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Acceleration wave and progressive wave in non-linear elastic 
material 

Z. WESOLOWSKI (WARSZAWA) 

CoNSIDERATION is given to propagation of an acceleration wave in elastic materials subject to 
large strains. The condition of propagation of such a wave is constructed and then, by intro
ducing the notion of an acoustic radius, a general solution of the equations of motion is derived. 
The progressive wave is then discussed, its phase and group velocities being determined. It is 
demonstrated that the velocity of propagation is approximately equal to the geometric mean 
of the phase and group velocities. 

RozwaZ:a si~ propagacj~ faJi przyspieszenia w materiale spr~zystym, poddanym duzym odksztal
ceniom. Buduje si~ warunek propagacji takiej faJi, a nast~pnie po wprowadzeniu poj~ia promie
nia akustycznego wyznacza og6Jne rozwi~zanie r6wnan ruchu. Z kolei rozwai:a si~ fal~ post~
puj~c~ i wyznacza pr~dkosc fazow~ i grupow~. Pokazuje si~, ze w przybJizeniu pr~dkosc pro
pagacji jest sredni~ geometryczn~ pr~dkosci fazowej i grupowej. 

PaccMoTpeHo pacrrpoCTpaHeHHe BOJIHbi yci<opeHHH B ynpyroM MaTepHaJie, rro~aeprHYTOM I<o
HetiHbiM ~e<f>opMai..(HHM. IJonyq:eHO ycJIOBHe pacrrpOCTpaHeHHH 3TOH BOJIHbi, a 3aTeM, Ha OCHOBe 
BBe~eHHoro rroHHTHH ai<yCTHtieci<oro nyqa, orrpe~eneHo o6~ee pemeHHe ypaBHeHHii ~IDI<e
HHH. ,UaJiee, HCCJie~yeTCH rrporpeCCHBHaH BOJIHa, ~ I<OTOpOH orrpe~eJieHbi <f>a30BaH H rpyn
IIOBaH CI<OpOCTH. Iloi<a3aHO, liTO CI<OpOCTL pacrrpOCTpaHeHHH paBHa B 1IpH6JIH>I<eHHH cpe~HeH 
reoMeTpHlleCI<OH BeJIHliHHe <f>a30BOH H rpyiiiiOBOH CI<OpOCTeH. 

THE PRESENT paper is aimed at developing the simplest possible theory of waves in a non
linear elastic material. That is why we shall confine considerations to small amplitudes, 
which will enable us to apply the linearized equations of motion. A number of results 
concerning large amplitudes may be found in various papers published in recent years 
(cf. [1] and the references cited there), but the corresponding equations are very compli
cated. In particular, the equations governing the amplitude variations (analogous to 
the Eqs. (3.17)) are extremely complex, and relations corresponding to those presented 
in Sec. 4 of this paper have not been derived at all in the case of large amplitudes. 

It should be stressed that the majority of the general considerations given in this paper 
(except those presented in Sec. 4) may be found in various books and papers dealing with 
the theory of differential equations; however, they are rather dispersed and generally un
known. Thus it seems useful to collect them, to apply them to non-linear elasticity and to 
present the results in a concise form. 

1. Equations of non-linear elasticity 

Let {Xa} and {xi} denote two, generally curvilinear coordinate systems. The body 
in a natural configuration BR is referred to the system {Xa}, and the body in actual configu
ration B is referred to the system {xi}. Coordinates of a typical material point in the respec
tive configurations BR and Bare xa and xi. 
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Let us consider the motion 

(I. I) 

Denote by TRia. the Piola-Kirchhoff stress tensor. If (J is the stored energy (elastic poten
tial), and X~ = 8x1 I ax:x - the strain gradient, (!R denoting the mass density in the natural 
state BR, then holds true the relation (cf. [2]): 

a(J 
(1.2) TRi = eR-

8 
i , (J = (J(xia., xP). 

X a. 

The tensor inverse to Xi a. is denoted by xa. i, 

Xia.X\ = ~ib X1\~p = ~fi.P· 

The equations of motion have the form: 

(1.3) 

where double vertical lines denote the total covariant differentiation 

(1.4) 

and a single vertical Jine corresponds to the partial covariant differentiation (cf. the formula 
dfdX = 8f8X +(8f8x)(dxfdX); a dot denotes the material time derivative. 

Let us consider another motion 

(1.5) x*i = ~i(X«, t)+ui(X«, :i', t), 

which differs only slightly from the motion (1.1). Vector ui is the vector of additional 
displacement. If the Eqs. (1.3) are satisfied, then the disturbed motion equations (1.5) 
are (cf. [3]) 

(1.6) (Ai«/ukllp)lla. = (!Rii, 

where 

(1.7) 

Let us denote 

(1.8) 

where eikm and ea.py are the Ricci tensors. If both the coordinate systems {xi} and {X«} 
are Cartesian, then J = detx1 • Since J is the measure of the ratio of material volumes 
in B and BR, the relation 

(1.9) 
I 

(! = J f!R holds true. 

Let us introduce the tensor B// defined by one of two equivalent formulae: 

(1.10) 

(1.11) 

B{ks = J- 1Ai«/xra.Xsp, 

At/= JB{ksxa.rXPs· 

The relation (1.11) is now substituted into the linearized equation of motion (1.6). Taking 
into account the Eq. (1.9) and the identity 

(1.12) (JX«r)ll = 0, 
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we obtain a different form of the linearized equation of motion, namely the equation: 

(1.13) (B{ksuklls)ll, = eu,. 
Without any loss of generality, it will be assumed in what follows that the displacement 

ui and tensor B{ks are functions of the only variables x1 and t (variables xcz are eliminated 
by means of the Eq. (l.I)). Thus the total covariant differentiation in the Eq. (1.13) is 
reduced to the usual covariant differentiation. The Eqs. (I .I3) are then reduced to: 

(l.I4) 

These equations will be subject to further analysis. They describe the dynamics of small 
deviations from the fundamental motion (I. I). A particular case of the Eqs. (l.I4) is re
presented by the Lame equations which correspond to the case in which the fundamental 
motion does not exist. On comparing the Eqs. (l.I4) with the Lame equations, it is found 
that in the classical elasticity theory the functions B{ks are equal to 

B <t2> _ B<13> _ I (, + n.) 
12 - 13 - 2 /1. I' 

(I. IS) 
B1122 = B1133 =A., B// = B13/ = ft· 

The functions B{ks and B{ks result from cyclic interchange of indices. 

2. Surface of discontinuity 

Let fJ' be a time-dependent surface described by one of the relations 

(2.1) t = 1p(x'), 

(2.2) x 1 = 'JT}(MK, t), K = 1, 2. 

where Mt, M 2 parametrize the surfacef/'. The relations (2.1) and (2.2) are not independent, 
since the Eq. (2.1) may be obtained from the Eq. (2.2) by elimination of the parameters 
M 1

, M 2
• The unit vector orthogonal to fJ' is denoted by ni: 

V',i 
ni = --:=. :::::'::::''===-.. ; rs 

(2.3) 
J' V',r V',sg 

Here, and throughout the paper, a comma denotes the partial differentiation. The vector 
ni,K = oni I fJMK is tangent to fl', and hence its scalar product with the vector ni vanishes, 

(2.4) 

Substituting the Eqs. (2.2) into (2.1), and differentiating in timet, we obtain the relation: 

(2.5) 

Using in turn the Eq. (2.3), we have 

(2.6) 

V',rn',t = 1. 

= nrn',t, 
I 

U=--. 
1p,n' 

U is now the velocity of surface fJ' in the direction of a vector normal to f/'. That velocity 
will be termed the velocity of propagation of the surface fl'. 
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Let H be an arbitrary function of variables xi and t, H = H(x1
, t). On each side of the 

surface 9', the magnitude H may be represented as a function of MK and t, 

H = Hp(MK, t) on f/'p, 
(2.7) 

H = Hs(MK, t) on fl's. 

The function Hand its derivatives H,r, H,t are, in general, discontinuous on 9'. Obviously, 
we may write the relations 

dHp . 
dMK = (H,i)P1t,x, 

dHF · dt = (H,t)F+(H,;)pn',t· 

(2.8) 

The magnitude dHpfdt represents the time rate of change at the point off/' with coordinates 
MK = const. Similar relations hold true on the side 9' B· Denoting the jump by double 
brackets 

we have then: 

(2.9) 

(2.10) 

[.] = (.)p-(.)s, 

[H].x = [H,i]n',x, 

[ H].r = [ H,r] + [ H,;] n',r . 

Let us now consider the particular case in which His continuous over 9', and only 
the derivatives of H suffer certain discontinuities. Inserting [ H] = 0 into the Eq. (2.9) 
and making use of the Eq. (2.4) yields: 

(2.11) 

A being an indeterminate parametr. Substituting now the Eq. (2.11) into (2.10) and taking 
. into account the Eq. (2.6), we obtain 

(2.12) [H,r] = -AU. 

The acceleration wave, or the wave of weak discontinuity, is the name attributed to 
alJ the phenomena occuring at such a discontinuity surface that ui, u1

,k and u1,r remain 
continuous. The surface 9' itself is called the wave front; it separates the disturbed 
region from the undisturbed region. Assuming in the Eqs. (2.11 ), (2.12) consecutively 
H = u1

,k and H = u1
,, and taking into account the symmetry of derivatives u1

,km = u;,mb 
u;_kt = u

1
,rk, we obtain: 

(2.13) 

[ui,rs] = a'n,n,, 

[ui,rr] = -aiUn, 

[ui,rr] = aiU2. 

Here a1 is an indeterminate vector. It determines the magnitudes of jumps of the second 
derivatives of the displacement vector and is called the amplitude. The covariant deriva
tives and the material time derivative are obtained from the partial derivatives by adding 
the terms involving only the first derivatives of the vector ui. For an acceleration wave, 
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the first-order derivatives are - according to the definition - continuous on f/, and 
hence the conclusion follows that the Eqs. (2.13) also hold true for the covariant and 
material time derivatives. Finally, we obtain 

(2.14) 

[u'lrs] = ain,ns, 

[u,l,] = -a1Un, 

[ ''] _ iU2 u1 -a . 

3. Propagation condition and the equation of the acceleration wave amplitude 

Let us now pass to the derivation of the condition of propagation of the acceleration 
wave. Since the magnitudes B{k:r, B{k:rl, and e are independent of u1

, they must be con
tinuous on f/; but u'ls are also continuous, and in accordance with the Eq. (1.14), we 
have: 

(3.1) 

Substituting here the compatibility conditions (2.14), we obtain the condition of pro
pagation of the acceleration wave: 

(3.2) 

where 

(3.3) 

is the acoustic tensor. By means of the Eqs. (2.3) and (2.6), that condition may also be 
written in another, equivalent form 

(3.4) 

From the Eq. (3.2) it follows that ak is the eigenvector, and the product eU2 - the 
eigenvalue of the acoustic tensor Qik· This is a symmetric tensor, therefore there 

(l)k (2}k (3)k 

always exist three orthogonal admissible amplitudes a , a , a, and three corre-
sponding real products e U2

• If the products happen to be positive, then the real velocities 
I 2 3 

U, U, U exist, and the wave can be propagated. It is easily verified that for the tensor 
B{ks as given by the Eq. (1.15) the product eU2 is positive, since J.+2,u > 0 and ,u > 0. 
If d'llnk, then the wave is longitudinal, and if ak _L nk , the wave is transversal. A typical 
wave is neither longitudinal nor transversal. 

According to the propagation condition (3.2), the tensor Qrk-eU2gik is singular. 
By means of the Eqs. (2.3) and (2.6) we obtain the equation 

(3.5) 

It is a non-linear equation for the function 1p(x1
) determining the wave front motion. 

The condition of propagation (3.2) determines the direction of the amplitude but not 
the amplitude itself. Let us now pass to constructing the equation governing the changes 
of amplitude. From now on, ak will denote an arbitrary, fixed vector satisfying the con-
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dition (3.2). The real, actual amplitude which is collinear with tf will be denoted by another 
symbol. Displacement u"(x', t) is represented in the following form (cf. e.g. [5]): 

(3.6) 

where 

(3.7) 

(3.8) 

00 

u"(x', t) = .2; s,+2((/J)g! (x', t), 
v-=0 

1 [ 1 ]" s, = -;r 2 c1(/)1 +qJ) , 'V = 1' 2, ... , 

qJ = 1p-t, 

and g! (x', t) are functions of the class C2
• The following identities are easily derived: 

dS, 
dqJ = s,_l, 

(3.9) dr dS1 ~1 So = - = 'f}(qJ) = 
dqJ 0 

for 

for 

qJ > 0, 

qJ < 0, 

(,U+P)! 
S0 S, = S,, S,..S, = -,-,-S,..+". 

I"· 'V. 

S0 is hence the Heaviside function, and all functions S", P ~ 1 are continuous. The sum
mation in the Eq. (3.6) starts at S2 to ensure the continuity of displacement u" and of the 
derivatives zf,, zf,,. Let us confine our considerations to the case of stationary, fixed initial 
deformation. Differentiation of the expression (3.6) and the relations (3.9) yield 

00 

u"l, = S1 qJ,.to+ _2; Sv+2(gv"l,+qJ,~+l), 
v-=0 

(3.10) 00 

+ .2; sv+2(g!l,s+qJ,g~+lls+(/Js~+llj + qJ,I,g!+l +qJ,(/Js8'!+2), 
v=O 

00 

··A: s ,.k s < 2 ·" -1) \"1s (""" 2·" ··" ) u = ooo+ .1- go+o1 + .L:.J v+2 g,- g,+l+g,+2 · 
, ... o 

Function ~ denotes the magnitude of the jump of second derivatives of the displacement 
vector zf. 

Let us substitute the above expression into the Eqs. (1.14), and group the terms 
involving S11 • We obtain the equation: 

00 

(3.11) !l',,u' = S0 B0 +S1 B1 + ,l,Sv+2 B,+2 = 0, 
v-=0 

in which 

(3.12) Bo = (B{~c8(/Jr(/Js-(!gik)gi = 0, 

(3.13) Bl = (B{,/(/J,qJs-(!gik)it + [B{~c"(qJ,rlls+(/Js.tol,) 
+2eg~ + (Btk"qJ,I,+B{~c"l,qJ,)g~] = 0, 
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(3.14) Bv+Z = (B{k59?r9?s-egik)g~+z+B{k5 (<p,g~+tls+<psg~+dr) 

+2eg~+l + (B{k59?rls+B{k5 lr9?s)g~+l +%;,g~ = 0 · 

The function S0 , S1 , S2 , •.• are linearly independent and thus each of their coefficients 
B has to vanish. Consequently, the signs of equality and zero were added at the right-hand 
sides of the relations (3.12)-(3.14). In the Eq. (3.12), the expression in parenthesis is iden
tical with that in the propagation condition (3.3). It follows (under the assumption that 
the Eq. (3.4) has no double roots) that the equation 

(3.15) 

holds, where u0 is a scalar multiplier. It should be stressed that ak is assumed to be an 
arbitrary, fixed solution of the Eq. (3.2). 

Let us now multiply the Eq. (3.13) by ai. Pursuant to the Eq. (3.3), the first term equals 
zero and, after substitution of the Eq. (3.15), the equation is reduced to the form: 

(3.16) aid' [B{:/( <p, Xo,s + <ps "o,r) + 2euogik] 

+ Xoai [B{k5 (<p,akls + <psd'l,) + 2egikak + (B{k59?rls + B{k5lr9?s)d'] = 0 · 

This is a partial differential equation for the function x0 . Let xi = xi(A), t = t(A) denote 
a curve in the four-dimensional space {xi} x t determined by the differential relations 

(3.17) d~ i_k(B' ~ B' s) -dA = a u- .i k + ; k <p, 

Let us make the assumption that the parameter A is so selected that at the instant t = 0 
also A = 0. According to the Eq. (3.17), we have 

(3.18) 

The first term in the Eq. (3.16) is then equal to dx0 /dA. On the curve {A}, the coefficient 
at x0 is in this equation a function of A only. This function is denoted by P(A). The Eq. 
(3.16) is now reduced to the ordinary differential equation: 

(3.19) 

with the solution 
). 

(3.20) "o = C0 exp (-J P(A)dA). 
0 

Here, C0 denotes a constant of integration. 
Let the curve {r} be a projection of the curve {A} upon the three-dimensional space. 

The curve {r} is determined by the relations (3.17) 1 • From the Eq. (3.20), it follow~ that if 
at one point of the curve {r} x0 = 0 (or u0 i= 0), then at any other point of that curve 
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u0 = 0 (or u0 -::/: 0). Therefore, the curve {r} is the acoustic radius, [I]. The Eq. (3.17) 1 

is closely connected with the acoustic tensor Q;b since from the Eq. (3.2), we obtain 

(3.21) 
dxs 1 L.k oQ ik 
-=-a a-----. 
dJ.. u ons 

Let us now return to the Eq. (3.13). The expression in brackets is already known, 
so we are able to determine g~. The expression in parenthesis being a singular tensor, 
the vector gf may be represented in the form 

(3.22) 

where 

(3.23) 

In compliance with the Eq. (3.3), only the vector k 1k enters the Eq. (3.13). This equation 
does not lead to contradiction and enables k 1 k to be determined. To determine the parameter 
u1 , let us consider the Eq. (3.14) with v = 0. Multiplying it by d, g~ is eliminated. In the 
resulting equation, the expressions (3.22) are substituted to yield the differential equation 
for the parameter u1 

(3.24) dak [B{ k 5 (<p,ul,s + <{JsUt,r) + 2exlgi;.] +Ut d[B{,.~(<p,akls + <{Jsdl,) + 2egikizk 

+ (B{ k si,({Jslr + B/ k5 lr<{Js)ak] = - d [B;\5 (<p,k~ Is+ <{Jsk~l,) + 2ek ~ 

+ (B;\5<{Jsls+B{k5 l,<ps)k~ +~;,g(,]. 

The left-hand side is exactly the same as in the Eq. (3.16), provided that ;e0 is replaced 
by u1 • Therefore, the entire expression may be replaced by d;e 1 fdJ..+ u1P(J.). On the curve 
{ J.}, the right-hand side of the Eq. (3.24) is a function of J... Denoting this function by 
Kt(}..), we obtain: 

(3.25) 

It follows that the solution of the Eq. (3.24) is: 

(3.26) 
A 

Ut = cl exp (-J P(J..)dJ.) + Dt (J.). 
0 

Here, Dt is the particular integral of the Eq. (3.25). Proceeding in a similar manner with 
the Eq. (3.14), for v = 1, 2, 3, ... we obtain for each v > 1 

(3.27) 

(3.28) 

g~ = u,ak+k~, 
A 

u, = C,exp(- J P(A)dJ.)+D,(J..). 
0 

The functions k,(A) and D,(A) are known if the parameters ;e11 for fl < v are known. 
The unit vector in the direction of the acoustic radius {r} is denoted by rk. It is collinear 

with the vector dxkjdJ.. given by the Eq. (3.21). The velocity at which the discontinuity 
surface!/ propagates along the radius {r} is the radial velocity. The relation 

(3.29) 
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holds. Using the conditions (2.6) and (3.29), we obtain 

(3.30) 

4. Progressive wave 

1 
Ur = -k-. 

r "Pk 

305 

The solution derived enables us to construct a different solution which has no discon
tinuity at the surface qy = 0. Let us in the relation (3.6) replace the functions S,(qy), defined 
by (3.7), by arbitrary functions T,(qy) satisfying the relation 

(4.1) 
dT, 

2 dqy = Tv-1 ' 'V = 0' 1 ' ' ... ' 

and let us construct the series: 

00 

(4.2) u"(xr, t) = }; T,+ 2 (qy)g:(xr, t). 
11=0 

The series, if it is convergent, represents the solution of the Eq. (1.14). For the displacement 
u" in the form (4.2), the Eq. (1.14) assumes the form (3.11) with functions S, replaced by T,. 
All the coefficients B, are zero and hence !l'irur = 0. 

In particular, we may assume 

(4.3) T - 1 iwtp 
v+2 - (iwY e , w = const, i = y=T, 

and then 

(4.4) "( r t) _ iwtp( k + 1 k + I k + ) u x , - e go iw-gt (iw)2 g2 ··· · 

The solution ( 4.4) is called the progressive wave. 
Since our considerations are confined to the case in which the function ;i in (l.I) 

does not depend on the time, then the functions B{"s depend solely on x"', in accordance 
with the Eqs. ( 1. 7) and ( 1.10). Consequently, from the considerations presented in Sec. 3 
it follows that the functions u,, g~ are time-independent, g~ = g~ (x"'). By using the definition 
(3.8), the solution (4.4) is reduced to 

(4.5) 

and represents a product of a function of time and a function of place. The solution (4.5) 
is closely connected with the surface of discontinuity. It should be stressed that separation 
of the variables in the Eq. (1.14) does not directly lead to the solution (4.5). 

In order to write the Eq. (4.4) in a real form, let us first observe that, in the situation 
described, the solution may also be represented by: 

(4.6) "( r t) _ (-iW)tp( k + I k 1 k + ) 
u x, -e go (-iw)gt+ (-iw)2g2 ···· 

9* 
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Summing both sides of the Eqs. (4.4) and (4.6), we obtain the real solution 

k (k 1 k 1 k 1 k ) (4.7) U = g0--2 g2 +~g4--6 g6+··· COSW([J 
(J) (J) (J) 

(
1 k 1 k 1 k 1 k )· + -g1--3 g3+-5gs--7 g7+··· SIUWf[J. 

(J) (J) (J) (J) 

Pursuant to the Eq. (3.27), the displacement u may be written in the following form: 

Denoting 

(4.9) 

we obtain 

(4.10) 

N 
a= arctg M, 

The expression WqJ- a = -wt+wtp- a is called the phase. The point of space at which 
the phase is constant form, a certain surface!/ 1 which is moving in time. The surface!/ 1 
moves, in general, in a different manner than the discontinuity surface!/. Various velocities 
may be attributed to the surface!/1 , such as velocity in the direction of its normal (velocity 
of propagation of!/ 1 ), velocity in the direction of the normal n , and the veJocity in the 
direction of the acoustic radius {r}; the Jast named is called the phase velocity. By means 
of the Eq. (4.10), the equation of the constant phase surface is 

(4.11) -wt+wtp- a= const. 

When written in a differential form 

(4.12) -wdt+(w'Pl- ::. )u1r'dt = 0, 

the expression for the phase velocity may be written as: 

(4.13) 

From the Eq. (3.30) it follows that the product "Pknk is equal to 11 U. Thus we finally obtain: 

(4.14) 1 
U1 = U,-----

1- u ,k_!__a_a 
, w a:x!' 
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The vector Rk is a function of the variables :0 and t and has the form of a trigonometric 
function cos(cmp+k"). The Rk vector cannot be taken into account in the evaluation of the 
phase velocity, since fork = I, 2, 3 three different phase velocities are obtained, different 
also from U1. Let us, however, observe that for large eo the vector Rk is small in comparison 
with the first term of (4.IO), since each of the components of Rk is divided by con, n ~ 1 
[it is known from the Eq. (3.15) that Po = 0). The first term of ( 4.10) represents then the 

principal part of the displacement. 
Usually, we have to deal not with a single wave (4.10) but with a system of waves with 

frequencies from within a certain interval co 1 <eo < w2 and with amplitudes forming 
a continuous function of the frequency eo. The displacement has then the form 

(4.15) 

where ak, in compliance with the analysis of the preceding section, is independent of eo. 
The case in which w2 is close to eo 1 is of special interest. The Eq. ( 4.15) may then be con

sidered as a superposition of two waves with identical amplitudes, and with frequencies 
w+L1w andco-L1co, L1w ~eo. 

(4.16) 

whence it follows 

tf = t!y' M2 + N2 {cos [ ( w + Llw) cp- ( ~ + ;: Llw}] 

+cos[ (ro-Liro)cp- ( ~- ;: Llw ]}+~'. 

(4.17) u' = [2a'y'M2 +N2 cos(cp- ;: }Liw]cos(rocp-~)+~'. 
The motion represents a wave cos(colp- ex) with an amplitude (expression in brackets) 
varying in time and space as cos(lp- cxw)L1w; thus we are dealing with groups of waves 
which move as the surfaces described by the equation 

(4.18) (cp- ;: )Llw = ( -1+10- ;: }Liw = const. 

The propagation velocity of these surfaces measured in the direction of rk is the group 
velocity Ug. According to ( 4.I8), we have 

(4.19) 

and 

(4.20) 

( 
8

2
cx } -dt+ "Pk- awax" Ugrkdt = 0, 

Ug = Ur ------
82cx 

I + Urrk awaxk 

Let us concentrate upon the first two approximations. For sufficiently large frequencies 
eo, all terms in the Eq. (4.7) may be disregarded except g~ coswlp; that leads to the first 
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approximation. Then N = a = 0 [cf. Eq. (4.9)] and from the Eqs. (4.14) and (4.20), we 
obtain: 

(4.21) 

In deriving the second approximation, all terms of orders higher than 1 /w 2 are disre
garded: 

(4.22) 

1 
N = -x1 , 

OJ 

Determining the derivatives oafoxk, o2 afoXCow, expanding into series and disregarding 
the terms of orders higher than I fw 3

, we obtain 

~. ___ I (-"o) 
(}Jt(}w - W 2 Xt ,k. 

This result together, with the Eqs. (4.I4) and (4.20), yields the phase and group velocities 
U1 and U9 

(4.23) 

U [ u,("~) k]-• [ u,("o) k] 
f = U, I - 0)2 Uo ,k r ~ U, I + w2 ~ ,k' ' 

U [ 
U, ( Xo ) k]- I [ U, ( X t ) k] 

g = U, I+ w2 x~ ./ ~ U, I-~ Uo k,' . 

The velocities evidently satisfy the relation 

(4.24) 

In the order of approximation assumed, the radial velocity represents the geometric mean 
of the phase and group velocities. It should be stressed that, in general, U1 > U, and 
U9 < U,. There exist, however, waves for which U1 < U, and U9 > U,, cf. e.g. [6]. 

A forced displacement on a certain surface!/ 0 which has the form of vibrations sinu
soidal in time is called a signal 

(4.25) 

Here, w 0 and t 1 are fixed. At the point XC lying not on!/ 0 , the signal is received in the form 
of vibrations of various frequencies w from the interval 0 < w < oo. The vibrations start at a 
certaint instant tp(XC), but are very weak at the beginning. The main portion of the signal 
arrives in :xk at the instant ts(:xk). The instant tP is determined by the propagation velocity U, 
while the instant t5 - by the signal velocity U5 • In general, the signal velocity is equal 
neither to U1 nor to U9 • The signal velocity was, in the simplest case, analyzed by Sommer
feld in the BRILLOUIN monograph [6]. The corresponding Eq. (1.14) derived in this 
paper has to author's knowledge not so far been analyzed. 
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