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The structure and decay of trailing vortices 

P. G. SAFFMAN (PASADENA) 

THE ROLL up of the trailing vortex sheet behind a high aspect ratio wing is examined. The 
results are used to infer the initial structure of the trailing vortices. The decay of the 
trailing vortices is considered. The existence of axial velocities towards the wing is explained. 
The effect of the internal structure on the growth rates of the mutual instability of a pair of 
trailing vortices is calculated. 

Zbadano zagadnienie wytwarza.nia si~ warstwy wir6w splywowych za platem o dl!Zym wydlu
ieniu. Uzyskane wyniki pozwalaj~ wnioskowac o pierwotnej strukturze wir6w splywowych. 
Rozpatrzono problem rozpadu wir6w i wyja8niono istnienie p~ko8ci osiowych w kierunku 
skrzydJa. Obliczono wplyw struktury wewn~trznej na pr~ko8ci wzrostu wzajemnej niestatecz
no§ci pary wir6w splywowych. 

McCJie.rtosaHa npo6neMa o6paaos811HH CJIOH BHXpeii Te'tleHIDI aa KpbiJIOM c 6oJibiiiHM ywnme
HHeM. IJonyqeHHbie pe3yJibTilTbl U03BOJUIIOT C,[(eJiaTL BbiBO,[( 0 nepBH'IHOH CTpYJ<TYPe BHXpeH 
TetJ:eHIDI. PacCMOTpeHa npo6neMa pacna.rta smcpelt H BbiH:CHeHo cyill;eCTBOBBHHe ocesbiX CI<o
pocreii B HanpaBJieHHH I<pbiJia. BbitJ:HCJieHO BJIHHHHe BHyTpeHHeH CTpYJ<TYPbl Ha CI<OpOCTH 
poCTa B3aHMHOH HeyCTOHliHBOCTH napbi BHXpelt TetieHHH:. 

1. Introduction 

TRAILING vortices are formed by the roll up of the vorticity shed from the trailing edge 
of a lifting wing or hydrofoil. PRANDTL, BETZ and others did much valuable work in the 
1930's, but the problem ceased to be one of the leading areas of aerodynamic research. 
Interest has recently been stimulated by the advent of jumbo jets, and the realisation that 
the vortices left by these aircraft may be a serious hazard, and active research is now in 
progress at many institutions. 

Progress has been made by introducing simplifying assumptions which enable different 
parts of the flow to be discussed separately. The first assumption is that the lift distribution 
on the wing and the initial strength of the trailing vortex sheet is independent of the roll 
up process. Then for light loading, the lift on the wing can be studied by lifting surface 
theory. Unfortunately, lifting surface theory is not complete. There is a substantial body 
of numerical work, but analytical results are scarce, particularly for the loading near the 
tips which (a-s wiii be seen below) controls the initial rate of roli up and the core 
structure of the vortices. 

Some analytical work has been done for the circular wing, but the practical case of the 
rectangular wing is a mystery. Because of boundary layer separation at the wing tips, it 
may not make physical sense to use lifting surface theory in this region. Flaps, engine 
struts, sweepback, etc. add major complications. All such questions will be bypassed here, 
and we shall examine the roll up on the assumption that the wing loading is known and, 
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moreover, is approximately elliptic, i.e. 

2F .!. 
(1.1) F(x) = T<bx-x2)2, 0 < x <b. 

Here, F(x) is the strength of the bound vortex at spanwise coordinate x, F0 is the root 
circulation, and b is the wing span. For a thin wing of root chord c and large aspect ratio 
moving with velocity U at angle of attack ex, Prandtl's lifting line theory gives 

(1.2) F0 = nUcex. 

It is a matter of further study to determine how well a particular wing is approximated 
by (1.1) and (1.2). Effects of finite aspect ratio can be included by replacing ex by an ef
fective angle of attack ex-F0 /(2bU), which is exact for elliptic loading. The methods for 
studying roll up can be applied to fairly general load distributions, and there is not a serious 
loss of generality in restricting attention to the case of elliptic loading. 

The lift on the wing is L = ! nUbF0 , and the induced drag is Di = ! nF5. (These 

results are of course independent of (1.2). The density is given the value of unity.) 
The coordinate system is chosen with x spanwise, y vertically downwards (to eliminate 

some inconvenient minus signs) and z parallel to the free stream. The velocity components 
are (u, v, w+ U). 

The initial strength x(x) of the vortex sheet extending downstream of the trailing edge 
of the wing is x(x) = dFjdx. The edges of the sheet roll up into two spirals under the 
action of the self induced velocities. Prandtl's classic sketch has been reproduced many 
times. The calculation of the roll up is an intractable problem of steady three-dimensional 
flow. The approximation is therefore made of replacing the steady three-dimensional 
flow by an equivalent unsteady two-'dimensional flow in the xy plane, with t = zj U, because 
the two-dimensional flow is easier to study. The approximation neglects bending of the 
vortex lines and induced velocities parallel to the free stream. However, it is intuitively 
plausible and can be justified formally for light loading (i.e. ex ~ 0) and large z; see 
Moo:rn & SAFFMAN, 1973, Appendix A. It is of uncertain validity close to the wing tips, 
but the uncertainty here is coupled with uncertainty in the wing loading. There have been 
attempts to calculate numerically the steady three-dimensional shape of the sheet, but it 
is difficult to believe in their accuracy, since the simpler unsteady two-dimensional problem 
cannot yet be solved numerically with any confidence. 

2. The roll up 

We consider the unsteady two-dimensional motion of a vortex sheet which at t = 0 
lies along the x-axis from o to b, and has an initial strength x(x). The motion is supposed 
in viscid, effects of viscosity being deferred to § 3. The equation of the sheet at subsequent 
times is given by the solution of a non-linear singular integro-differential equation. Intro
duce a Lagrangian coordinate F by the relation 

r = f x(s, t)ds, 
dF 

" = -ds ' 
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THE STRUCTURE AND DECAY OF TRAILING VORTICES 425 

where "(s, t) is the strength of the sheet at time t as a function of arc lengths. r is the cir
culation about lengths of the 8heet. Let X(F, t), Y(F, t) be the parametric representation 
of the sheet, and Z = X+ iY. Then 

o * _ i dF' 
(2. 1) atz (F, t)- - 2n f Z(F, t)-Z(F',t)' 

where the asterisk denotes complex conjugate and the bar through the integral sign means 
that the Cauchy principal value is to be taken. For elliptic loading, the initial condition is 

1 

(2.2) z = !!_ + !!_(1-!~)2 0 ~ r ~ ro. 
2 -- 2 r~ ' 

Work is in progress at the California Institute of Technology to solve (2.1) with the initial 
condition (2.2), but the calculation is hard and progress is slow. The usual method of 
calculating vortex sheet motion is to replace the sheet by discrete line vortices whose 
motion can be obtained by integrating a set of ordinary differential equations. However, 
it has been shown (MooRE, 1971) that this approach is unsound, and leads to a jumbled 
chaotic mess when the equations are solved ·accurately. The more vortices are employed, 
the more chaotic is the result. Smooth roll up can be obtained only by some artificial ad 
hoc modification of the calculation (KuwAHARA & TAKAMI, 1973; MooRE, 1974) with 
an unknown error. 

Note that 
1 

(2.3) b b( F 2 )2 .ro Z(F t) = - + - 1 - --- + 1-- - t 
' 2- 2 . rt . b 

is an exact solution of (2.1) except at r = 0, and describes the sheet moving steadily down
wards with velocity F0 /b. However, the failure at r = 0 is unacceptable and invalidates 
the solution. As can be shown easily, the momentum flux through infinitesimal circles 
centered on the ends x = 0, b does not vanish, and hence the solution (2.3) requires the 
imposition of external forces. In fact, (2.3) makes the right-hand side of (2.1) infinite at 
r = 0, so that the ends of the sheet are subject at the initial instant to infinite accelerations 
and they actually roll up instantaneously into spirals of infinite length. The solution of 
(2.1) for-t > 0 must satisfy the requirement that the velocity of the ends (F = 0) should 
be finite, and this can only be accomplished by having the strength of the sheet vanish 
there. 

Information about the flow near the ends of the sheet and the structure of the central 
parts of the spiral comes from a study of a semi-infinite vortex sheet with initial strength 

yx -~, 0 ~ x ~(X). This means solving (2.1) with initial condition Z = ! F 2/y 2
• The solution 

1 

of this problem, with y = F0 fb2, clearly describes the form of the sheet near r = 0 in the 
initial stages of roll up. This problem was studied by KADEN (1931), and later by STERN 
(1956) and MANGLER & WEBER (1967). Their results can be expressed in the present nota
tion by 

(2.4) 
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as F-+ 0. Here Zr is the position of the spiral tip, and lis a constant to be determined. 
Referred to polar coordinates centered on Zr, the sheet is the spiral 

1 2 

(2.5) r /'V ( ytA2 )3 fF~ - ~ 
n 4y2 A • 

Note that the spiral is infinitely long and, moreover, the strength of the sheet vanishes 

like ; nrft as r-+ 0. 

A simple physical derivation of the spiral shape can be given. The distance between 
neigh boring turns decreases as r -+ 0, so the spiral tightens towards its center. The 
vorticity distribution is approximately axisymmetric and the velocity field is tangential 
and of magnitude F/2nr. Thus a fluid particle, at valuer on the sheet, moves so that 

(26) dr =o d() r 
· dt · ' dt =:= 2nr2 • 

Let this fluid particle be initially at distance x = {r2ty2 from the tip. By dimensional 

analysis, r = xfn(F3 fty4
) = xjA, where A is a constant by virtue of (2.6). The quantity A 

can be thought of as a contraction factor, its physical significance being that the vorticity 
originally within a distance x of the tip is after roll up in a circle of radius xf A about the tip. 
Thus A measures the extent to which the vorticity is concentrated. Then (2.6) integrates 

tor~ ! F 2/Ay 2
, () ~ ~ Fttnr 2

, which reduces immediately to (2.5). 

(Further terms in the asymptotic expansion were obtained by STERN and by MANGLER 

& WEBER. The next term gives 

r ~ ( Y~~ lo-i[I + ~:3~22 + . .J. 
However, the constant A and the position Zr are not determined by the analysis. This 
result can also be obtained from the integral equation (2.1). The first term is trivial, 
but the second term is a hard calculation. However, we wish to point out that the study 
of the integral equation (done in collaboration with Dr. D. W. MooRE) suggests the exist
ence of terms of a different character in the complete asymptotic expansion corresponding 
to elliptical deformation of the spiral and the result is suspect. The analysis is, however, 

2 

still incomplete. As regards Zr, it follows from dimensional analysis that Zr oc (yt)3 . 
KAoEN made an estimate of the coefficient of proportionality by appealing to the 
conservation of impulse, which in the present context leads to 

00 

J (z- ~: )dr = -! niy
2
t, 

0 . , 

and in effect substituting a rough approximation for Z.) 
2 1 

For r ~ (yt)3, the sheet is approximately straight and undisturbed, with strength yr -2. 
2 

Thus there is a value of r ( oc(yt)3) for which the strength of the sheet is a maximum, the 
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1 

maximum value being proportional to (y2 jt)3. The constants of proportionality are not 
yet known. It is to be kept in mind that the roll up process may be unstable, the 
mechanism being the Kelvin-Helmholtz instability of vortex sheets. (See PIERCE, 1961, 
for impressive pictures of this instability in the vortex sheets formed by impulsive motion 
over sharp edges.) However, there are reasons for believing that the instability may be sup
pressed by the increasing length of the sheet. For a straight sheet of strength u, the amplitude 
A of a disturbance of wavelength 2n;n grows according to the equation 

1 dA un 
Adt = -2-. 

We estimate the growth rate of short waves on the spiral by using this equation with ap
propriate values of" and n. Waves move with the mean of the velocity on the two sides 
of the sheet, i.e. crests have constant r. Then "is proportional to r;t and 2nJn oc ds;dr = 
= x- 1

• Thus, putting in the details, 

(2.7) 1 dA _ 2n2 r2 
( n ) 

A-dt--~ x o' 

where suffix 0 denotes original value. The growth rate is reduced and An, the wave slope 
tends to zero as t ~ oo. The disturbances, which can be expected to arise first at the position 
of maximum u, are damped out as the spiral continues to tighten. 

The constant ). is physically important as it determines the strength of the 
vorticity in the rolled up spiral. There is no completely satisfactory way of calculating ).; 
the best that can be done is to follow KADEN (1931) and use an approximation due to BETZ 
( 1932). This assumes that the radius of gyration of the vorticity inside a circle of radius r 
centered on Zr is equal to the radius of gyration of the same vorticity when in its initial 
position on a straight line of length ).r. The vorticity external to that being considered is 
being assumed to have negligible effect on the angular momentum of the vorticity ending 
up inside r. A simple calculation leads to 

(2.8) ). = 1.5. 

No error estimate is known, but as there is nothing better, we shall use this value henceforth. 
We now turn to the question of estimating the roll up of a finite sheet. The Betz 

approximation can be used to give an approximation for the final state of two completely 
rolled up, axisymmetric, trailing vortices, for arbitrary wing load distributions. But we want 
to know the rate at which the roll up takes place and the vortex strength in the 
intermediate stages of roll up. For this purpose, we approximate the elliptic loading by a dis
tribution 

(2.9) 

1 

r = 2yx2, 1 r2 2 0 <X< 4 o/Y, 

1 F2/ 2 b 1 r2; 2 4 0 ')' <X< -4 o ')', 

= 2y(b-x)~, b- {rMy2 < x <b. 
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(Note that if the wing were not elliptically loaded, we can still introduce the approxima
tion (2.9), with if desired a different power law dependence, with the constant~ to be 
found from experiment or otherwise. But for simplicity, we stick to elliptic loading, so that 

1 1 

y = F0 jb2, and (1.2) gives F0 • MooRE & SAFFMAN (1973) suggested that y = 2F0 jnc2 might 

be appropriate for rectangular wings, but the evidence for this value is less strong now than 
was once thought.) 

We now assume that beyond the fint vertical tangent, i.e. () > n for the left-hand vortex, 
the sheet has the shape given by the asymptotic formula (2.4) and (2.5). Moreover, we shall 
say that this part of the sheet constitutes the partially rolled up vortex. Then at time t, 
the radius rv and strengthFv of the rolled up vorticity are given by putting() = n in (2.5), i.e. 

(2.10) 

These expressions hold until 

(2.11) 

2 1 2 

y3 ;.3 t3 
rv=~-, 

1 1 
- 2 Fv = 2y,Prv. 

1 r2 21 rv = 4 oiY 11. = R, say. 

After this time, the vorticity is said to be fully rolled up in trailing vortice~ of radius Rand 
strength F0 • We can write the state of the partially rolled up vortex as 

4 2 

(2.12) ~ = ( 2: t ( ~~ r 
Since 2)..jn is close to one, the time scale t* = FM2y4 gives the characteristic time for 
roll up. 

The completely rolled up vortices descend with a speed F0/2nb', where their horizontal 
separation b' is determined by conservation of Jinear momentum, i.e. 

b 

F0 b' = Jr(x)dx, 
0 

whereF(x) is here the initial loading. For elliptic loading, b' = ! nb, and t* is the time for 

the vortices to descend a distance b/n2
• 

In terms of distance behind a wing for roll up to be complete, Ut* = { b2 /nc!X, and 

depending on the angle of attack and aspect ratio of the wing, this distance may be 
25-100 chord length. On the other hand, 50% roll up takes 1/8th of the distance or time, 
i.e. 3-12 chord lengths, the remainder of the vorticity still being in the unrolled up 
sheet. 
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MOORE (1974) estimated the rate of roll up of an elliptically loaded vortex sheet using 
a discrete vortex representation with an ad hoc amalgamation at the spiral center to avoid 
chaotic behavior and produce a smooth roll up. His results are fitted quite well by the 
estimate (2.12), particularly for small t. The numerical results do not have, of course, the 
kink at t = t*. 

Our simple model neglects the deformation of one vortex by the other~ and elliptical 
self-deformation is also ignored. It is believed that effects are not important. The deform
ation of a vortex by a uniform strain was studied by MooRE & SAFFMAN (1971), and it was 
found that line vortices are remarkably resistant to planar deformations. 

A measure of the error is provided by the failure to conserve energy. Since viscosity 
is neglected, and the motion i~ assumed to be two-dimensional, the kinetic energy 
should be conserved exactly and be equal to Di, the induced drag. For two circular vortices 
of radius R, strength ±F0 , centers b' apart, and axisymmetric circulation distribution 
T(r ), the kinetic energy is 

R 

(2.13) 
r~ b' 1 rr2 

-log-+-- ---dr = Di. 
2n R 2n. r 

0 

1 1 

We evaluate (2.13) with T(r) = 2yA.2 r2 (i.e. the discrete structure of the vortex is neglected) 
and obtain 

D, = ;! (I +lognA) = I.o3Hnrt) 
if A. = 1.5. This indicates an acceptable error of about 3%. (Alternatively, we could have 
used A. = 1.4 to ensure energy conservation.) 

PRANDTL (see DURAND, 1934) used (2.13) in the opposite way to calculate R, given solid 
body rotation in the vortices. The result is R = 0.28b for elliptic loading, somewhat larger 
than our estimate (2.11) which gives R = 0.17 b. The velocity distributions in the two models 
are completely different. In particular, our model gives a tangential velocity 

(2.14) 

1 

r yJ.2 
Vo = 2nr = --1 ' r < rv ~ R' 

nr2 

without a finite maximum (the singularity will be removed by viscosity). It can be argued 
that viscosity and/or turbulence would tend to produce solid body rotation, but in this 
case it is not permissible to assume that energy is conserved. 

The main doubt about the application of our simple model to trailing vortices is the 
neglect of three-dimensional effects. It is known that the vortices contain significant axial 
velocities towards the wing, but we do not yet know how to calculate their effect on the roll 
up. On the other hand, given the roll up, we can estimate the axial velocities by using 
Bernoulli's equation. 

With viscosity neglected, 

(2.15) 1 2 1 2 1 U )2 H 1 2 p+-u +-v +- -( +w = =p +-U 
2 2 2 00 2 
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in the steady three-dimensional flow past the wing. We can now calculate w by assuming 
that u, v and pare given by the unsteady two-dimensional roll up problem, with t = z/U. 
Unfortunately, the simple model is not good enough to determine p with accuracy, except 
near the centers of the vortices, and numerical work (as yet undone) is needed for a good 
estimate. As r --+ 0, 

and hence 

(2.16) 

Thus infinite axial velocities away from the wing are predicted inside the trailing vortices. 
(The prediction that inviscid roll up would produce axial velocities away from the wing 
was made first by BATCHELOR, 1964. His velocities were finite because his vortices were 
assumed to be in solid body rotation.) In the next section, we shall give a rough estimate 
of the axial velocity distribution throughout the vortex, and more remarkably show that 
for elliptic loading, viscosity reverses the axial flow towards the wing while removing the 
singularity at r = 0. 

3. Structure and decay of laminar trailing yortices 

The processes of formation and decay are not completely independent, since decay 
starts before roll up is complete. But the decay is confined to a viscous core, and the 
interaction is weak and can be neglected. Thus to study the decay of one of the 
trailing vortices, we assume that the inviscid roll up is completed instantaneously, and that 
at station z = 0 we have an axisymmetric vortex with structure 

1 

yA.2 
Vo = --1' v, = 0, for '~ R, 

nr2 
(3.1) 

ro 
Vo = --, v, = 0, for r > R. 

2nr 

Cylindrical polar coordinates (r, (}, z) are employed, with velocity components (v, v0, 

U + w). The interaction of the two vortices is ignored. In addition, the discrete structure 
of the rolled up vortex is neglected, because the distance between the turns decreases as 
t increases and in fact viscosity merges the turns of the spiral quite rapidly and makes 

the approximation physically realistic. For elliptic loading, R = ! b. 

The equations of motion which describe the down-stream decay are 

U ) av, av, 'V~ - op ( o2v, 1 ov, ~ o2v, ) 
( +w~+v,~----~+" ~+-~- 2 + ~ 2 ~ uz ur r ur ur r ur r uz 

( U ) O'Vo ovo v,v8 ( o2v8 1 oo6 v6 o2v8 ) 
+w oz +v,a;:-+-,- =" or2 +,-a;:--71+ OZ2 ' 
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1 0 ow 
rifr(rv,.)+-a;: = 0. 

The initial conditions (3.1) are not sufficient and further approximations are made. 
It is recognized that decay is slow and ofoz ~ ofor, so the viscous terms with o2foz2 are 
dropped. The equations are now parabolic and only the initial value of w is required to spec
ify the problem. This is found by assuming that the pressure is initially in balance with the 
centrifugal force, i.e. 

r~ 
p = Poo- 8n2r2 ' r > R, 

r~ ( 2 1 ) 
·p =poo- 8n2 Rr- R2 ' r < R. 

The initial value of w now follows from Bernouill's equation (2.15), 

w = 0, r > R, 

(3.2) 1 

w = { U 2 + ~2A (! - ~ w- U; r < R. 

Because the pressure in th~ vortex center is initially negatively infinite, there is a case for 
studying compressibility effects, but this will not be done here. A more important matter 
is the loss of total head in the fluid that has passed through the wing boundary layers. It 
is commonly believed that velocities towards the wing are caused by the reduction of w, 

due to boundary layer retardation, dominating the increase due to inviscid acceleration 
as given by (3.2). This is not so, and we shall therefore neglect boundary layer retardation 
for the present in order to emphasize that the decay process can lead by itself to w < 0 
close to the wing. (It is known (BATCHEWR, 1964) that viscous decay makes w < 0 in the 

far wake, but this is the region for (vzjU)~'P- R, i.e. z/c ~ 3~ (b2/c2)Re, where Re= 

= Uc/v is the Reynolds number based on chord. The far wake is outside the range of 
experiment, and observations of negative w in distances of order Ut* are not explained 
by Batchelor's theory of the far wake.) 

The non-linear problem posed here is currently under study by numerical methods, 
but results are not yet available. MooRE & SAFFMAN (1973) examined a quasi-linear approx
imation valid for light loading. This is 

(3.3) 

(3.4) 

(3.5) 

7 Arch . Mech. Stos. nr 3/74 
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It is now convenient to write t = Z/ U, and describe the decay in terms of time rather than 
downstream distance. 

1 

For (vt)2 ~ R, which is the case for distances up to many thousands of chord lengths, 
depending on the aspect ratio and Reynolds number, the initial conditions for 
(3.3)-(3.5) can be written 

(3.6) 
f3 

Vo=-1, 
r2 

1 

where {J = y X2 fn. The solution for v0 is 

(3.7) v0 = {3~ r( ~) ~M(2_; 2; 
22 (vt)4 4 

where M is the confluent hypergeometric function, also denoted by 1F1 • The maximum 
value of v occurs at 

1 1 1 

(3.8) r1 = 2.92(vt)2 = 2.92c(z/c)2 Re -2, 

1 

and the maximum value ofv is 0.49{J(vt) -4. 

The distance r1 is a natural definition of the radius of a trailing vortex, and experimen
ters have usually taken the position of maximum tangential velocity as defining the 
vortex radius. Considerations of inviscid roll up led in § 2 to a radius rv, see equation 
(2.12), which is substantia~ larger. For elliptic loading, 

2 1 1 1 

;~ = 2.92(: )'{~)'Re -2
{ ~ )". 

This explains why observed radii are much smaller than those predicted by Prandtl's theory. 
The part of the vortex for r < r1 wilJ be called the core. 

The axial velocity can be expressed as integrals of confluent hypergeometric functions. 
We write 

(3.9) 

Then W is a dimensionless function of its argument, and has been calculated, see 
1 

MOORE & SAFFMAN (1973). We find that W < 0 for r < 1.4(vt)2, W(O) = -0.13. Thus 
not only does viscosity remove the singularities at the center of the vortex predicted by 
the inviscid theory, but in doing so the direction of the axial velocity is reversed in sign. 
Outside the core, the in viscid mechanism gives w - {3 2 fUr > 0. 

(MooRE & SAFFMAN (1973) considered a more general wing loading for which 
the initial condition on v8 gives v0 = pr-". This corresponds to a wing loading 
ex: x1

-" near the tip. It was found that the value of w on r = 0 depends on n, being 
negative if n > 0.44 and positive if n < 0.44. A delta wing, low aspect ratio planform 
corresponds to the singular case n = 0, so the analysis is consistent with the known 
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results that w > 0 in the core of leading edge vortices produced by deJta wings. Batchelor's 
analysis of the far wake is the other singular case n = 1, {J = F0 , where the necessary extra 
condition of finite axial flux has to be imposed. As w at r = 0 was known to 
have different signs for the two limiting cases n = 0, n = 1, it is not surprising that reversal 
takes place at an intermediate value. The pressure in the core is proportional to - {3 2

( Ufvz)" 

and the retardation is caused by the adverse pressure gradient working against the 

in viscid value of w which is ~ {3 2/U( -1 + 1/n)r- 2 
... It is clear, therefore, that the adverse 

pressure gradient is going to dominate as n goes from 0 to 1.) 
MOORE & SAFFMAN (1973) also considered the axial velocity defect due to boundary 

layer retardation. In the quasi-linear approximation, it is sufficient to add w6 to the initial 
value of w in (3.6). If t5ix) is the combined momentum thickness of the boundary layers 
on the wing at spanwise coordinate x, the interpretation of A. as a contraction factor gives 

A.U 
WcJ = - -

2 
-t52 (A.r) . 
nr 

1 

For a rectangular wing, t52 = 1.33 eRe -2, and the additional axial velocity to be added to 
(3.9) at station z is 

(3.10) w1(z)=- W\ r(~)M(j; I;- ;:J 
4n(vt)2 

Note that WcJ is independent of Re. (A case can be made for using the displacement thick
ness t51 instead of t52 • The question is still open.) 

In the core, the two effects add to give a larger velocity towards the wing. 
Outside the core, the two effects are in opposite direction. The inviscid acceleration 

1 

mechanism wins or loses according as 5rx 2 Re2(c/b) is greater or less than unity. 
To sum up, the laminar trailing vortex is essentially inviscid with radius rv and tangen-

1 

tial velocity proportional to r -2, with a viscous core containing axial velocities towards 
the wing. The decrease in the kinetic energy of the transverse flow due to viscosity appears 
as an increase in pressure and an axial flux towards the wing. The momentum flux 
equation gives for the drag, 

D = J J (LlH + ~ (u 2 +v2
)- ~ w') dxdy, 

where the integral is over any plane z = constant downstream of the wing, and LJH is the 
loss of total head. If boundary layer retardation is neglected, D = Di. By definition, 

1 
L1H+ 2 (u 2 +v2

) = p00 -p-Uw, 

and it follows from (3.5) that the integral is constant ( ~ w2 being negligible when (3.5) 

holds). As the crossflow velocities tend to zero and p _.. p00 , the induced drag is carried by 
the axial momentum flux. 

7* 
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The loss of transverse kinetic energy has been calculated. It is 

(3.11) 
00 1 

n J ({J2 -rv:>dr = 8.6{P(vt)2. 
0 

4. The turbulent vortex 

The trailing vortices may be turbulent, instead of laminar, with a different structure 
and decay rate. However, the main evidence for turbulent vortices is indirect, being the body 
of experimental data showing that the core radius r1 grows significantly faster than the 
laminar value (3.8). If the observed growth rates are used to infer eddy viscosities vr, 
the values of vrfv range from 10 to 1000 depending on the Reynolds number F0jP. 

1 

The experimental data are far from satisfactory, but suggest Pr/P oc (F0 /P)4, see 
OWEN (1970). Care must be taken to distinguish "genuine turbulence" from "apparent 
turbulence" caused by the random wandering of the laminar vortex due to wing flutter or 
free stream turbulence. Experiments recently carried out in a water tunnel at the 
California Institute of Technology show significant amounts of unsteadiness in the position 
of apparently laminar vortices. 

There is no satisfactory treatment of the turbulent vortex. Here we summarize a recent 
attempt (SAFFMAN, 1973). Arguments were given for taking, as a model of the turbulent 
vortex, the mean circulation distribution 

(4.1) 

(4.2) 

Further, 
1 1 

(4.3) r 1 = k(PF1)""4i'2, 

where k is a constant, roughly equal to two. The radius r 0 is the outer edge of the vortex, 
whereF = F0 , and is related toF1 by 

(4.4) 

1 

where k' is another constant of order (2n) -2. The ratio FtfF0 is weakly dependent on F0/P; 
it was estimated that 

(4.5) 
Fo . ro -r ::;=log-. 

1 r1 

The tentative nature of these results should be kept in mind. 
The defect region r1 < r < r0 is examined by postulating a profile and appealing to the 

conservation of angular momentum defect. Define 

00 

(4.6) J(t) = ,
1
f J ( 1- ~-)rdr. 

0 
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It is an exact consequence of the equations of motion, for both laminar and turbulent 
flow, that 

(4.7) J() 
_ A 0 2Pt 

t --+
,~ ri ' 

where A 0 is a constant fixed by initial conditions. 
For the laminar vortex, the initial condition (3.1) gives 

(4.8) A - 1 2 o - 10R. 

We assume as the profile in the defect region 

(4.9) [ 
r r r

2 J F=F0 +Ft log-+1-x(t)-+{x(t)-1}------a. 
r0 r0 r0 

(There was an oversight in SAFFMAN (1973). Equation (4.9) replaces equation (71) of that 
paper. The results reported ealier are unaffected.) With this profile, it follows that 

1 rlr~ 
(4.10) J(t) = U Forf X' 

terms of relative order d/rJ being neglected. Hence, from (4.7) with molecular viscosity 
neglected, 

(4.11) 

The distribution of circulation given by ( 4.9) develops an overshoot of circulation as t 

increases. It occurs when x = I, i.e. 

(4.12) ( 
6Fo)~ 

ro = 5F1 R, 

The overshoot of circulation is a general feature of turbulent vortices and not dependent 
upon the model (GoVINDARAJU & SAFFMAN, 1971). For smaller values of r0 , the circulation 
increases monotonically; for larger values, the point of maximum circulation asymp-

1 

totes r0 j22. 
The application of these results to the turbulent trailing vortex is not permissible until 

r0 ~ R, as before this, the trailing vorticity is not completely roJled up, i.e. 

(4.13) F0 R2 1 Fo * 
1 ~ k' 2F1 F0 = T8 k'F1 1 

' 

where t* (§ 2) is the time for laminar roll up to be complete. Typical values of Fo/Fl are 
around two. The value of k' is uncertain, but taking it to be roughly 1/2, the distance to 
roll up of a turbulent vortex is about one-quarter of that for the laminar vortex, 
According to ( 4.12), the overshoot of circulation will develop at about twice the distance 

to turbulent roll up, and this will be before r0 ::f= ~ b and the two vortices interact. It 

is noteworthy that an overshoot of circulation implies that the mean velocity distribution 
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is unstable to axisymmetric disturbances leading to Taylor vortices with an axial wavelength 
of order r0 • Besides axial variations of vortex structure, enhanced mixing between the core 
and the outer parts of the vortex will occur. If the core is marked with smoke, it may appear 
as if the vortex has "burst". There is some experimental evidence that this occurs at distances 
of the predicted magnitude ( CHEVALLIER, 1973). Many casual observations of condensation 
trails show axial variations. 

When the radius of the vortices is equal to the semi-span, it is appropriate to treat the 
two vortices together as constituting a two-dimensional turbulent cylinder of fluid. We 
shall not discuss this problem here. 

The axial flow in a turbulent trailing vortex was also considered by SAFFMAN ( 1973). 
It was assumed that transfer of axial momentum by Reynolds stresses is negligible for 
r > rh so that (with light loading) 

(4.14) 
1 

w = --U {p(r;r0 )-p(r;r)}, (r < r0 ), 

where p(r; r0 ) is the pressure at radius r when outer radius is r0 • This pressure is given by 

the centrifugal force balance, 
ro 

(4.15) 
r~ 1 r F 2 

p(r; ro) = - -8 2 2 - -42) -3 dr. 
n ro n r 

r 

Substituting the profile ( 4.9), we obtain after some algebra 

(4.16) F5 ( 5Fi) 
w(r1) = - 8n2r5 1- 2Ff, ' 

plus smaller terms. This result is insensitive to the profile for r ~ r1 • It follows that the vor
tex contains velocities towards the wing if FtfF0 < 0.632. Arguments were given to show 
that w = w(r1) inside the core. 

To this velocity should be added that due to retardation in the wing boundary layer. 
If this is distributed uniformly, there will be an extra velocity wb = - Uh(J 2 fr5, where 
() 2 is the average momentum thickness at the trailing edge. 

5. The mutual instability of trailing vortices 

The trailing vortices of large aircraft constitute a serious hazard for foUowing planes. 
It is therefore of considerable interest to determine if there are any processes which can 
accelerate the decay. Blowing from wing tips has been suggested, but its effectiveness is 
uncertain. If it made a laminar vortex turbulent, the decay would be enhanced, but other
wise there is no obvious reason why it should make any difference. 

CROW (1970) discussed a further mechanism, namely the mutual instability of a pair 
of parallel line vortices. Crow employed the Biot-Savart law of induction with an adhoc 
cut-off to obtain the equations of motion for the perturbed vortices. This procedure was 
justified rigorously by MooRE & SAFFMAN (1972) for the case that lwlR2 /FL ~ 1, R ~ L, 
where nwR2 is the axial flux in the vortex (relative to the free stream) and L is the wave
length of the disturbance. MoORE & SAFFMAN gave equations for the spanwise (~+' ~-) 
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and vertical (r;+, r;_) displacements of the vortices executing c;inusoidal oscillations of wave 

length 2n/n, 

~t = -2~2 ['I+ -(nBK, +n2B2K 0)'J_ + ~ n2B2
( ~ -C-Iogn-log~)'l+], 

dr;+ = . _!_[~+-nK1 Be - __!_n2 B 2 (__!_ -C-1ogn-log<5)~ J 
dt 2nB2 - 2 2 + ' 

with similar equations for e_ and r;_ obtained by interchanging + and - and changing 

the sign of r. The quantity <5 is related to the effective radius of the vortex, <5 = ~ ej Reu• 

where 

(5.1) 

angle brackets denoting average values through the interior of the vortex of radius R. 
The values of <5 could be different for the two vortices if their structures were dissimilar. 
(C = 0.5772 ... ).The argument of the modified Bessel functions, K0 and K1 , in nB. B is 
the separation. of the pair. 

CRow supposed the vortices were in solid body rotation, as proposed by PRANDTL, 

so that for elliptic loading, F = F0 , B = nb/4, <5+ = <5_ = 0.126B. Under the conditions 
of validity of the theory, symmetric disturbances(~+ = -~-' fJ+ = r;_) are then unstable, 
and the most unstable wavelength is 1.4B and the e-folding time is 1.24(2nB2/F0) = 
= 0.3ln3 t*. If we use the structure predicted by the theory of laminar decay equation 
(3.7), it is easily seen that the viscous core and axial velocity are negligible, leading to 

2 1 2 -~ 
R 2(vo) z= 2 ro/n2

, Reu = e 4 R, and <5+ = b_ = 0.064B. Now the most unstable wave-

length is found to be 8.5B and the e-folding time is 1.21 (2nB 2/F0 ). The difference is negli
gible. Since the growth time scale is about lOt*, the fact that the trailing vortices are not 
completely rolled up before time t* is unimportant. If, for the sake of illustration, it is 
supposed that the same analysis may be employed for t < t* with Rand r replaced by 
rv and Fv, the disturbance of wavelength 8.5B is neutrally stable only for rv/R < 1/25. 

The instability criterion does not depend on the internal structure of the vortex, but 
only on its radius R, for 'from equation (2.13), 

(5.2) 2 2 Di F~ l (B) R (v6 ) = - -- og - . 
n 2n2 R 

The greater the induced drag, the smaller <5, and the more stable the vortices. As the 
induced drag increases as the speed decreases, the trailing vortices of landing aircraft wiJl 
therefore be slightly more stable. 

Unless the process of formation of turbulent vortices transfers significant amounts of 
energy from the free stream into the vorticese), leading to an increase in R 2(vt) over 

e) No criterion is known for determining if trailing vortices are laminar or turbulent. The energy of 
a turbulent vortex is more sensitive than the angular momentum to the assumed form of the defect law, 
and a better approximation than (4.9) is needed. 
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that given by (5.2), turbulent vortices should behave in the same way as laminar vortices 
with regard to the mutual instability. However, the time for turbulent vortices to interact 
through growth is comparable with t*, and the mutual instability is probably masked by 
turbulent dissipation. 

Observations of the mutual instability show that the vortices burst at the crests of the 
waves, where the separation is largest. This may be due to a transition from laminar to 
turbulent flow induced by the instability. A more plausible explanation is that the vortices 
are compressed at the crests, and that a line vortex is unstable to axisymmetric buckling 
when the compression rate is great enough. (The stability of a line vortex in axisymmetric 
stagnation point flow would be of interest; however, non-linear effects may be crucial.) 
As argued by MooRE & SAFFMAN (1972), internal waves tend to suppress changes in 
vortex radius due to unsteady displacements. The characteristic frequency of internal 
waves is F0/nR2 , and buckling may therefore occur when 

(5.3) 

where v. is the velocity along the vortex. MooRE (1972) has studied the finite amplitude 
oscillations of a pair of line vortices and shown that the linear theory is a good approx
imation for amplitudes large enough for the vortices to be touching. The maximum value 
of -oV.fos occurs at the crests (see MooRE & SAFFMAN (1972), equation D3), so this is 
where buckling is most likely to occur. 

CROW suggested that the mutual instability might be stimulated by periodic oscillations 
of lift and wing loading. This suggestion has been followed up by CHEvALLIER (1973). 
Some effect is observed, but analysis is rendered difficult by the spanwise vorticity in the 
wake due to the fluctuations in the wing loading. 
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