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Stability of non-parallel flows 

A. H. NA YFEH, W. S. SARIC and D. T. MOOK (BLACKSBURG and ALBU
QUERQUE) 

THE METHOD of multiple scales is used to obtain a set of consistent equations governing the 
linear stability of slightly non-parallel, incompressible, steady flows. The numerical procedure 
for obtaining the solution of the non-parallel problem is outlined. The complete solution contains 
the solution of the Orr-Sommerfeld problem as the first approximation, the distortion of the 
Orr-Sommerfeld eigenfunctions, and the local perturbation and streamwise variation in the 
wave-number and spatial growth rate when the frequency of the disturbance and the Reynolds 
number of the primary flow are fixed. 

Dla otrzymania ukladu r6wnan rz~dz~cych liniow~ statecznosci~ slabo nier6wnoleglych, nie
scisliwych, ustalonych przeplyw6w zastosowano metod~ wielu skal. Om6wiono procedur~ 
numeryczn~ stosowan~ przy rozwi~zywaniu zagadnienia nier6wnoleglego przeplywu. Pelne 
rozwi~zanie zawiera jako pierwsze przyblizenie rozwi~zanie zagadnienia Orra-Sommerfelda, 
opisuje zmian~ funkcji wlasnych tego zagadnienia jak r6wniez uwzgl~dnia zaburzenia lokalne 
oraz zmiennosc liczby falowej i wzrost przestrzenny, wyst~puj~ce wzdluz linii pr~du przy 
zalozeniu, i:e cz~stosc zaburzen i Iiczba Reynoldsa przeplywu pierwotnego s~ stale . 

.IJ:Jm llO.rrytieHIUI CIICTeMbi ypaBHeHHH, OIDICbiBaiO~IIX JIIIHeHHYIO yCToifqiiBOCTh CJia6o Hena
paJIJie.JlbHbiX, HeC:if<IIMaeMbiX, YCTaHOBIIBIIIIIXCH TeqeHIIH, npiiMeHeH MeTO,q MHOrOI<paTHbiX 
IIII<an. 06cy»<,qeHa q11cneHHaH npoQe,qypa npiiMeHHeMaH np11 peUieHIIII npo6neMbi Hena
panneJibHoro TeqeHIIH. lloJIHoe pellieHHe co,qep»<IIT, I<ai< nepaoe np116Jlll»<eHIIe, peiiieHIIe 
aa,qaq11 ,qna co6craeHHbiX QJYHI<QIIH Oppa-3oMMepQ>e.Jlb,qa, I<ai< To»<e yqiiTbiBaeT JIOI<a.JlbHhie 
B03M~eHIIH, a Tai<»<e nepeMeHHOCTb BOJIHOBOrO qiiCJia 11 npoCTpaHCTBeHHbiH paCT, BbiCTyna
IO~IIH a,qo.Jlb JIIIHIIH TOI<a, np11 npe,qnono»<eHHII, qTo qacroTa aoaM~eHIIH 11 ~cno Pefulo.Jlb,q
ca nepBII~OrO TeqeHIIH llOCTOHHHbl. 

1. Introduction 

THE LINEAR stability of slightly non-parallel flows has received considerable attention in 
recent years. Some attempts to account for the non-parallelism of the primary flow involved 
the retention of the normal component of velocity and some of the stream wise derivatives 
of the primary flow in the stability equation [see, e.g., BoEHMAN (1971), BARRY and Ross 
(1970), and MoRKOVIN {1969)]. The disturbance was given the form of a streamwise-traveling 
wave having an amplitude which is a function of the transverse coordinate. Streamwise 
variations in the wave-number, spatial growth rate, and amplitude were neglected. Neglect
ing these variations is inconsistent, however, because they are of the same order as some of 
the terms retained. The same kind of inconsistency is also associated with attempts to deter
mine the effects of blowing and suction [see., e.g., CHEN and HuANG (1972), KOBAYASHI 
{1972), and CHEN, SPARROW, and Tsou {1971)], and of vorticity in the outer flow [WERLE 
MOOK, and TANG (1973)]. 

This inconsistency was removed by LING and REYNOLDS ( 1973), who correctly accounted 
for some of the streamwise variations through a perturbation about the parallelflow 
solution. The perturbation, which was effected by assuming expansions for all the 
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quantities, was structured to provide local perturbations in frequency, temporal growth 
rate, and Reynolds number for a given wave-number; however, the results also contain 
the local distortion of the eigenfunction as well as the streamwise variation of the 
wave-number. The spatial growth rate was taken to be zero. 

In the present paper we develop an alternate approach which is based on the method 
of multiple scales [NAYFEH (1973)]. The present approach is structured to provide pertur
bations in the wave-number and spatial growth rate for fixed frequency and Reynolds 
number; it also yields the local distortion and stream wise variation of the eigenfunction 
as well as the streamwise variation in wave-number and spatial growth rate. The numerical 
procedure is outlined. 

2. Problem formulation 

We take the streamfunction of the disturbed flow fJ to be of the form 

(2.1) ~(x, y, t) = !P(x, y)+'IJ'(X, y, t), 

where !I' is the streamfunction of the steady, primary flow, which by itself satisfies the 
Navier-Stokes equation and the appropriate boundary conditions and is presumed to be 
known, and V' is the streamfunction of the disturbance. Substituting Eq. (2.1) into 
the Navier-Stokes equation, neglecting non-linear terms in 1p, and introducing non
dimensional variables, we find that V' is governed by 

(2.2) ~(V2 )+ iJIP !_(V2 )+!_(V2 'P)~-a!l' ~(V2 )-J__(V2'P)~ = _!_V4 

at V' ay ax V' ax ay ox ay V' oy ax R V'' 

where R is the Reynolds number based on some convenient length. Equation (2.2) is valid 
for any two-dimensional primary flow and disturbance. In addition, 'P and aV'/ ay must 
be zero along a rigid wall, and if the transverse dimension of the flow field is infinite, V' must 
decay as the distance from the region where viscous effects are important increases. 

When consideration is restricted to primary flows which are nearly parallel, it is con
venient to introduce an additional independent variable in the streamwise direction. We 
put 

where s is some measure of the non-parallelism of the primary flow; s = 0 for truly parallel 
flows (sand R may be related). x and x 1 are the so-called fast and slow scales, respectively. 
We assume that the streamfunction of the primary flow has the form 

(2.3h 

where y is the -transverse coordinate. It follows that 

and 

aP aP 
--- = -s-- = sV(X1 y). 

ax axl ' 
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Because the coefficients in Eq. (2.2) vary slowly in the streamwise direction and are 
independent of time (they are functions of x 1 and y only), the disturbance streamfunction 
can be given the form 

(2.3)s 

where 

(2.3)6 

and 

(2.3h 
ao 

- = -w a constant. at 
Hence, the fast scale is used to describe the relatively rapid, streamwise variation of the 
traveling-wave disturbance, and the slow scale is used to describe the relatively slow 
variation of the primary flow and the wavenumber, spatial growth rate, and amplitude 
of the disturbance. 

Substituting Eqs. (2.3) into Eq. (2.2) and equating coefficients of like powers of c, we 
find that c/> 0 and c/>1 are governed by 

(2.4) L(c/>0) = {(D 2 -k2
)

2 -iR[(kU-w) (D 2 -k2)-kD2 U]}cf> 0 = 0 

and 

(2.5) 
where 

- i4k- u 
Gz = R ' 

i6k2 

a4 = w- 3kU + ~ . 

The boundary conditions for c/> 0 and c/>1 may be chosen from the following: 
along a solid wall 

along a plane of symmetry 

Dcf>o = Dc/>1 = D3c/>o = D3c/> 1 = 0 , 

along a plane of antisymmetry 

cf>o = cf>t = D2c/Jo = D2c/Jt = 0. 

If the transverse dimension of the flow field is infinite, 

c/Jo and c/1 1 -+ 0 

as the distance from the viscous region increases. 
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The eigenvalue problem defined by Eq. (2.4) and the appropriate boundary conditions 
is the familiar Orr-Sommerfeld problem for parallel flows. Here, R and w are considered 
(real) parameters and k(x 1 ; R, w) is the (complex) eigenvalue. With this approach, 
consideration is given to the effect of the non-parallelism on the value of k for given R 
and w. cf>o may be written in the form 

(2.6) 

where 'YJ is the eigenfunction. At this point the amplitude function A is unknown; it is 
determined to within a multiple at the next level of approximation. If the flow is considered 
parallel, then A would be considered constant and Eq. (2.6) would be the complete 
solution. 

In order for Eq. (2.5) to have a solution that satisfies the boundary conditions, H must 
satisfy the solvability condition: 

Yl 

(2.7) j Hcf>*dy = 0, 
Y2 

where y1 and y 2 are on opposite edges of the flow field and if>* satisfies 

(2.8) 

the adjoint equation, and the same boundary conditions as c/J 1 • 

Equation (7) leads to 

and hence 

where 

(2.9) 

rx gives the desired correction to k; however, to evaluate rx, one must first have 'Y), OrJ/ ox 1 

and dk/dx1 • 

The following is needed to determine OrJ/ox1 and dkfdx1 • Because L(C) = 0, differenti
ating leads to 

(2.10) L(C) = R ::. {i[U(D2 -3k2)-D2 U+2kw]+: (D2 -k2)}~ 

+ik[ au (D2-k2)-nz( au )]rJ, 
OXt oxl 
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where C = orJI.Ox1 and the boundary conditions on C are the same as those for 'YJ· Applying 
the solvability condition to Eq. (2.10) yields 

-ikrc/>*[ au (D2-k2)-D2( oU)]cf>odY 
y 1 OX1 OX1 

(2.11) 

J.'q,•{i(U(D2 -3k2)-D2 U+2kw]+ ~ (D 2 -k')}</>0 dy 

3. Method of solution for a given P 

First, we choose wand Rand then determine k and c/>0 from the Orr·Sommerfeld problem 
[Eq. (2.4) and the appropriate boundary conditions], using either the procedure described 
by LING and REYNOLDS or the one given by MooK (1972). Next, we determine cf>* using 
Eq. (2.8). [One can vary this procedure, finding k andcf>* from Eq. (2.8) and the appropriate 
boundary conditions and then c/> 0 from Eq. (2.4)]. dkfdx1 is found from Eq. (2.11) and then 
Eq. (2.10) is integrated to yield C and consequently D2 C. It should be noted that Eq. (2.11) 
does not insure a unique solution to Eq. (2.10). In fact, if CP is a solution to Eq. (2.10), 
so is CP+ Cc/> 0 , where C is arbitrary. We assume that c/> 0 term should be eliminated and, 
following Ling and Reynolds, effect the elimination by subtracting directly the contri· 
bution of the homogeneous solution. 

a is determined from Eq. (2.9). The corrected wave-number, which includes the effects 
of the non parallelism, is 

K, = k,+iea1, 

and the corrected spatial growth rate is 

Ki = -kl+ea,. 

FinaiJy, Eq. (2.5) is integrated to give c/> 1 • 

4. Summary 

The linear stability of slightly non-parallel flows is analysed by perturbing about the 
parallel-flow solution. The method of multiple scales is used to effect this perturbation, 
which is structured to provide the changes in k (wave-number and spatial growth rate) 
for given w (frequency of the disturbance) and R (Reynolds number of the primary flow). 
With the present approach, the solution of the Orr-Sommerfeld problem emerges as the 
first approximation. Accounting for the non-parallelism requires the solution of a sequence 
of problems. 

The complete solution for the non-parallel problem contains the solution of the Orr
Somerfeld problem (c/> 0 , k), the streamwise variation in k (dkfdx1), the local perturbation 
in k(a), and the distortion of the eigenfunction of the Orr-Sommerfeld problem due to non
parallel effects (c/>1) for given wand R. 

Neutral stability curves can be constructed by solving the complete problem for different 
values of w and for each w determining the R for which -k1+ea, is zero by iteration: 
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1 1 

For the Blasius boundary layer· 1p = (x1)2 f[y(x1f2], where x 1 = ex = x/R and R = 
U00 lJ 1 fv the Reynolds number based on displacement thickness. In this case, the calcula

tions show a minimum Reynolds number of 396 and a maximum frequency F = wv I U! = 
= 400 x I0- 6 compared with R = 520 and F = 250 x w- 6 for the parallel theory. The 
non-parallel results compare favorably with the experimental results. 

This work was supported by the Fluid Dynamics Program of the United States Office 
of Naval Research and the United States Atomic Energy Commision. 
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