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On the existence and uniqueness of solutions in the 
linear theory of mixtures of two elastic solids 

M. ARON (JASSY) 

THE EXISTENCE, the uniqueness and the continuous dependence of weak solutions upon the 
given data for the first, the second and the mixed boundary-value problems in the linear theory 
of mixtures of two isotropic homogeneous elastic solids are proved. Also given are conditions. 
for the differentiability of weak solutions. 

Przeprowadzono dow6d istnienia i jednoznacznosci oraz cictglej zale:inosci rozwillZ3n slabych 
od warto5ci brzegowych dla pierwszego, drugiego i mieszanego zagadnienia brzegowego liniowej 
teorii mieszanin dw6ch jednorodnych, izotropowych skladnik6w spr~iystych. Podano r6wniei:: 
warunki r6zniczkowalno5ci rozwictzan slabych. 

,Iloi<aaaHhi e,z:umcmeHHoCTb H cymecrsosaHHe, a TaiOKe HenpepbiBHOCTb CJia6hiX peweHHH: no­
ornowemno K ~asaeMbiM 3HaqeHIDIM KpaeBbiX YCJlOBHH B nepBOH, BTOpoH H CMeiiiaHHOH 
Kpaesoii 3a,n;aqax JIHHeiiHoii TeopHH cMeceH: ~syx H30Tp0nHhiX o~opo~IX ynpyrHX Ma­
TepHanos. ,IlaHbi yCJIOBHJI ~cl><l>epe~yeMoCTH CJia6hiX peweHHii. 

1. Introduction 

IN OUR previous paper [1], we discussed the existence and the uniqueness of weak solutions 
for the first boundary-value problem in the linearized theory of isotropic mixtures of tw(} 
incompressible elastic solids. Here we consider the static /case of bounded bodies, the 
material being compressible, isotropic and homogeneous. FolJowing J. NECAS, I. HLA­
vAcEK in [2] and I. HLAVACEK, M. HLAvAcEK in [3], we shall prove the existence and the 
uniqueness of weak solutions for the first, the second and the mixed boundary-value 
problems. In order to find conditions for the differentiability of weak solutions, we refer 
to a regularity theorem after FICHERA [4]. 

2. Summary of boundary-value problems for elliptic systems 

The results presented in this section can be found with complete proofs in [2, 4, 5 and 
10]. We present only the definitions and theorems which are needed here and no proof is. 
given. 

Let Q be a bounded region in the three-dimensional Euclidean space referred t(} 
the Cartesian coordinates x = (x1 , x2 , x3), and let r be the boundary of Q. We suppose· 
that r is a Lipshitz boundary -i.e., a) to each point x there exists an open sphere Sx with 
centre x such that Sx n r may be described by means of a Lipshitz function, and b) Sx n r 
divides Sx into external and internal parts with respect to Q. 
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We consider the following boundary-value problem: 

(1) 

(2) 

(3) 

where 

(4) 

Au+f = 0, 

ulrl = u, 
Bulr1 = g, ~ n T 2 = t/J, T 1 u T 2 = T, 

M. ARON' 

is a matrix of differential operators of order 2k; B is a matrix of differential operators 
of order k; u, f, g are m-dimensional vectors; and a0 are vector-valued, bounded and 
measurable functions-on D. 

Let W!(D) be the Sobolev's spaces [9] provided with the scalar product given by 

(5) (v, u) = 2 J JhD«ud!J, 
IC(I~kD 

and let W!(D) be the closure of D(D) in W!(D), D(D) being the space of real functions 
having continuous ·partial derivatives of all order and compact support in D. Let W1(D) 
denote the Cartesian product 

(6) Wi(D) = w:(D) X .. • X W!(D) (m times). 

We define.a bilinear form A(v, u) on W1(D) xW1(D) by 

(7) A(v, u) = J 2 a0 (x)D1vDiud!J, u, v e W"(D), 
D III,IJI..;k 

and the functionals 

f(v) = J f · vdD, f e L2 (.Q), v e wt(D), 

(8) 
D 

g(v) = J g · vd!J, g e L2 (T2), v e W"(D). 
r2 

In the above, L 2 (D) = L 2 (D) x ... x L2 (D) (m times) and L 2 (_f2) = L2(T2) x ... x L 2 (T2 ) 

(m times) denote the spaces of vector functions square-integrable on D and T 2 , respectively. 
The theorems of embedding imply that the functionals f(v), g(v) are continuous on W"(D). 

DEFINITION 1. [5] Let W1(D) be the Cartesian product 
oi o 1 . ok 

(9) W (D) = W2(D) x ... x W2 (D) (m times), 

and let V be a closed subspace of W1(D), so that W1(D) c V c W1(D). Let u e Wk(D) 
be gifJen. By the weak solutian of the boundary-flalue problem, we understand a functon 
u e W1(D) satisfying the following conditions: 

(10) 

and 

(11) 

for each v e V. 

u-ueV 

A(v, u) = f(v)+g(v), 
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DEFINITION 2. [5] Let the operators 

(12) N1v :Wk(.Q)-+ L2 (.Q), I= 1, 2, ... , h, 

he given by 
m 

(13) 
'\-, \, 

N,v = L,; LJ ntsa.Dr::vs, 
s=l Jcx/ :s;.k 

where n1sa.(x) a. e teal bounded and measurable functions on .Q. We say that the operators 
N1 v form a coercive system on Wk(.Q) if for each v E Wk(.Q) 

(14) 

holds, where c1 is a constant(~) which does not depend on v, and where 11· IIL
2
<m and 

11 • llwk<m denote the usual norms' in L 2 (.Q) and Wk(.Q), respectively. 

THEOREM 1. [2, 5] Suppose that n1sa. are constants for letl = k. Then the system N1v is 
coercive on Wk(.Q) if, and only if, the rank of the matrix 

(15) N,s~ = _L; ntsr::~a. 
/rli=k 

equals m for each ~ # 0, ~ E CC 3 , where CC 3 denotes the complex three-dimensional space 
and ~a.= ~~~2~3. 

Let us denote 
h 

(16) p = {V E V, l, IIN,vii~2(Q) = o} 
I= I 

and let p;(v), i = 1, 2, ... , s, be continuous linear functionals on Wk(.Q) and linearly inde­
pendent on P. Furthermore, we suppose that 

11 

(17) p E p, .L; pf{p) = 0 => p = 0. 
i=l 

We define 
s 

(18) vp = {v e V, .L; pf(v) = o}. 
1=1 

THEOREM 2. [3, 5] If the conditions (14) and 

h 

(19) A(v, v) ~ c2 ,L; IIN1 vii~2(.0)' v e Wk(.Q), 
1=1 

hold, then there exists a unique weak solution u eWk(.Q) of the boundary-value problem, so that 

(20) 

if, and only if, 

(21) pEp=> f(p)+g(p) = 0. 

e) Throughout the paper the quantities c 2' c3' ... ' etc. have the same significance as c 1• 
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Moreover, the following inequalities hold: 

(22) 

and 

(23) 

for each v E VP. 

R e m a r k 1. The inequality (23) is said to be of Korn's type. 
Suppose that F = F. 

M. ARON 

DEFINITION 3. (4] We say that !J is of the class C'' at X0 E F if there exists a neighbour­
hood I of x0 , so that: 

(i) there exists a homeomorjism of class C'' betlt-'een the sets J = I n ti and 

£+ = {(yl,y2,t), t ~ 0, IIYW+t2 ~ 1}, (IIYW = Yi+Y~). 
(ii) the set in r is carried by this homeomorfism into the set { (y1 , y 2, t) E J:+, 

t = 0}. 
DEFINITION 4. [4] !J is of the class C'' if it is of the class cv at each point of r. 
Let; = ;(x) be the homeomorfism referred to above. Here ; is a vector whose com­

ponents are (yl, Y2, t). Let us denote by X= x(;) the inverse function. 
Consider Ckto be the function space of continuous and k-times differentiable rea] 

functions, the derivatives being continuous functions, too. We shall use also in the following 
the space 

(24) 

provided with the usual norm 

m s 

(25) llullcs(f.i) = J; _2. _2. s':plu;,j 1h ... j,l-
'=I 1=0 Ji> ... ,J1 {} 

Let ~ and a be two real numbers, so that 0 < ~ < a < I and let <p(;) be a function of 
ck+ 1 class, given by 

(26) 
for 
for 

; ~ {;;I; I ~ a}, 
; E {;;1;1 ~ ~}, 

Furthermore, we introduce the functions: 

(27) VEV, 

(28) Vo(x) = Jl w [;(x)], 
0 ' 

XEJ, 

x e!J-J, 

(29) I 
w[;(x)+h]-w[;(x)] 

vh(x) = lbl ' 
0 ' 

XEJ, 

xe!J-J, 
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where h = (h 1 ,h2 ,0) is an arbitrary real vector, satisfying 0 < lhl < I-<T, and the 
function space defined by 

(30) H={v[x(;)]: veV, v=:Oin.Q-J}. 

I) 

2) 

3) 

THEOREM 3. [4] We assume that the following conditions are satisfied: 

.Q E CP+k, 

aii e CP- 1(D), 

c e wP-"(.Q) ere L2(.Q) if p-k < o), 

4) for each X Er, V has the properties 

a) v0(x) E V, vh(x) e V for each v E V, 

b) H = H n CP(.E+) (the closure in wk (.E+). 

Then, the weak solution u of the boundary-value problem (1)-(3) with homogeneous data 
on the boundary belongs to WP+k(.Q) and the following inequality holds: 

(31) llull p+k (.Q) ~ csllfll p-k (.Q). w . w 

Re mark 2. If p+k > I and the conditions I), 2), 3), 4) are satisfied, then Sobolev's 

immersion theorem [9) implies that U E CP+k-l(Q) and 

(32) 

R em a r k 3. [4] If rl = r or r2 = r then V = W"(.Q) or W"(.Q) respectively, and 
in these cases the condition 4) is satisfied. If ri -:/= r (i = I, 2), then the weak solution 
U E Cf;u~~~r2) (if p+k > I). 

THEOREM 4. [10] Let .Q be of the class C 00
• Then the mapping 

(33) { 
fJiu } u--+- oni , . j = 0, I, ... , m -I 

of D(.Q) into D(T) x ... x D(T) (m times) can be extended to a surjective continuous linear 
m-1 . 1 

mapping of W~(.Q) into n W~-J-2 (F) e). There exists also a continuous linear mapping 
i=O 

(34) {gi,j = 0, I, ... , m-1}--+- g 

m-1 . 1 

of n W~-J-i (F) into W~(.Q) such that 
j=O 

(35) 

e) The function spaces with fractional indices are those defined in [10]. 

12* 
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3. A mixture of two elastic solids. Linearized theory 

The linearization of the theory of mixtures developed in [6] and [7] leads to the follow­
ing constitutive equations for an isotropic body [8]: 

1 
aii = 2 {- !X2 +At ePP + ).3gpp} ~ii + J.lt e;1 + J.l3Kii- As hw1, 

(36) 

(h (h!Xl 
11:; = e(X2 epp,i + -(!-gpp,i. 

Here aki and nki are components of the partial stresses, n; the components of the diffusive 
force, !X2 , At, f.lt, . . . etc., the material constants, and (!1 , (! 2 the mass-densities of the 
two solids. We have denoted 

(37) 1 
e·· = -(w· ·+w· ·) IJ 2 I,J )ol ' 

where w; and 'YJ; are the components of the two displacement vectors. 
The equations of static equilibrium are of the form: 

(38) ak,,k-n;+F; = 0, nki,k+n;+G; = 0, 

where F; and G; denote the components of the body forces. 
The Lame equations can be written in the form: 

1 
Mrsijers,i + PrsiiKrs,i -2As( ~ir ~is- ~is ~j,)h(rs],t+ F1 = 0, 

(39) 

if we denote: 

M,u = [ ( ;., - ~2 a,) d, d,1 + ~ (p, d,, d1, + p, d,A,)]. 

(40) P,iJ = [ ( ;., - ~ a,) d,. du+ ~ (p, d,A,+ P• d,, d1,)J. 
Q,.ij = [ ( ;., + ~· a, r d, d,j + ~ (,u, d,, dj, + /L2 d,.dJ,)]. 

and take into account the relation (see [8] and [11]): 

(41) 

We prescribe the following boundary conditions which seem to be of practical interest 
[11]: 

(42) 
W; = 'Y}; = k; OD F1, 

(a1;+n1;)n1 = T;, w;-'Y}; = 0 onF2 • 
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Suppose that 

(43) 

Let Fj, G; E L2 (D). By definition, the partial stresses represent a statically admissible 
stress field, if a_;i, nii E W} (Q), (38) are satisfied in Q in the sense of L2 (Q) and (42h 
are met in the sense of L 2 (F2). The two displacement fields wh 'YJ; form a geometrically 
admissible deformation field, if (42) 1 is met in the sense of traces [3]. 

Let u;1, nij be a statically admissible stress field and let w;, 'YJ; be a geometrically admis­
sible deformation field. Then, we have 

(44) 

0 = J {[(u1;-nc51;),1+F;]w;+ [(n1;+nc51;),1+G;)tJ;}dQ, 
{) 

Integrating by parts, we infer 

(45) 

which expresses the principle of virtual work in the linear theory of mixtures of two iso­
tropic solids (see also [3]). 

We remark that the global energy of the body is given by [8] 

where 

if we take into account the conditions (42). 
We assume in the following that the quadratic form W is positive definite, i.e., there 

exists a constant c > 0, so that 

3 

(48) W(e,s; g,s; h[rs]) ~ C ~ (e:s+g;s+h{rs~· 
r.s= 1 

The last inequality involves the following restrictions on the material constants: 

( 
2 (h )

2 

( 2 (}2 ) ( 2 l!l ) (49) .A.3+ 3 .u3-ecx2 < .A.1+ 3 .u1-e.cx2 . A2+ 3 .u2+ecx2, 

.Ut > 0, ,U2 > 0. ,U~ < ,Ut,Ul, As < 0. 

We note that these inequalities have been obtained in [11] as conditions for the unique­
ness of classical solutions. 
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4. The existence and uniqueness of weak solutions 

We choose m= 6, k = 1 and denote: 

(50) 

We assume 

(51} 

u = {wl, w2, w3, 1J1, 1J2, "13}, 

v = {wl, w2, w3, rJI, ijl, ij3}. 

so that W1 (.Q) is a Hilbert space, provided with the norm: 

(52) 

M. ARON 

We take V to be the subspace of W1 (.Q) of all elements u e W1 (.Q) which satisfy the 
homogeneous boundary conditions (42) in the sense of traces. 

The bilinear form A(v, u) is given by 

(53) A(v, u) = .f [M,stJe,.eiJ+PrsiJ(i,se;J+ e,.gii)+QrsiJKrsgiJ-2A.shw1hw1]dQ, 
D 

where 

e,. = e,.(v}, g,. = g,s(v), h[ij] = h[ij](v}, 

and the functionals f(v) and g(v) are defined by 

(54) f(v) = J (Ftwt+Gt~1)d!J, v e W1(.Q), Fh Gi e Li.Q), 
D 

(55) g(v) = J T,widr. 
rl 

The Cauchy-Schwartz's inequality implies the continuity of the functionals on W1 (.Q). 
The definition of the weak solution can be read off from the Definition 1, (45), (46), 

(47), (53), (54), (55) as follows. 
DEFINITION 5. By weak solution of the boundary-value problem we understand a function 

u e W1 (.Q) such that 

(56) 

and 

(57) f [MrsiJe,seiJ + P,stJ(g ,.eii + e,.giJ) +Q,.;JKrsgii -2A.s h£iJ1h£iJJ]d.Q 
D 

= f (Fiw;+G;i]i)d.Q+ f TiwidF, 
o r2 

holds for each v e V. 
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Taking into account Theorem 2, we choose the operators N1v to be of the form: 

(58) 

1 (- - ) N -
N11 V = -,12 'Y/2,3 + 'Y/3,2 ' 12 V = g33' 

N 1 c- - - - ) 14 V = }i"2 co3,1 -w1,3 +'Y/1,3 -'Y/3,1 , N 1 (- - - - ) 1s v = J!2 co3,2 -co2,3 + 'Y/2,3- 'Y/3,2 · 

Because, in our case, the matrix (15) is composed of three diagonal matrices ~b 1, 1 
being the unit matrix, its rank is 6, so that, in view of the Theorem 1, the system of opera· 
tors (58) is coercive on W1 (.Q). 

With the above choice, we have 

3 15 

(59) J ~ Cefi+iri+h[i1~d.Q = 211N,v11L<n), 
n i,J=I 1=1 

so that (4R) and (59) imply (19). 
The set Pis defined by (16), the operators N1v being given by (58). Hence, for each 

v eP, we have 

(60) 

The above relations imply that 

(61) p = {v E V; wk = ijk = ak+eklmblxm, ak, bk = const}. 

The form of the set P enables us to choose the functionals p; as in [2]. Thus, for instance, 
we can take 

(62) 

p;(v) = Jw;d.Q, i= 1,2,3, 
n 

PJ(v) = J e(j-3)kl(o 1,kd.Q, j = 4, 5, 6. 
n 

In [2] it is proved that these functionals satisfy all the requirements of the general 
theory, summarized in Sec. 1. The subspace V P is defined by (18), the functionals p;(v) 
being given by (62). Now, we state the following. 

THEOREM 5. Let the condition (48) hold. Then, there exists a unique weak solution 
u e W1 (.Q) of the boundary-value problem, such that 

(63) 
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if, and only if, 

(64) j (FJv;+G;~;)d!J+ j TJo;dF = 0, 
D rz 

for each v E P. The weak solution satisfies a relation similar to (22), which implies the 
continuous dependence of the weak solution on data. The following inequality of Korn' s 
type holds: 

(65) J [M1si)e~seii + 2PrsiJirseii +Qrsijgrsiii- 2Ash[iJ]h[iiJ] dQ 
!} 

for each v E V . 
The proof of Theorem 5 follows from the above considerations and from Theorem 2. 
R e m a r k 4. In the case of the first boundary-value problem, F 1 = F and F2 = </>. 

From the definition of the set P it results that P = {0}. We have also P = {0} in the 
case of the mixed boundary-value problem [2]. Then the condition (64) is automatically 
satisfied and (48) assures the existence, the uniqueness and the continuous dependence 
on data of the weak solutions. 

R e m a r k 5. The second boundary-value problem is obtained by putting F 1 = 4> 
and F2 = r. Then, P is given by (61), and, from (64), the necessary and sufficient condi­
tion of Theorem 5 takes the form: 

(66) j (Fi+Gad!J+ j T;dF = 0, f EiJkXJ(Fk+Gk)d!J+ f EiJkX)TkdF = 0, 
n r n r 

which expresses the total equilibrium of external forces. 

5. The · differentiability of weak solutions 

Taking into account Theorem 3 and Remarks 2 and 3, we have: 
THEOREM 6. Suppose that Q E cl+l' F' G E w'-1(!J), I being a natural number and 

A5 = 0 (1). Then, the weak solutions of the first, the second and the mixed boundary-value 
problems with homogeneous data on the boundary belong to w'+ 1(Q) and 

(67) 

If I~ 2, then 
1) the weak solutions of the first and the second boundary-value problems belong to 

C1(Q), and 
2) the weak solution of the mixed boundary-value problem belongs to C'(!JuF1 uF2). 

We can prove now 
THEOREM 7. Let Q E c•+~, F, G E w'-1(Q) and As = 0. We assume that by means 

of a substitution of the form 

(68) u = u'+u'', 

C) If As = 0, then each solid is initially isotropic [8]. 
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where u" E C1+1(Q) and 

(69) 
3 

llu"llo+l<iJ> ~ cg(llullwt<n> +}; IIT;II~c.n), 
i=l 

727 

the boundary-value problem (39), (42) can be reduced to a boundary-value problem with 
homogeneous data on the boundary. Then, the weak solution u whose existence is assured 
by Theorem 5 belongs to 

1) C1(Q) for the first and the second boundary-value problems satisfying, respectively, 
the inequalities 

(70) 

and 
3 

(71) llullclciJ> ~ Cu (11Filwt-t<D> + IIGIIwl-t<D> +}; (IITdiL2<n); 
i=l 

2) C'(Q uF1 uF2) for the mixed boundary-value problem. 

P r o o f. Let F, G be the new mass-terms resulting after substitution (68). In view 

of hypotheses, it is clear that F' G E w•-l (Q). The Theorem 6 implies that the weak 
solutions of the first and of the second homogeneous-boundary-value problems belong 

to C1(Q) and 

(72) 

Then, the weak solutions of the first and the second nonhomogeneous boundary-value 

problems, given by (68), belong also to C1(D) and the following estimate holds: 

(73) llullclc.O> ~ llu'llct<ii> + llu"llc'+tc.Q>) · 
Taking into account the inequalities (69) and (72), the last-given relation leads to 

(74) llulle~(a) ~ c12(1rFIIwl-l(D) + IIGIIwl-l(D) + lluiiWl(D)), 

for the first boundary-value problem, and to 
3 

(75) llullctc.O> ~ C12 (IIFIIwt-tcn> + IIGIIwt-tcn> +}; IITtll~<n), 
i=l 

for the second boundary-value problem. Examination of the Eqs. (39) shows that 

(76) IIFIIwt-t<n> + IIGIIwt-tcn> ~ c13(11u"llc'+•cn"> + IIFIIwJ-tcn> + IIGIIwt-t<n>) · 

The last-given inequality, together with (72), (74), (75), implies, for the first and the second 
boundary-value problems, respectively, (70) and (71). Theorem 6 shows that the weak 
solution of the homogeneous mixed boundary-value problem belongs to C1(QuF1 uF2). 

From (68) we see that the weak solution of the non-homogeneous mixed boundary-value 
problem belongs to the same function space. 

R e m a r k 6. If I ~ 2, then the weak solutions of the first and the second boundary­
value problem are also classical solutions. 
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3 
Re mark 7. Suppose Q E coo and u E WI+2(F). In view of Theorem 4, there exists 

u E Wl+ 2(.Q) such that 

(77) ii/r = u, 
in the sense of traces, and 

(78) lliillwr+lc.o) ~ c1411ollw'+~<r)· 
Sobolev's immersion Theorem [9] implies that ii E c'+ 1(.Q) and, from (78), we have 

(79) 

Hence, we can take, in the case of the first boundary-value problem u" = ii. 
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