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On the existence and uniqueness of magnetohydrodynamical shock 
wave structures, disregarding thermal conductivity 

J. SKIEPKO (WARSZA WA) 

IN THE PRESENT paper, applying the metod described in [4], the existence of fast as well as slow 
shock waves structures is proved, disregarding thermal conductivity. It is also shown that by 
contrast with the fast shock waves, slow shock waves do not always possess a unique structure. 

W pracy przeprowadzono w oparciu o metod~ przedstawion~ w [4] dow6d istnienia struktury 
szybkich i struktury wolnych fal uderzeniowych; w dowodzie pomini~to zjawiska przewod
nictwa cieplnego. Wykazano ponadto, re - przeciwnie nii: w przypadku szybkich fal uderze
niowych- fale wolne nie zawsze maj~ jednoznacznie okreslon~ struktur~. 

B pa6oTe AOI<aaaHo cyll(ecrsosaHHe CTPYI<TYPhi 6hiCTphiX H crpyi<Typhi MeAJieHHhiX YAapHbiX 
BOJIH B cnyqae npeHe6pe>KHMOCTH TeiTJIOllpOBOAHOCTbiO. ,Uoi<aaaTe.JIJ)CTBO OCHOBaHO Ha npH
MeHeHHH MeTOAa, OllHCaHHOrO B pa6oTe [4]. fiOI<a3aHO, qTo, B npOTHBOBeC 6hiCTpbiM y,gap
HbiM BOJIHaM, MeAJieHHbie y,n;apHbie BOJIHbl He BCerAa 06JiaAaiOT e,n;HHCTBeHHOH CTpyi.:TypOH. 

1. Introtluction 

IN PAPER [4] the existence of a slow and a fast shock wave structure for a perfect gas with 
shear viscosity disregarded was proved. The proof was based on the topological properties 
of the generalized thermodynamical potential (see [1, 3, 4]). 

In the present paper, using the same method, the existence of slow and fast shock wave 
structures is proved but under the assumption that the coefficient of thermal conductivity 
is equal to zero, and the other three coefficients of dissipation are positive functions of 
class C1 of the physical parameters. Demonstrated are the uniqueness of the fast shock 
wave structure and the nonuniqueness of the slow shock wave structure. The latter result 
is also true under the assumptions of [4] where the coefficient of shear viscosity is put 
equal to zero instead that of thermal conductivity. 

For a perfect gas, with thermal conductivity disregarded, the set of equations of the 
shock layer can be written in the form: 

dB B-r: 
81 -d =- -C1V+c2 , 

X fl 

dv 
(1.1) s2 dx = (v-c1B), 

d-r: y-1 (M2-r:2 v 2 B2~ ) B
2 

c3 dx = --,;- --2- + T + 
2
ft +c2B-c1 Bv-c3 -r:+c4 +M2-r:+ 2ft -c3; 

(1.2) 1 (M2-r:2 v2 B2-r: ) 
T= c;; -2-+T+~+c2B-c1 Bv-c3 r+c4 , 
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where 

e, = a)u• e2 =!, e3 = (~+; 1J)M, 

T- temperature, r- specific density, f-l = const- magnetic permeability, M= f-liT = 
= const, [u, v, 0]- velocity vector, E = [0; 0, C2f-tM]- electric field vector (c2 = const), 
B = [c1f-tM, B, 0]- magnetic induction vector (c1 = const), c3 , c4 - positive constants, 
y = cp/cv- specific heat for constant pressure and, volume, respectively, ~' 'YJ- coeffi
cients of bulk and shear viscosity, respectively. 

We shall define functions F and W similar to the generalized dissipation and generalized 
thermodynamic potential introduced by Germain [1]. These functions can be written in 
the form: 

(1.3) rY-1 [ ( dB)
2 

( dv )
2 

( dr )
2

] 
F= -2- Et dx +s2 dx +s3 dx ' 

( 
M 2 r2 v 2 B 2 r ) 

(1.4) W = -
2
- + T + 2;;-+c2 B-c1 Bv-c3 r+c4 r~'- 1 • 

By means of them we can rewrite the system (1.1) 

aw oF 
aqi = aqi ' (1.5) i = 1' 2, 3, 

where qi (i = 1, 2, 3) denote B, v, r, respectively, and qi denote their derivati~es with 
respect to x. 

It is easy to show that W is an increasing function along the integral curves of the 
system (1.1 ). On that basis we shall prove the existence of the slow and fast shock waves 
structure. 

The system (1.1) has at most four singular points (see [1]) P(Bi, Vj, Tj) = Pi, (i = 
= I, 2, 3, 4). These points are numbered according to decreasing specific volume. This 
enumeration corresponds to the increase of entropy 

S(P1) ~ S(P2 ) ~ S(P3 ) ~ S(P4). 

The velocities at the points P 1 , P 2 , P 3 , P 4 can be ordered as follows: 

(1.6) 
1 

where bx = (M2f-tcir)2 is the normal component of Alfven speed, c1 and Cs are speeds 
of fast and slow magnetoacoustic waves respectively, being the roots of the biquadratic 
equation: 

u4 -u2 (a2 +bi+h;)+a2 hi = 0, 

Cs < c1 , by = (B,:r)~- tangent component of Alfven speed, a2 = --1
- !1!_1 a-

1 T
2 

OT s=so' 
speed of sound. 

The pair of points P 1 , P2 and the Eq. (1.2) determine the states of the fast shock wave, 
the pair of points P3 , P 4 - the states of the slow shock wave, the other pairs of points 
Ph Pb i < j, determine the states of intermediate shock waves. The integral curve of the 

http://rcin.org.pl



ON EXISTENCE AND UNIQUENESS OF MAGNETOHYDRODINAMICAL SHOCK WAVE STRUCTURES 265 

system (1.1), joining the points Ph Pi, i < j, describes the structl're of that shock wave. 
Taking into account the physical character of the variables B, v, r, T, our considerations 
will be limited to the domain Z of the semispace {(B, v, r), r > 0}, where T, defined 
by (1.2), is greater than zero. In the domain Z, W(B, v, r) > 0. The first step in our con
siderations is a qualitative analysis of integral curves in the space immediately adjacent 
to the singular point. To this end we shall determine the signs of the eigenvalues at points 
P;(i = 1, 2, 3, 4) of the linearized equations (1.1). 

2. Investigation of the integral curves of the system (1.1) in the neighbourhood of the 
singular points 

The linearized system (1.1) in the neighbourhood of P; has the form: 

(2.1) 

where 

dB T; -B - B;-
Et; ---- =- -CtV+ -T, 

dx p, ft 

dv 
E2; dx = -c1B+v, 

di B; - [ 2 y B~ ~c 3 J-
E3;-d = -B+ (y+1)M +-

2 
--y- r, 

X f-l ftT; 7:; 

Eki = Ek(B;, V;, 7:;) = Ek(P;), k = 1, 2, 3; i:::::: 1, 2, 3, 4, 

B = B;+B, V = V;+v, T = r;+T. 

Following the considerations of [1] or [4], we can state that the number of positive 
(negative) eigenvalues is equal to the number of positive (negative) coefficients in the 
diagonal form of the coefficients matrix A of the system (2.1). The quadratic form cor
responding to the matrix A, for the case r; ¥= p,d = r*, may be written: 

r; 2 2B; 2 
g(XX) = -Xt-2CtXtX2 +- Xt X3+X2 

1-l 1-l 
(2.2) 

[ 
yB2 C3] 2 2 r;-r* ( B; )

2 
+ (y+l)M2 + ---y- X3 =: (x2-CtX.) +--- Xt+---X3 

~~ ~ 1-l ~-~ 

[ 
2 'Y B[ c 3 B[ J 2 

+ (y+ 1)M + 21-l T; -r-:r;- p,(r;- r*) x3. 

From the last-given identity it follows that the linear transformation 

(2.3) 

Y3 = X3, 

transforms the form g(XX) to the diagonal form: 

r;-r* [ y Bt c3 Bl J 2 (2.4) g(XX)=yi+--y~+ (y+1)M2+----y-- Y3· 
p, 2p, r; r; p,(r;- r*) 
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The matrix B of the transformation (2.3) transforms the matrix A to the diagonal 
form D, i.e. 

BA BT =D. 

The coefficients of the matrix Dare equal to the coefficients of the form g(YY). The coeffi
cient at yr is positive, the coefficient at y~, in view of the inequality (1.6), is positive at 
the points P 1, P2 and negative at the points P 3 , P4 • The coefficient of y~ may be vvTitten: 

Since ur-b;i is positive at the points P1 , P2 , negative at P 3 , P4 and [(uf-ar)(uf-b;J
-b;i uf] is positive at P 1 , P4 , negative at P2 , P3 , the coefficient of y~ is positive at P1 , P 3 

and negative at P 2, P 4· 

From the above considerations follows: 
THEOREM 1. At point P 1 all eigenvalues are positive, at points P2 , P3 two eigcnvalues 

are positive and one 11egative, at P 4 - one positive and two negative. 

If c2 = 0, then ri = '* at point Pi (i = 2, 3). In this case, applying the nonsingular 
transformation 

we can transform the form (2.2) to the diagonal form: 

2 [ 2 yB
2 

CJ J 2 Bf 2 

fl't'i 't'i 2 2 yB2 CJ 
g(YY) = Y1 + (y+ I)M + -2--y- Y2- [ --JYJ· 

fl (y+ I) M + - · -· - -y-
2flr; r; 

This proves that for c2 = 0, Theorem I is also true. 

3. Qualitative analysis of the surface W = const 

We shall analyse the surface W(B, v, r) =A, where W(B, v, r) is the function defined 
by (1.4) and A is a positive constant, (B, v, r) e Z. The gradient of W(B, v, r) is equal to 
zero only at the singular points of the system (1.1) [this results from the equivalence of 
the systems (1.1) and (1.5)] hence, the surface W(B, v, r) = const has the only singular
ities at the points Pi (i = I, 2, 3, 4). On repeating the same considerations as in [4), 
the following coro1laries may be proved: 

CoROLLARY 1. In the neighbourhood of the point P 1 the surface W(B, v, r) = A1 is 
reduced to the point P 1 , in the neighbourhood of the point Pi (i = 2, 3, 4) the surface 
W(B, v, r) = A is topological/y equivalent to a cone. 
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COROLLARY 2. The surface W(B, v, r) = A 1 + <5 is in the neighbourhood of P 1 topolo

gically equivalent to a sphere; the surfaces W(B, v, r) = Ai + <5, in the neighbourhood of 
P;(i = 2, 3)- topologically equivalent to a hyperboloid of one sheet, and in the neighbourhood 

of P 4 the surface W(B, v, r) = A4 + <5 is topologically equivalent to a hyperboloid of two 

sheets. 

CoROLLARY 3. The surface W(B, v, r) = Ai-<5, is in the neighbourhood of Pi an 

empty set for i = I , a set topologically equivalent to a hyperboloid of two sheets for i = 2, 3, 
and a set topologically equivalent to a hyperboloid of one sheet for i = 4, where Ai = 
= W(PJ (i = I, 2, 3, 4) and <5 is a sufficiently small and positive constant. 

As a result of the orthogonal projection of the surface W(B, v, r) = A into the plane 
(B, r), we get a set GA in the semiplane r > 0, the boundary of which consists of the 
B axis and the curve QA. The equations: 

(3.1) W(B, v, r) =A, oW(B, v, r) = O 
ov ' 

describe the curve QA. 
Making use of the formulae describing the function W(B, v, r) [see (1.4)] and then 

eliminating v from the system (3. I), we obtain the equation for QA: 

(3.2) rH (M~r2 

- _ci:2

- + _!Ji~- +c2 B-c3 r+c4 ) =A. 
The left-hand side of (3.2) is the function K(B, r) known from [4]. The Eq. (3.2) describes 
the family of the curves QA discussed in [4]. 

Each of the points belonging to the interior of the domain G.t is an orthogonal projec
tion of two different points on the surface W(B, v, r) = A into the plane (B, r). Each 
of the points belonging to the curve Q A is an orthogonal projection of one point on the 
surface W(B, v, r) = A. 

4. Proof of the existence of fast and slow shock wave structures 

Let us analyse changes of the surface W(B, v, r) = A for A > A 1 • On the basis of the 
interpretation of the domains GA and on the properties of the curves Q.t, proved in [4], 
we state that the surface W(B, v, r) = A1 consists of the surface topologically equivalent 
to a plane and of the isolated point P 1 • For A > A 1 and A ciose to At. the closed part of 
the surface W(B, v, r) = A will be formed, with the point P 1 being in the interior of the 
surface. With A increasing, the dosed part of the surface W(B, v, r) = A will enclose 
a greater and greater domain, approaching the other part of the surface. Both parts of 
the surface W(B, v, r) = A will be in touch, at the point P2 for A = A 2 • 

From the considerations in 2, we have the result that all the integral curves of the system 
( 1.1) passing through the neighbourhood of P 1 leave the point P 1 • Along each integral 
curve, W(B, v, r) is increasing. Thus through each point of the closed part of the surface 
W(B, v, r) = A(A 1 <A < A2 ) there passes an integral curve leaving the point P 1 • 

Because both parts of the surface W(B, v, r) == A have a common point P2 (for A = A2), 
then there must exist an integral curve joining P1 and P2 • The second integral curve of the 
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system (1.1) reaches the point P2 in the opposite sense and it cannot leave P2 (there are 
only two integral curves reaching f 2 ). Thus is proved the existence and uniqueness of 
the fast shock wave structure. 

To prove the existence of the integral curve of the system (1.1) joining P3 and P4 , let 
us notice that according to Hadamard-Perron's lemma [2], the integral curves leaving 
P 3 form in the neighbourhood of P 3 the manifold diffeomorphic to a plane. The manifold 
will intersect the surface W(B, v, r) = A, (A > A3 and A close to A3 ), along the closed 
curve LA, that cannot (without leaving the surface W = A) be continuously transformed 
into a point. The curve LA must, as was shown in paper [4] for A = A4 , pass through P 4 • 

Thus is proved the existence of the slow shock wave. 

5. On the non-uniqueness of the slow shock wave structure 

Contrary to the fast shock waves, the system (1.1) determines not always uniquely the 
slow shock wave structures. This fact can be stated as follows. 

THEOREM 2. There are sets of positive, class Cl, coefficients ei(B, v, r) (i = 1, 2, 3), 
for which there exist at least two integral curves of the system ( 1.1) joining the singular 

point P 3 with the singular point P 4 • 

Let us define a set of positive functions e;(B, v, r) in the semiplane {(B, v, r): r > 0}, 
ei E C 1 (i = 1, 2, 3). To facilitate the considerations, we take ei = e? = const > 0. To 
these ei corresponds the integral curve C of the system ( 1.1) joining P 3 with P 4 • Then, 
let us restrict the domain of these functions so as to form two closed domains D3 , D4 , 

D3 n D4 = 0, sufficiently bounded by the regular surfaces 1:3 , 1:4 . 

Let the singular point P; belong to the interior of the domain D;{i = 3, 4). Thus the 
system (1.1) is uniquely defined in Di and the solutions of (1.1) are defined in Di(i = 3, 4). 
According to the results of 2, the integral curves of the system (1.1) leaving the point P 3 , 

as well as the integral curves reaching P4 , form two-dimensional manifolds. The points 
of these manifolds belonging to Di(i = 3, 4) are well defined because Bj are known. Let us 
join point P3 with P4 by means of two regular arcs Cl, C2 E Z (having a parametrical 
representation of class C2

) non intersecting with each other in such a way that in the 
domain D3 the arcs form two integral curves leaving P3 and that in the domain D4 the arcs 
form two integral curves reaching P 4 • Thus to each point belonging to one of the arcs 
cl' c2 can be attached a well defined direction (the direction of the arc at this point). 
Let us define on the arcs C1 and C2 coefficients ei(B, v, r) (i = 1, 2, 3) of the system 
(1.1) in such a way that every point of each arc the direction of the arc is the same as the 
field of directions defined by (1.1). Moreover, it can oe guaranteed that such defined 
Bj(B, v, r) are positive functions of the arc parameter of class C1 . Indeed, as C1 may be 
taken the curve C defined at the beginning of 5. In the neighbourhood of C the arc C2 can 
be constructed corresponding to positive Bj(i = 1, 2, 3). This is the result of the conti
nuity of the right-hand sides of (1.1). The regularity of the right-hand siqes of (1.1) and the 
assumptions adopted on the regularity of the arcs C 1 and C2 guarantee the continuity 
of the derivatives Ej along the arc. Thus we have Ej defined on the set D3 V D4 V cl V c2. 
It remains to continue them as a function of class C1 in the semispace r > 0. It is evident 
that the adopted assumptions enable the continuation to the function of class C1 in the 
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neighbourhood of D 3 u D4 u C1 u C2 , and by Whitney's theorem [5] follows the 
possibility of continuation to the space (B, v, r). 

We have proved that there exist sets of positive Cj, Cj E C1, to which two integral 
curves of the system ( 1.1) correspond. 

The result obtained is also true under the assumptions adopted in [4]. 

6. Conclusion 

The results obtained concern the limiting case corresponding to the thermal con
ductivity equal to zero. The thermal conductivity always causes some effects, but in some 
problems of wave structure they may be negligibly small compared with those due to 
other dissipation mechanisms. In such cases, to describe the wave structure it is convenient 
to adopt thermal conductivity as equal to zero. The results obtained guarantee the existence 
of the description of the fast and slow wave structures in the class of differentiable 
functions. 

The results of Sec. 5 show that for certain sets of dissipation coefficients the system 
of magnetohydrodynamic equations does not determine uniquely the structure of slow 
shock waves. Perhaps some additional conditions imposed on the dissipation coefficients, 
following from physical arguments might eliminate this nonuniqueness. 

References 

1. P. GERMAIN, Contribution a la theorie des ondes des le choc en magnetodynamique desfluides, O.N.E.R.A., 
Publ. no 97, 1959. 

2. PH. HARTMAN, Ordinary differential equations, New York-London-Sydney 1964. 
3. A. r. KYJIHI<OBCI<HH, 0 cmpyKmype yoapHblX 60/lH 6 Ma2HUmHOU zuopoouHaMUKe npu npoU360/lbHOM Ja

KOHe oucunatJUU, n.M.M., 24, 2. 
4. J. SKIEPKO, On the existence of magnetogasdynamic shock waves structure with negligible shear viscosity, 

Arch. Mech., [in print]. 
5. H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Transaction American 

Mathematical Society, V. 36, 1934. 

UNIVERSITY OF WARSAW. 

Received July 6, 1973. 

http://rcin.org.pl




