Archives of Mechanics ® Archiwum Mechaniki Stosowanej @ 26, 4, pp. 717-728, Warszawa 1974

On the existence and uniqueness of solutions in the
linear theory of mixtures of two elastic solids

M. ARON (JASSY)

THE EXISTENCE, the uniqueness and the continuous dependence of weak solutions upon the
given data for the first, the second and the mixed boundary-value problems in the linear theory
of mixtures of two isotropic homogeneous elastic solids are proved. Also given are conditions.
for the differentiability of weak solutions.

Przeprowadzono dowaéd istnienia i jednoznacznosci oraz ciaglej zaleznosci rozwigzan slabych
od wartosci brzegowych dla pierwszego, drugiego i mieszanego zagadnienia brzegowego liniowej
teorii mieszanin dwoch jednorodnych, izotropowych skladnikéw sprezystych. Podano réwniez
warunki rozniczkowalnoéci rozwiagzan stabych.

JoKasaHb! eAMHCTBEHHOCTh M CYLECTBOBAHHE, & TaKyKe HENPephIBHOCTh CIabLIX peilleHHit no
OTHOLICHHIO K 3a/laBacMbIM 3HauYeHHAM KpacBbIX YCJIOBHH B IepBOi, BTOPOH M CMEILAHHOM
Kpaepoil 3ajjauax JNHHeifHOH TeopMM cMecelfl IBYX HM3OTDPONHLIX OJHOPOJHLIX YMPYrHX Ma-
TepuanoB. Jlaubl ycnoBua mudiepeHIMpPYEeMOCTH cnabbix perueHwmid.

1. Introduction

IN OouR previous paper [1], we discussed the existence and the uniqueness of weak solutions
for the first boundary-value problem in the linearized theory of isotropic mixtures of two
incompressible elastic solids. Here we consider the static_case of bounded bodies, the
material being compressible, isotropic and homogeneous. Following J. Ne€as, I. HLA-
VACEK in [2] and I. HLAVACEK, M. HLAVACEK in [3], we shall prove the existence and the
uniqueness of weak solutions for the first, the second and the mixed boundary-value
problems. In order to find conditions for the differentiability of weak solutions, we refer
to a regularity theorem after FICHERA [4].

2. Summary of boundary-value problems for elliptic systems

The results presented in this section can be found with complete proofs in [2, 4, 5 and
10]. We present only the definitions and theorems which are needed here and no proof is
given.

Let 2 be a bounded region in the three-dimensional Euclidean space referred to
the Cartesian coordinates x = (x;, x,, x3), and let I" be the boundary of . We suppose
that I" is a Lipshitz boundary —i.e., a) to each point x there exists an open sphere Sx with
centre X such that Sx N I"may be described by means of a Lipshitz function, and b) Sx n I”
divides Sy into external and internal parts with respect to £2.
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We consider the following boundary-value problem:

) Au+f =0,
(2) ulf‘l s ﬁs
3 Bu, =g, Innl=¢, Inul,=T,
where
. M
= DiayD)), D= o,
@ A m% Di(ay D) P

is a matrix of differential operators of order 2k; B is a matrix of differential operators
of order k;u, f, g are m-dimensional vectors; and a;; are vector-valued, bounded and
measurable functions-en £.

Let W%(£2) be the Sobolev’s spaces [9] provided with the scalar product given by

©) @ w =2 | Dvpua,

|al<k 2
and let Pf’i(!)) be the closure of D(2) in W%(2), D(2) being the space of real functions
having continuous ‘partial derivatives of all order and compact support in £2. Let W*(2)
denote the Cartesian product
(6) WHQ) = WER)x ... x WE(Q)  (m times).
We define a bilinear form A(v, u) on W*(Q) x W¥(2) by
1) Av,w = | D a,)DvDhdQ, u,ve W Q),

a i<k
and the functionals

f) = [1-vdQ, feL,(@),veW:Q),
2

®)
g = [g:vdQ, geL,(I}),ve W Q).

In the above, L,(Q) = L,(2)x ... x Ly(Q) (mtimes) and L,(I;) = Ly(I) % ... x Ly(I)

(m times) denote the spaces of vector functions square-integrable on £2 and I',, respectively.

The theorems of embedding imply that the functionals f(v), g(v) are continuous on W*(<).
DEFINITION 1. [5] Let ﬁ”‘(ﬂ) be the Cartesian product

©) WEQ) = WE@Q)x ... x WKRQ)  (m times),

and let V be a closed subspace of WXRQ), so that WQ) = V = WXQ). Let 1 € W)
be given. By the weak solution of the boundary-value problem, we understand a functon
u € WXQ) satisfying the following conditions:

(10) u—deV
and
1n A(v,u) = f(vV)+g(v),

foreachveV.
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DEFINITION 2. [S] Let the operators

(12) NV:WKR) > LyR), I=1,2,... h,
be given by
m
(13) NI" = Z Z nlmmﬂss Y= {t’l’ Uay eeey wﬂ}!
s=1 la| <k

where n(X) a.e real bounded and measurable functions on Q. We say that the operators
N, v form a coercive system on WX(Q) if for each v e W)
h

2 2 2
(14) D INVIE o+ IVIE o) > cullVlBbgy € > 0
=1

holds, where ¢, is a constant(*) which does not depend on v, and where || Il y0) and
B “W"(ﬂ) denote the usual norms' in L,(Q) and WX), respectively.

THEOREM 1. [2, 5] Suppose that mg, are constants for |a| = k. Then the system Nv is
coercive on WX(R) if, and only if, the rank of the matrix

(15) Nk = ) miabs
af=k
equals m for each & # 0, &£ € €5, where €5 denotes the complex three-dimensional space
and &, = EE52 8.
Let us denote

h
(16) P={vev, YNV, =0}
I=1

and let pi(v),i=1,2,...,5, be continuous linear functionals on W*(2) and linearly inde-
pendent on P. Furthermore, we suppose that

an PEP, D p@=0=p=0.
i=1
We define
(18) Vv, ={vev, Ypiw =0
i=1

THEOREM 2. [3, 5] If the conditions (14) and

h
(19 AW,V > ¢ z INVIE o) v EWHR),
hold, then there exists a unique weak solution u e WX(Q) of the boundary-value problem, so that
(20) u-uev,
if, and only if,
(21) peP = f(p)+2(p) = 0.

(*) Throughout the paper the quantities c,, ¢, ..., etc. have the same significance as c;.
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Moreover, the following inequalities hold:

(22) [1ullyyieigy < esllltllyi g+ 1111y 0+ 181l 5
and
) AV, V) > calVllik g

foreach veV,

Remark 1. The inequality (23) is said to be of Korn’s type.

Suppose that " = I'.

DEFINITION 3. [4] We say that 2 is of the class C* at x, € I if there exists a neighbour-
hood I of x,, so that:

(i) there exists a homeomorfism of class C' between the sels J=1nQand
It = {(y1,y2, 1), 1 2 0, [P +22 < 1}, (IYII? = yi+y))

(ii) the set I NI is carried by this homeomorfism into the set {(y, y, t) € £*,
t = 0}.

DEFINITION 4. [4] 2 is of the class C’ if it is of the class C' at each point of I

Let § = E(x) be the homeomorfism referred to above. Here  is a vector whose com-
ponents are (y;, ¥z, ). Let us denote by x = x(§) the inverse function.

Consider C* to be the function space of continuous and k-times differentiable real
functions, the derivatives being continuous functions, too. We shall use also in the following
the space

(24) CQ) = C¥ Q) x ... xC*R) (m times),

provided with the usual norm

25) lulles gy = Z Z Z SO

i=1 =0 ji,-

Let 6 and o be two real numbers, so that 0 < é < o < I and let ¢(E) be a function of
Ck+! class, given by

@ a@={] o FEE<D gt

Furthermore, we introduce the functions:

(27) w(®) = 9@ v[xE)], veV,
wo = {TE Xt

w[E(x)+h]—w[E(x)]
(29) i (x) = [h| ’
0 , Xxef-J,

xelJ,




ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS IN THE LINEAR THEORY OF MIXTURES 721

where h = (h,, h,,0) is an arbitrary real vector, satisfying 0 < |h| < 1—0, and the
function space defined by

(30) H = {v[x(E)]: veV, v=0in2-J}.
THEOREM 3. [4] We assume that the following conditions are satisfied:

1) Q e CP*¥,

2) a;; € Cpﬁl(ﬁ),

3) fe Wr*Q)(feL,(Q) if p—k <0),

4) for each x eI, V has the properties
a) Yo(x) eV, v(x)eV for each veV,
b) H=H n C’(X*) (the closure in W* (Z*).

Then, the weak solution w of the boundary-value problem (1)-(3) with homogeneous data
on the boundary belongs to WP+*(Q) and the following inequality holds:

&) ull, o+ (2) < cslifl, ok (2).

Remark2 If p+k > 1 and the conditions 1), 2), 3), 4) are satisfied, then Sobolev’s
immersion theorem [9] implies that u e CP**-1(2) and

32 ull 41 (2) < cslIfll i ()

Remark 3. [4] If I, = I" or I', = I' then V = W*(£2) or WX) respectively, and
in these cases the condition 4) is satisfied. If I; # I' (i = 1, 2), then the weak solution
u e Claliriry (if p+k > 1).

THEOREM 4. [10] Let 2 be of the class C®. Then the mapping

oni’

of D(2) into D(I')x ... x D(I") (m times) can be extended to a surjective continuous linear

(33) u-»ia’“ j=0,],...,m—l}

m—1 4.
mapping of Wi (Q) into 'no W: ! 2(I')(?). There exists also a continuous linear mapping
Jﬂ

(34 {€j=0,1,..,m=1} > ¢

m-—1

1
of Ho W, 2(I') into W) such that

g

(39) = =g

j=0,1,..,m-1.

(*) The function spaces with fractional indices are those defined in [10].
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3. A mixture of two elastic solids. Linearized theory

The linearization of the theory of mixtures developed in [6] and [7] leads to the follow-
ing constitutive equations for an isotropic body [8]:

1
%y S5 {—a2+Aiepp+Asgpp} 81+ preij+pagyy— Ashyjy,
1
(36) Mij =5 {a2+ Aaepp+ 228pp) Oij+ paeij+ pagij+ Ashyyy,

o
W = %“2 €pp,it+ glg_'z'gpp.it

Here a;; and m,; are components of the partial stresses, m; the components of the diffusive
force, «,, A;, yy, ... etc., the material constants, and p,, p, the mass-densities of the
two solids. We have denoted

0 =04 +92:

(37 1 1 1
€ = i(w;,ﬁw,-_,-), 8 =5 i+, hupn = E(wj.i—wi,.."l"}'i.j_'ﬂ.i)-

where w; and 7; are the components of the two displacement vectors.
The equations of static equilibrium are of the form:
(3%) Oix—=mi+F =0, m+m+G =0,

where F; and G; denote the components of the body forces.
The Lamé equations can be written in the form:

1
Mrsijer.i,i + Prsugn,i _‘fzsféir a}s T 613 ajr)h[rs]‘l +Fj = 0,

(39) {
Prijereit Qrsij&rsit 5 As(0ir 05— 035 0j) i + G = 0,

if we denote:

1
MrsU et I:()‘l = % az) 6:-3 611 +5(P1 air aj.t +#1 61’: 6]1')] )
1 .
(40) Psj = [(23 _% “z) Ors '511 +E(a“3 i ajs + 4 Ois 6}’)] s

5 1
Qrij = [(12 .|._Qgi az) 0,5 50"'5(,“2 8ir 05+ 2 0 51.-)]a

and take into account the relation (see [8] and [11]):
41) Az—Ay = 05,
We prescribe the following boundary conditions which seem to be of practical interest
[11]:
o, =m =k only,

(42)
(o+m)nj =T, @—=m,=0 on I,.
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Suppose that
43) kie Wi(R), T eLy(I}).

Let F;, G; € L,(£2). By definition, the partial stresses represent a statically admissible
stress field, if o;;, 7;; € W3 (L), (38) are satisfied in £ in the sense of L,(f2) and (42),
are met in the sense of L,(I,). The two displacement fields w;, ; form a geometrically
admissible deformation field, if (42), is met in the sense of traces [3].

Let 0;;, 7;; be a statically admissible stress field and let w;, n; be a geometrically admis-
sible deformation field. Then, we have

0= [{l(oyi—nb;),1+ Flo+ [+ ady).;+ G} d2,
il
(44)
o B 1%
"= —;La;e,,,,+—1é—2-g".
Integrating by parts, we infer
(45)

J[U(ji)eij'*‘“(jijgij+U[ij]h[ij]]d9 = J(ﬂwi‘f'cﬂ?i)m-i-i! (ﬂji+ﬂﬁ)kiﬂjdp+i_{7’i wdl’
1 2
which expresses the principle of virtual work in the linear theory of mixtures of two iso-

tropic solids (see also [3]).
We remark that the global energy of the body is given by [8]

17

(46) E= f Wiers; &s: h[,,])a'.Q = 7 J [oyneii+7i8ii+ U[mh[ij]]dg,
Q Q

where

47 Wiers; &rss h[ul) = M. erseij+ 2P rsij€rs8ij+ Quugugu =22 h[Ij]b[ij] )

if we take into account the conditions (42).
We assume in the following that the quadratic form W is positive definite, i.e., there
exists a constant ¢ > 0, so that

3
(48) W(ers; 8rs> h[rs]) 2c Z (efs +33,| +h[zrs])-

rs=1

The last inequality involves the following restrictions on the material constants:

2 2
11+§#1“%33>0: lz+§ﬂz+%“z>0’
2 2 2 2
(49) (I{a"}‘ ?Fa—‘e—gl-dz) < (Al+§p1——%1a2) (Ilz'l'?,uz‘{‘ %32);

B1>0, pu;>0. pi< B2, As <0.

We note that these inequalities have been obtained in [11] as conditions for the unique-
ness of classical solutions.
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4. The existence and uniqueness of weak solutions
We choose m = 6, k = 1 and denote:

u= {wlswz:wai MNisNas '?3}’

(50) . s, B, Ty T
75{601,*‘»0::503,’?1,"}2,'73}'
We assume
(51) o, N € Wi(Q),

so that W!(£2) is a Hilbert space, provided with the norm:

3
7 2 12
(52) lullwig, = [,Z: (el 0y +lmill g ia)] -

We take V to be the subspace of W!(£2) of all elements u € W!(£2) which satisfy the
homogeneous boundary conditions (42) in the sense of traces.
The bilinear form A(v, u) is given by

(33) A(,uw)= J{M reij€rsety+ Poot)(Ersiy + Eugu)+Qrsu§ngﬁ—215?’[111’1[:11]‘?9 :
where

En=en®, Fu=8.0) fun=hun®,
and the functionals f(v) and g(v) are defined by

(54) IO = [ (Ra+Gii)d?, veW\Q),F, G eLy@),
0

(55) gw) = [ Tadr.
Iy

The Cauchy-Schwartz’s inequality implies the continuity of the functionals on W*(£2).

The definition of the weak solution can be read off from the Definition 1, (45), (46),
(47), (53), (54), (55) as follows.

DEFINITION 5. By weak solution of the boundary-value problem we understand a function
u e W) such that

(56) “—ﬁev! ﬁ = {kl’ k!! kJ! kl:klik3}:

and

67 f [M”u & eij+Pryj (& e+ & gU) +Qrsij grsgl.f ~22s E[U] h(l‘J]]d'Q
]
= [ Fin+Giiiyd2+ [ Tindr,
2 I

holds for eachv e V.



ON THE EXISTENCE AND UNIQUENESS OF SOLUTIONS IN THE LINEAR THEORY OF MIXTURES 725

Taking into account Theorem 2, we choose the operators N;v to be of the form:
Ny mdiyy Nobm ——ushiingds MY = (@ys e}
1 11> 2 I/E 1,2 2,1/ 3 I/E 1,3 3,1/

& I . i -
Nov = €33, NsV=——(0,3+13,), Nev = €33, Nyv =gy,

V2
j (. - 1
— + s N V= —=
'/2 (#1,2+72,1) 9 '/2

1 . . - | . . - -
Nll":ﬁ(?h.a'Hh.z), Ny2v=g33, Njv= '/i-(fﬂz,x—wl,z'H?J.z—’?z,t):

(58) Nsv = (T1.3+73,1)s  NioV = &22,

1 . . - . 1 - . -
NV = —= (@3, =@ 3+%1,3—%3,1), NisV=—=(D32—03,3+7%2,3~3,2)-
V2 vz

Because, in our case, the matrix (15) is composed of three diagonal matrices &, 1, 1
being the unit matrix, its rank is 6, so that, in view of the Theorem 1, the system of opera-
tors (58) is coercive on W!(9).

With the above choice, we have

3 15
(59) [ X @+ +itna2 = Y INViLia,
i=1

2 ij=1

so that (48) and (59) imply (19).
The set P is defined by (16), the operators N;v being given by (58). Hence, for each
v e P, we have

(60) €ij = g’u = Ji"{u] = 0.
The above relations imply that
(61) P={veV;, @ =1i=ay+eumbiXm, a,b, = const}.
The form of the set P enables us to choose the functionals p; as in [2). Thus, for instance,
we can take
pi(v) = fé',fdgﬁ i= 152, 3:
(62) ?
pJ'(v) = J.E(I—S)llzul,ldgs j = 4) 5! 6.

o
In [2] it is proved that these functionals satisfy all the requirements of the general
theory, summarized in Sec. 1. The subspace V, is defined by (18), the functionals p;(v)
being given by (62). Now, we state the following.
THEOREM 5. Let the condition (48) hold. Then, there exists a unique weak solution
u e W' () of the boundary-value problem, such that

©63) u—deV,,
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if, and only if,
(64) [ (Fn+Giiyd@+ [ Tadl = o0,
Q Ir;

for each v € P. The weak solution satisfies a relation similar to (22), which implies the
continuous dependence of the weak solution on data. The following inequality of Korn's
type holds:

(65) J. [Mrsi‘j E.ra EU + 2Praij§rx éi} + Qrsijérsgij I 2’-{5,‘;[];'] g[ij]l d-Q
2
3

21D, (IS g+ 1711240
i=1
JoreachveV .

The proof of Theorem 5 follows from the above considerations and from Theorem 2.

Remark 4. In the case of the first boundary-value problem, Iy = I"and I', = ¢.
From the definition of the set P it results that P = {0}. We have also P = {0} in the
case of the mixed boundary-value problem [2]. Then the condition (64) is automatically
satisfied and (48) assures the existence, the uniqueness and the continuous dependence
on data of the weak solutions.

Remark 5. The second boundary-value problem is obtained by putting I'; = ¢

and I', = I'. Then, P is given by (61), and, from (64), the necessary and sufficient condi-
tion of Theorem 5 takes the form:

(66) j(Fg'&'Gg)dQ'l‘ fﬂdf‘ = '0, feu,,x,-(Fk+G*)dQ+ f&‘u}Xj de;r = 0,
2 r 2 r

which expresses the total equilibrium of external forces.

5. The differentiability of weak solutions

Taking into account Theorem 3 and Remarks 2 and 3, we have:

THEOREM 6. Suppose that 2 € C'*',F, G e W'~1(Q), I being a natural number and
As = 0 (*). Then, the weak solutions of the first, the second and the mixed boundary-value
problems with homogeneous data on the boundary belong to W'*'(Q) and

(67) 1001410y < €8C11Ellyi— 1,09+ Gl 1)
Ifl1 = 2, then
1) the weak solutions of the first and the second boundary-value problems belong to
C'(Q), and
2) the weak solution of the mixed boundary-value problem belongs to C'(2ul'yuTl%).
We can prove now
THEOREM 7. Let Qe C'*, F,Ge W'"{(Q) and 15 = 0. We assume that by means
of a substitution of the form

(68) u=u+un",

(*) If 45 = 0, then each solid is initially isotropic [8].
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where '’ € C'*'(Q) and

3
©9) "t 1z < €5 (1llwigoy+ 2 1Tl ) »
i=1

the boundary-value problem (39), (42) can be reduced to a boundary-value problem with
homogeneous data on the boundary. Then, the weak solution u whose existence is assured
by Theorem 5 belongs to

1) C'() for the first and the second boundary-value problems satisfying, respectively,
the inequalities

(?0) ”“"cl(ﬁ) < clO(”F”wl— o) + ”G”wl— () o ”ﬁllwl(ﬁj) s
and
3
(71) ol < et (IFlyi-sia+ ICllgimsgy+ D Uil )
i=1

2) CY(QuI'yul') for the mixed boundary-value problem.
Proof. Let F, G be the new mass-terms resulting after substitution (68). In view

of hypotheses, it is clear that F, G e W'~1(2). The Theorem 6 implies that the weak
solutions of the first and of the second homogeneous-boundary-value problems belong

to C/(Q2) and

(12) 1l < CalllEllyi1igy + 1G] yi-10))-

Then, the weak solutions of the first and the second nonhomogeneous boundary-value
problems, given by (68), belong also to C'(2) and the following estimate holds:

(73) Iullag, < W llag + 10 o) -

Taking into account the inequalities (69) and (72), the last-given relation leads to

(74) 19l sy < €120 llgi-10)+ 16l =10+ llillygiay)

for the first boundary-value problem, and to
3
(5) llless) < €2 {Ellyizsio+ 1GIwicsiey + O il )
i=1

for the second boundary-value problem. Examination of the Eqs. (39) shows that

6 [Fllyic )+ 1Gllyic 10y < 1110t sz + Fllgi-1c0y +1Glli-sca) -

The last-given inequality, together with (72), (74), (75), implies, for the first and the second
boundary-value problems, respectively, (70) and (71). Theorem 6 shows that the weak
solution of the homogeneous mixed boundary-value problem belongs to C'(QuI’,ul}).
From (68) we see that the weak solution of the non-homogeneous mixed boundary-value
problem belongs to the same function space.

Remark 6.If /> 2, then the weak solutions of the first and the second boundary-
value problem are also classical solutions.
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3
Remark 7. Suppose 2e C*and u e W“’E(F). In view of Theorem 4, there exists
u e W+2(0) such that

am Wl = 4,

in the sense of traces, and

(78) Hallyi+2e) < "14|lﬁ”w'+§(n-

Sobolev’s immersion Theorem [9] implies that ue C'*!(2) and, from (78), we have
1) (19l .1g) SCr5llllyt+3 0, -

Hence, we can take, in the case of the first boundary-value problem u’’ = u.
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