region containing n atoms from j = 1/2 to j = n—1/2,

a single atom j = n+1/2 with broken vertical bond (BB-type).
Thus

u; <1 for j< —1/2,
4.1 l<uyj<d for 12<j<n—-1[2,
u;>A for j=n+1/2.

2*
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We shall discuss this configuration under the following assumptions:

1) the atoms j < n—1/2 are acted upon by the forces f,

2) the atom j = n+1/2 is acted upon by a given force F,

3) the displacements of the atoms in the WB-region depend on j monotonically:
(4.2) u_y <u; for 1/2<j<n+1/2.

4) the solution u; is bounded for j - —oo. Taking into account (3.1) and (3.3) and the
boundary condition at infinity, we can write:

u=uj=f+Ap~ for j<1/2;
Bcosjt Csinjo
2cos6/2 © 2sinf[2
for —1/2<j< n+1)2.

From compatibility of «} and u}’ for j = +1/2, we obtain the following equations for B
and C:

43) u =y =1+

B = 2(f-f)+AB"*+p17),
G A(ﬁ""z—ﬁ”z).

In the foregoing considerations, it will be important to introduce the force F; trans-
mitted by j-th horizontal bond. The horizontal bonds will be numbered by integer j's,
the j-th bond connecting atoms labelled j+1/2. The force F; equals

(4.4)

(4.5) Fy = 01D We1/2=ty-172).-
The boundary condition (2), which now takes the form
(4.6) F,=F,

enables us to express the unknown constant 4 by the force F.
In terms of F;, the condition (3) can be expressed by inequalities

@4.7 F;>0 for j=0,..,n.

From these inequalities a restriction of possible values of n follows. Taking into account
(4.3), we obtain

(4.8) n<aff.

5. Transformation to new variables
A simplification of the discussion can be achieved by passing to some new variables.
Instead of #; and F; we shall introduce &; and @, defined by the following equations:
G5.1) u; =f'(1-f)&;, half-integer j’s.
F; = (b/2)(1-f)®;, integer’s.
In the WB-region, the following equation is satisfied:

(5.2 V25, +08 =0, —1/2<j<n+1/2.
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Next, instead of fand 4, we shall use

A=f"
5.3) t=
_ A ﬁ—lf!
(5.9 K= e
It follows from inequalities (2.11) and (2.12) that the admisible values of & are
(5.5) oo >E20.
The solution expressed in terms of the new quantities reads
. . cos;jf . _
(5.6) & = K120} A ~12<j<nt1f,
where
; a 1 .
(5.7 {sinkf} = F= (sinkf—Bsin(k—1)0).
Similarly
_ sin@/2sin jO
(5.8) ?; = K{COSﬁ}+1W,
where
1 2 ; :
(5.9 {cosj8} = m—(cos(1+ 1/2)0—Beos(i—1/2)0), 0<j<n.

Under the restrictions (4.8), for the inequalities (4.1) and (4.7) to be satisfied, it is necessary
and sufficient that the inequalities

(5.10) 1<K<p,
(511) en— 1)2 < E < En+l.\‘2
be valid.

6. Admissible configurations

The problem of determining possible configurations of the semi-infinite chain can now
be solved in the following way.

1. Consider &; and @; for the limiting values of K specified in (5.10), i.e., K = 1 and
K = 7. From (5.6) and (5.8), we obtain the following identities:
(6.1) K=" =§uK=1),
6.2) P(K=p")=D;,,(K=1).

Thus it is convenient to introduce the extended K-axis composed of segments
{1 <K< p',j} corresponding to different values of j and such that the point
(K = p71, ) is identified with the point (K = 1, j+1). Then the Egs. (5.6) and (5.8) can
be represented by piece-wise linear plots which, by the Egs. (6.1) and (6.2), are continuous.
The corresponding slopes are constant within each segment. Thus the plots of & and @,
are uniquely determined by the characteristic values

6.3) vy S &K = 1)
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or
df

(6.4) v =P)K =p7").

Moreover,

(6.5 Yy = Visy2—Vi-u2-

2. The slopes of plots of &; and @;, according to (5.6) and (5.8), are given by the sine
and cosine brackets (5.7) and (5.9). We shall briefly discuss these brackets.
Consider the root j; of the sine bracket (5.7),

(6.6) {sinj,0} =0, 0 <j, <=/0.
It turns out that there is exactly one solution of (6.6) which satisfies the inequalities
(6.7) (=/20)+1/2 < j, < =[6.

The value of j; depends on f and 0. It decreases from 7/6 to (72/20)+1/2, if B increases
from O to 1.
Let us define an integer number n; by the inequalities

(6.8) n, <j; <ng+1.
For j = ny, we have
(6.9) {sinn,0} > 0.

Thus the slope of the broken line representing &; is positive (or equal to zero) forj < ny—1/2
and negative for j > n, +1/2.

Similarly, there exists exactly one root j, of the cosine bracket (5.9):
(6.10) {cosjof} =0, 0 <jo < %
It satisfies the inequalities
(6.11) 0 < jo < (m[26)—1)2.

The value of j, increases from 0 to (x/20)—1/2, if # decreases from 1 to 0. We shall define
an integer n, by the inequalities

(6.12) ng @jo < ﬂ°+1.
We have
(6.13) {cosny0} > 0.

Hence, the slope of the broken line representing @, is positive (or equal to zero) for j < n,
and negative for j > ny+1. The integers n,, n, satisfy the inequality
(6.14) ne < n;—1
for arbitrary values of 6 and . For given 0 and f, the values of ny, n, can be determined
from Fig. 5.

3. Making use of equations (5.2), (5.6), (5.8) and (6.5), we arrive at the following
identity:

(6.15) — {cos} = 4ﬁsin216-{2ﬁ0086/2 Yi-12-
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Fic. 5. The integers (no, n;) as functions of 6, 8. ’
It shows that
(6.16) v <0 for j=ne—1/2,

y; >0 for j=ne+1/2.

Thus we can conclude that the broken line &,,,; intersects the extended K-axis in the
segment {K, ny}. Similarly, from (6.5), we conclude that the broken line P, intersects the
extended K-axis in the segment {K, n,}. The general shape of the plots of &,.,,; and D,
is shown in Fig. 6.

N Mgt Ng+z ny ﬁ(,”.)r
FiG. 6. The plots of &,.1/2 and Dy,
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7. The solutions

Now, we shall pass to the (¢, @)-plane, with @ defined as

P
7.1) b= 17 F.
The condition (4.6) reads
(7.2) P, =.

From the shape of the plot of @, it is evident that there exists an upper limit @,,,, for @:
(7.3) D < Dy = Yoy = f" {cosngb} + Atanb/2 - sinmgh.

Thus, for some values of @, two solutions will exist. Therefore we introduce the extended
®-axis composed of two pieces: from 0 up to @_,, and then from @, down.

In order to determine the solutions, we shall draw the limiting values from (5.11) in
the extended (&, @)-plane. The plot of &,_y;, can be obtained from that of &,,,,, by
shifting the latter by one segment along the extended K-axis. After transforming the
relevant plots to the extended (&, @)-plane, we obtain the plots which, for some particular
values of 6 and g, are shown in Fig. 7 and Fig. 8. The region of admissible solutions lies
between the curves &,_,, and &, /2. Any particular solution is represented by the point of
intersection of the straight lines corresponding to given values of £ and @ (i.e. fand F).
The values of £ and @ are compatible with each other if, and only if, the corresponding
point of intersection lies in the admissible region.

For such &, @, a solution always exists. It is necessary to remember that any value of @
is represented by two points of the extended ®-axis and both the vertical lines must be

0 ﬁ_ﬁL 10 !1.5

—

n=4 n=3 - n=

Fig. 7. The region of admissible solutions for § = 0.4, n/6 = 5, (no = 1, n, = 4).
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FiG. 8. The region of admissible solutions for f = 0.6, 70 = 19, (ng = 7, ny = 17).

drawn. If the points of intersection with the horizontal &-line both belong to the admissible
region, then two solutions exist. In that case, they will correspondton = ngandn = no+1.

Generally, n, is the smallest admissible value of n (i.e. the number of weak bonds
in the tip region). It is achieved if the force F approaches its maximal value. On the other
hand, n, represents the largest possible value of n. The number of weak bonds equals »,,
if the force F approaches 0.

In the case of F = 0, the only admissible value of & is represented by the point of inter-
section of the &,,,,, and &,_,, lines:

—Vn,+1/2¥Vn-32 +?§I— 1/2

(74) Eer - 4311126/2 % 7"1- 12

and is always positive.

If Q > 4 (i.e. 0 is a complex number), the only possible values of » are 0 and 1. For &
decreasing towards zero, the numbers #,, n, and the difference n, —n, increase.

The maximum value of £ for which a solution may exist equals

. —-1/2)6
(?'5) Eml.x = }’nl—x;z = ﬁ_l {Slllnl e}_ ‘a%_ = E“ '

For any given ¢ < &,,,, two succesive values of n are only allowed.
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