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BRIEF NOTES 

On secondary flow phenomena in viscoelastic fluids near free 
boundaries 

G. BOHME (DARMSTADT) 

WHAT happens near the free boundary of a "simple fluid" between two walls rotating about 
the common vertical axis of rotation with small angular velocities? A first approximation is 
the creeping flow of a Newtonian fluid which is characterised by circular stream lines. This 
"primary" flow induces a field of centrifugal forces and of normal stress differences, which 
produce a "secondary" flow and a secondary pressure field. Since the free surface must be free 
of stress, it cannot be plane. These secondary flow phenomena can be analysed analytically 
by a regular perturbation procedure. Two material constants characterising a second order 
fluid come into the theory. In some special cases, explicit formulas for the shape of th0 free 
surface are found. Thus, by measuring the shape of the surface, the material constants can be 
determined. 

THE PURPOSE of this paper is to draw the reader's attention to certain secondary flow 
phenomena which are produced by both inertial forces and normal stress differences 
in the fluid. Figure 1 shows the flow situation under consideration. The gap between two 

freesurface z=f{r) 

primary flow w {r.z) 

secondary flow Ill {r.z) 

FIG. 1. Flow situation and notations. 

rigid surfaces of revolution with a common vertical axis of .symmetry is filled with an 
incompressible fluid up to the height z · = 0, where the fluid is bounded by a gas of con­
stant pressure. The fluid is assumed to be what is called a "simple fluid" -that is a memory 
fluid which is characterized by the fact that the Cauchy stresses in every material point 
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depend on the history of the first deformation gradient of that material point orily (cf. e.g. 
[3]). The steady fluid motion which arises if the two walls rotate about the common vertical 
z-axis with different small angular velocities, !21 and !22 , will be described. In extremely 
slow motion, simple fluids behave like Newtonian fluids. Therefore, in a first approxima­
tion, the motion is the creeping flow of a Newtonian fluid. This first approximation is 
called "primary flow". It is characterized by circular stream lines perpendicular to the 
axis of symmetry. Each fluid ·particle moves with a certain angular velocity along a circle 
the center of which is situated on the axis. Disregarding surface tension, the surface of 
the fluid is plane in first approximation. Of course, the primary flow is not the exact solu­
tion of the problem, since it induces a field of centrifugal forces and a field of normal 
stresses which produce an additional motion of the fluid, called "secondary flow". The 
centrifugal forces 

are proportional to the density e, to the distance from the axis r, and to the square of the 
local angular velocity w: In order to find the additional stresses induced by the primary 
flow, it must be borne in mind that the primary flow is "viscometric" in the sense of Co­
LEMAN [2]. It is well known that in viscometric flows of simple fluids there appear one 
shear stress and two normal stress differences [4]. These are determined by one kinematic 
quantity, namely the shear rate x, which in the present case is essentially the absolute 
value of the gradient of the primary field;" = rlgradwl. Therefore, in a viscometric ftow~ 
the connexion between the Cauchy stresses and the velocity field is given by three material 
functions r(:~e), a1 (:~e) and a2 (x), for which can be substituted the first terms of their Taylor 
series for small x, in view of the slow flow assumption. Within a second-order theory~ 
the shear stress function r reduces to a linear function of w with the viscosity 'YJ as pro­
portional factor: 

T ~ 'YJ:Ie. 

This linear Newtonian term describes the stresses which produce the primary flow. The 
normal stress functions a1 and a2 are proportional to the square of the shear rate: 

v1 and v2 are constant material coefficients of second order. Thus, the primary flow in­
duces two normal stress differences which are proportional to the square of the gradient 
of w: 

v1 r 2 (gradw)2e41 ® e41 +v2 r2gradw ® gradw. 

The symbol ® signifies a dyadic product. These normal stresses, together with the centri­
fugal forces, produce the secondary flow. Only that part of the secondary flow is of interest 
which takes place in the meridian plane and can be described by a stream function 1p. 

Since the free surface must be free of stress, it cannot be plane · in the second approxima­
tion. Under certain conditions, viscoelastic fluids climb on the inner rotating wall, as is 
assumed in Fig. 1. This is the well-known Weissenberg effect. The shape of the free surface 
may be described by the equation z = f(r ). 
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Now arises the question of how to analyse the secondary flow phenomena. Only 
the basic ideas are presented; for details see the author's article [8]. First, it is necessary 
to determine the primary motion. This is a classical Stokes flow problem and leads to 
a linear elliptic boundary-value problem of second order. In a second step, we have to solve 
a linear fourth-order boundary-value problem for the secondary stream function. The 
differential equation contains certain non-linear expressions of the primary solution w 

as inhomogeneities which result from the induced centrifugal forces and the normal stresses 
induced. The boundary conditions are homogeneous. The boundary condition on the 
free surface can be linearized and fulfilled for z = 0 instead of the real surface. Finally, 
it is necessary to determine the shape of the free surface from the following ordinary 
first-order differential equation: 

(1) df = _!__ [erw2 -vt r( ow )2 +v2r2 ow iJ2w _!}_ iJ3tp -3rJ_!_(_!_ _?!_1_P_)] ' 
dr (!g Or Or Or2 f OZ3 Or f Of OZ z=O 

which results from the dynamical boundary condition on the free surface after elimina­
tion of the pressure. It is clearly seen that, to determine J, both the primary flow field w 
and the secondary stream function tp must be known. 

Without solving the boundary value problems, certain general properties of the solu­
tion can be stated concerning its depend~nce on the physical constants. The problem 
is described by the following constants: the specific gravity g, the density(!, the viscosity fJ, 
two normal stress coefficients v1 and v2 , two angular velocities of the walls !J1 and !J2 , 

and certain geometric parameters (G.P.) which characterize the geometrical properties of 
the gap. It is possible to write down exactly how the solution depends on the seven constants. 
The primary flow field w results from a Stokes flow problem and therefore depends on the 
two characteristic angular velocities only, but neither on gravity nor on density, viscosity 
or the normal stress coefficients. Moreover, since the Stokes flow problem is a linear 
boundary-value problem, w is a linear homogeneous function of the constants Q 1 and 
Q 2 • If Q 1 = Q 2 , w reduces to a constant because, under that condition, the fluid rotates 
as a rigid body. }ience, th~ primary flow field can be written as 

w(r, z) = !J1 +(!J2-!J1)w(r, z; G.P.). 

The secondary stream function tp can be written in the following form: 

r(! • Pt +v2 n 2 
tp(r,z) = -(Q2 -Qt)[Qt 'Pt(r, z, G.P.)+!J2tp2( ... )]+--(,l,{2 -Qt) tpJ( ... ). 

'YJ 'YJ 

The formula shows that tp is a quadratic function of the two angular velocities, which 
vanishes if Q 1 and Q2 are equal-that is, in the state of rigid rotation. The terms propor­
tional to e f'YJ describe the influence of the centrifugal forces, the last term shows the in­
fluence of the normal stress differences. Only the sum of the normal stress coefficients 
v1 and v2 comes into the result. tp1 , tp2 , tpJ and w are functions of the variables r and z 

and, in addition, they depend on the geometric parameters of the problem, though not 
on the other physical constants. As regards these results, it is found from the Eq. (1) 
that the shape of the free surface can be represented in the following form: 

) 
Qf Q~ Q1Q2 (Q2 -Qt)2 

[ 
f(r = -ft(r; G.P.)+-/2( ... )+ --/J( ... )+ vtf4( ... )+v2fs( ... )], 

g g g eg 
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which shows the explicit dependence on the physical constants of the problem. The first 
three terms result from the induced centrifugal forces, the last two terms describe the 
influence of the normal stresses in the fluid. Note that the elevation f is independent of 
the viscosity within a second-order approximation. 

In the interest of simplicity, in what follows it is assumed that the outer wall does not 
rotate, which means il2 = 0. It is· clear then that the general result for f reduces to three 
terms; the functions/2 and/3 need not be known. Two special flow situations are considered. 
The first example deals with a liquid filling the semi-infinite space outside a rotating cylin­
drical rod (Fig. 2). In this case, only one geometric parameter appears, namely the radius R 
of the cylinder. Therefore, the functions / 1 ,/4 and / 5 depend on the variable r and the 
parameter R. Solving the boundary value problems, we find the following simple analytical 
solution which was given i:d :!pcndently by JosEPH et al. [6] and BoHME [8](1): 

In particular, the dimensionless elevation of the fluid close to the cylinder is represented 
by 

(2) 

The second term in brackets dominates for sufficiently small radius R. Therefore, for 
sufficiently thin rod, the Weissenberg effect occurs if v1 + 3v2 is positive. 

FIG. 2. One-cylinder configuration. FIG. 3. One-sphere configuration. 

As a second simple situation where the boundary-value problems can be solved ana­
lytically, the flow caused by a rotating sphere immersed in the fluid up to its equator is con­
sidered (Fig. 3). The radius R of the sphere is the only parameter that describes the geometry. 
As in the one-cylinder configuration, the analysis leads to simple expressions representing 
the shape of the free surface (for details see [8]): 

3R7 R6 

ft = - 4rs + 2r4 ' 

(I) The result agrees with that obtained by SERRIN [1] for Reiner-Rivlin fluids, which are special simple 
fluids without memory. However, Serrin's solution seems to be irrelevant, since, following ZIEGLER and 
Yu [5], the normal stress differences in Reiner-Rivlin fluids should vanish in second approximation, i.e., 

'Vt = 'V2 = 0. 
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Restricting the result to the point r = R, we obtain the following formula which gives 
the elevation of the fluid close to the sphere: 

(3) 

The second term in brackets dominates for a sufficiently small sphere. Thus, the criterion 
for the Weissenberg effect is the positivity of the sum v1 +4v2 • 

The results may serve as a basis for determining the second-order material coefficients. 
v1 and v2 by means of suitable experiments. Measuring the Weissenberg effect on a rota­
ting cylinder of known radius and known angular velocity; and comparing the result with 
the Eq. (2), we find the materi~l coefficients (v 1 + 3v2) / (!. In fact, JosEPH et al. [7] employed 
this method with good success. Nevertheless, the one-cylinder configuration does not 
make it possible to distinguish between the normal stress coefficients. Therefore, a cor­
responding procedure with a sphere is proposed, which leads to the coefficients (v1 +4v2)/rt 
(cf. Eq. (3)). Thus, the two experiments together should make it possible to estimate 
the two second-order normal stress coefficients. Note that the viscosity of the fluid need 
not be known. It should be mentioned that in order to compare the theory with the ex­
periments, it is necessary to modify the theory by taking into account the effect of surface 
tension. But that can be done by numerical computation, as have shown JosEPH et .£J!. for 
the one-cylinder configuration; concerning this detail, the reader is referred to [6, 7]. 
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