
CHAPTER XII.

QUADRATURE (I).
PLANE SURFACES, CARTESIAN AND POLAR EQUATIONS.393. The process of finding the area bounded by any defined contour line is termed Quadrature, or, which amounts to the same thing, Quadrature is the investigation of the 

size of a square which shall have the same area as that of the region under consideration.The closed contour may consist of a single curve or of a system of several arcs of different curves or straight lines.As we shall, in most cases, have to form some rough idea of the shape of the curves under discussion so as to be able properly to assign the limits of integration, the student should be familiar with the rules of procedure adopted in the tracing of curves for the various systems of coordinates by which they may be defined, Cartesians, Polars, etc., and for such information may be referred to the author’s treatise on the Differential Calculus, Chap. XII.394. It has been already shown (Art. 11) that the area bounded by a curve whose equation is y = ϕ(x), any pair of ordinates, x=a and x=b and the x-axis, may be considered as the limit of the sum of an infinite number of inscribed rectangles; and that the expression for the area is 
and it was assumed that ϕ(x) is a finite and continuous function of x, which does not change sign between these limits. In the same way the area bounded by the curve, two given abscissae, y=c and y=d, and the y-axis is

403
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404 CHAPTER XII.If the angle between the coordinate axes were ω instead of 90o, we should have the expressions 
for the area.395. Again, if the area desired be bounded by two given curves y = ϕ(x) and y=ψ(x), and two given ordinates x=a and x=b, it will be clear by similar reasoning that this area

Fig. 40.may be also considered as the limit of the sum of a series of rectangles constructed as indicated in the figure. If PQ be the portion of any of the ordinates intercepted between the curves, and δx the breadth of the elementary rectangle of which PQ is a side, the expression for the area will accordingly be 
where the same assumption is made as before as to ϕ(x) and ψ(x) being finite and continuous from x=a to x=b, and, moreover, ϕ(x)- ψ(x) must retain the same sign throughout the integration, i.e. the curves must not cross each other, and 
ϕ(x) has been assumed >ψ(x) throughout.396. Case when the Coordinates are expressed in terms of a Parameter.We have regarded x as the independent variable. If this is not so the formula can be modified to suit the circumstances.
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AREAS. CARTESIAN EQUATIONS. 405Suppose the curve defined by the equations 
and that the values of t corresponding to the initial and final ordinates are t1 and t2.Then y δx =ψ(t) ϕ'(t) δt to the first order, and in the limit 
it being supposed that the integrand remains finite and continuous throughout, and that as t changes continuously, increasing from the value t1 to the value t2, the point 
(x, 0) also travels continuously along the x-axis from (a, 0) to (b, 0) without going over any part of its course more than once, and always in the same direction of increase of x.397. Case where the Arc is the Parameter.If the arc of the curve be the independent variable, being measured from some definite point on the curve, then at a point at which the gradient of the tangent is ψ, we haveand we may write the expression
the limits of the integration with regard to s being the values of s corresponding to the beginning and end of the arc, and supposing that y cosψ does not change sign.In the same way we may write

398. Area expressed by a Line Integral round the Contour.Let the formulae be applied to theevaluation of the area of a closed curve consisting of a single oval.Let us suppose s measured from any point on the curve in such a direction that a person travelling along it in the direction of an increase of s has the area sought always to his left. Let ψ be the angle the tangent makes with the positive direction of the x-axis. Let APBQ be the oval in question, and let
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406 CHAPTER XII.

AL. BN be the tangents parallel to the y-axis. In thearc APB in the figure, ψ is changing from toand cosψ is positive. In the arc BQA ψ is changing fromto and cos ψ is negative. Integrating thenfrom A to B, through P, we obtain the area ALMNBPA taken

Fig. 41.positively, whilst integration from B to A, through Q, obtains the area BQALMNB taken negatively. Hence, to obtain thewhole area, it is necessary to take our formula asin integration round the whole perimeter in the counterclockwise direction.In the same way and under the same circumstances thearea will also be given byThis is the conventional mode of measuring s. If we measured in a clockwise direction the signs would both be reversed.399. Precautions.If the curve cuts itself once, having a node, as in the case of a lemniscate, it will be clear, from an inspection of the accompanying figure, that, in travelling completely round the whole curve, the directions in which the two loops are travelled round in continuously progressing in the direction of the increase of s, are one clockwise and the other counterclockwise, and therefore, in conducting the integration completely round we get the difference of the areas of the two
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LINE INTEGRAL ROUND THE CONTOUR. 407loops with either formula, and in the case of equality of the loops the total line-integral of x sinψ, or of ycosψ, round the complete curve will be zero. If we require the absolute area

Fig. 42.enclosed we must therefore treat each loop separately and add the positive results.If in travelling continuously round the perimeter of the closed curve there be several nodes and several loops, we shall see in the same way that the total line-integral of x sin ψ or of ycosψ, will give the difference of the areas of the odd and even loops.400. The student should examine the truth of the result in

Fig. 43.figures of other shapes—say a horseshoe-shaped closed curve, such as shown in Fig. 43.
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408 CHAPTER XII.Let ABCDEF be the points at which the tangents are parallel to the y-axis, then if AN1, BN2, etc., be the ordinates, the integral yields—area +area —area+ area — area +area
i.e. the closed area ABCPDEFQA.401. If y be continuous, but discontinuous at points onthe boundary of the figure, as at A BCD in Fig. 44, the integration must be conducted along each of the portions into

Fig. 44.which the perimeter is divided by the discontinuities, but the same rule holds, as before, viz.area 
or 
suffixes denoting the several portions along which the integration is conducted, and s1, s2, s3, etc., always being measured
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DISCONTINUITIES IN 409“in the same sense” along the perimeter. Here the limits of the integrals are denoted by the points A, B, C... of the perimeter successively arrived at in a continuous progress round it.402. If ϕ(x) has an infinite ordinate between a and b, say at x = c, it has been explained that the infinity can be excluded by takingto meanAs, however, ϕ(x) will, in general, change sign in passing through an infinite value and the graph reappear from infinity at the opposite end of the asymptote, it will be desirable to consider the areas on opposite sides of the asymptote separately, and, after evaluation, add the positive results together. This is of course the same precaution we have had to take in Art. 395, in stipulating that ϕ(x) does not change sign between the limits, which would mean that part of the curve was above the x-axis and part below, so that carelessness in this respect would lead to a result which would represent the difference of the two portions of the area required instead of their sum.403. Illustrative Examples.
1. Find the area bounded by the ellipse the ordinates

x=c, x=d and the x-axis.
Here

Area

a result obtainable without integration by reduction of the ordinates 
of the auxiliary circle in the ratio b : a.

For a quadrant of the ellipse, we put d=a and c=0, and the above

expression becomes or giving πab for the area of the
whole ellipse.

2. Find the area which lies in the first quadrant and is bounded by the 
circle x2+y2=2ax and the parabola y2=ax.

The curves touch at the origin and cut again at (a, a).
The limits for x are therefore from x=0 to x=a.
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410 CHAPTER XII.

The area sought is therefore

Putting x=a(1— cos θ) in the first

Fig. 45.

as of course might have been written down, being a quadrant of a circle 
of radius a ; and

Thus the area required is

3. Find the area
(1) of the loop of the curve

(2) of the portion bounded by the curve and its asymptote.

Here

To trace this curve, we observe
(1) It is symmetrical about the x-axis.
(2) No real part exists for points at which x > a or < - a.
(3) It has an asymptote x + α=0.
(4) It goes through the origin, and the tangents there are y= ±x
(5) It crosses the x-axis when x=a, and at this point dy/dx is infinite.

(6) The shape of the curve is therefore that shown in the figure 
(Fig. 46).

Hence, for the loop the limits of integration are 0 and α, and then 
double the result so as to include the portion below the x-axis.

For the portion between the curve and the asymptote, the limits are 
x= - a to x=0 and double as before.
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ILLUSTRATIVE EXAMPLES. 411
For the loop we therefore have,

Area

For the portion between the curve and the asymptote we have,

The meaning of the negative sign is this: In choosing the + sign

before the radical in we are tracing the portion of the

curve below the x-axis on the left of the origin and above the x-axis on

Fig. 46.

the right of the origin. Hence, y being negative between the limits
— a and 0, it is to be expected that we should obtain a negative result 
if we evaluate the expression,

Therefore we prefix the — before the radical before integration to ensure 
a positive result.

To integrate put x=αcos θ and .,. dx= -αsin θdθ.

Thus

And Area of
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412 CHAPTER. XII.

Again, 

and the area between the asymptote and the curve

With regard to the latter portion of this example, it is to be observed 
that the greatest ordinate is an infinite one. In Arts. 11 and 394 it was 
assumed that every ordinate was finite. Is then the result obtained for 
the area bounded by the curve and the asymptote rigorously true ?

It will be noted that the factor (α+x)1/2 which occurs in the denomina
tor and gives rise to the infinite value of y has an index < 1 and positive. 
Hence (Art. 348) we infer that the principal value of the integral is finite.

Let us examine the case more closely, and integrate between — a+e 
and 0, where € is some small positive quantity, so as to exclude the infinite 
ordinate at the point where x= — a.

We have as before 

where -α + e=αcos(π--δ), so that δ is a small positive angle, viz.

This integral is then 

and approaches indefinitely closely to the former result 

when δ is made to diminish without limit to zero.
4. Prove that the whole area of the curve

Here, solving for y, 

where y1 is the ordinate of a parabola and y2 that of a circle of radius a.
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COMPOSITE CURVES. 413
The area of a strip parallel to the y-axis and of breadth δx is

and the total area of the curve is i.e. the same as that of the
circle, =πα2,

Fig. 47.404. The last example will suggest to the student that if the curve y = ϕ (x)±√α2-x2 be drawn, it may be regarded as constructed by means of two curves, viz.andthe latter being a circle and the ordinates of the resultant curve being the sum or difference of y1 and y2, viz.
and as in the parabola and circle of Ex. 4, the closed curve formed will be divisible into strips of length (y1+y2)-(y1-y2) and breadth δx, and therefore of area 2y2 δx.Hence the area in any such case is and isthe same as that of the circle. This curve, if written in rational form, is
ϕ(x) being supposed rational. And the areas of all such curves are =πα2.
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414 CHAPTER XII.Similarly, for curves of form 

and consist of closed curves of area πα2; or more generally still, if y2=f(x) be a closed curve whose area is A, then another curve can be constructed from it of form
i.e.whose area is also A.For the areas of corresponding elementary strips parallel to the y-axis are for the original curve and the derived curve respectively, andwhich are equal, and therefore their sums are equal also. Similarly for

405. In Art. 395 it is shown that the area between the two curves y=ϕ(x) and y = ψ(x) and a pair of ordinates 
x = a,x = b is
It may be that y = Φ(x) and y = ψ(x) are different branches of 
the same curve. This is really what happens in the various cases considered in the last article.

406. Ex. Consider the case of an ellipse

If y1 , y2 are the ordinates for any abscissa x,

the length of the strip is
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EXAMPLES. 415
And the area is

between ordinates x1 and x2

Fig. 48.

or for the whole ellipse

area of circle of radius i.e.

Examples.

1. Obtain the area bounded by a parabola and its latus rectum. A
series of ordinates are drawn between the vertex and the latus rectum, 

parallel to the latter, viz. α, where r=l, 2, 3, ...n-l. Show

that they divide the aforementioned area into n equal parts.

2. Obtain the areas bounded by the curve, the .r-axis, and the specified 
ordinates in the following cases :

(a) The catenary from x=O to x=h.

(b) The logarithmic curve y==ex, from x = 0 to x=h.
(c) The logarithmic curve y = logex, from x=l to x = h (h > 1)

(d) The ellipse from x to x = a.

(e) The hyperbola from x=a to x=b,
a and b both >0; first, if the hyperbola be rectangular, 
second, if the angle between the asymptotes be ω.

(f) The curve from x = 0 to x=h.

3. Obtain the area (1) bounded by the parabolas y2 = 4ax, x2 = 4ay ;
(2) bounded by the parabolas y2 = 4αx, x2 = 4by.

In what ratio is this area divided by the common chord in each case ?
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416 CHAPTER XII.

4. Find the areas of the portions into which the ellipse x2b2+y2∣b2= 1 
is divided (1) by the straight line y=c ;

(2) by the two straight lines y=c, x=d, supposed to cut within 
the ellipse.

5. Trace the curve x2y2=a2(y2-x2), and find the whole area included 
between the curve and its asymptotes.

6. Find the area between the curve y2(a+x) = (a-x)3 and its asymptote.

7. Find the area of the loop of the curve

8. Two curves in which y∞ χm and two in which y∞xn form a 
quadrilateral ; show that its area is

where (x1,y1), (x2,y2), (x3,y3), (x4, y4) are coordinates of the corners 
taken in order. [Trinity, 1891.]

9. By means of the integral J^ydx taken round the contour of the 

triangle formed by the intersecting lines, 

show that they enclose the area

[Smith’s Prize, 1876.]
10. A four-sided figure is formed by the three parabolas,

and the axis of x. Prove that its area is 12α2, and is equal to the area 
enclosed by the chords of the area. [Colleges α, 1886. ]

11. Find the curvilinear area enclosed between the parabola y2 = 4ax
and its evolute. [Oxf. I. P., 1889. ]

12. Show that the area cut off from a semi-cubical parabola by a 
tangent is divided by the tangent at the cusp in the ratio 64 :17.

[Oxford II. P., 1889.]

13. (i) Find the area of a loop of the curve
ay2 = x2(a-x). [I. C. S., 1882.]

(ii) Find the whole area of the curve
a2y2 = a2x2-x4. [I. C. S., 1881.]
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EXAMPLES. 417
14. Trace the curve α2x2=y3(2α-y), and prove that its area is equal to

that of the circle whose radius is a. [I. C. S., 1887 and 1890.]
15. Trace the curve α4y2=x5(2α-x), and prove that its area is 

to that of the circle of radius a as 5 to 4.
16. Find the area of the curve

y(x2 + 1) = x3- 1 from x=O to x=l.
[St. John’s, 1881.]

17. (i) Find the area between and its asymptote.

(ii) Show that the whole area between

and its asymptote is πc(α + b). [Ox. II. P., 1903. ]
(iii) Show that the area between the curve

and its asymptote is that of a circle of radius a. [St. John’s, 1889.]

18. Find the area between the axis of x, the hyperbola x2∣a2-y2∕b2 = 1, 
and the line y=x tan α, where

[Ox. I. P., 1901.]
If A be the vertex, 0 the centre, and P any point on the hyperbola

prove that

where S is the sectorial area A OP [Math. Tripos, 1885. ]

19. Find by integration the area lying on the same side of the axis of 
x as the positive part of the axis of yy and which is contained by the lines

Express the area both when x is the independent variable and when 
y is the independent variable. [Colleges, 1882.]

20. Prove that the area of the loop of

[Coll. β, 1891.]

21. Find the areas of the two regions of space bounded by the straight 
line y=c, and the curves whose equations are

[I. C. S., 1891.]

22. Prove that the area contained between the curve

and its asymptote is 3α2√3. [0xf. I. P., 1901. ]
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418 CHAPTER XII.

23. Prove that the area of the curve

is [Math. Trip., 1893.]
24. Find the area of one loop of the curve

[Colleges α, 1885.]
25. Through the cusp of the evolute of a parabola, a line is drawn

perpendicular to the axis. Show that it divides the area between the 
parabola and the evolute in the ratio 17 :5. [C. S., 1896.]

26. Show that the ordinate x=a divides the area between y2(2α-x)=x3 
and its asymptote into two parts in the ratio

[Math. Trip. I., 1912.]407. Sectorial Areas. Polar Coordinates.When the area to be found is bounded by a curve r=f(θ) and two radii vectores drawn from the origin in given directions, we may divide the area into elementary sectors with the same small angle δθ, as shown in the figure. Let the

Fig. 49.area to be found be bounded by the arc PQ and the radii vectores OP, OQ. Draw radii vectores 0P1, 0P2,... OPn-1 at equal angular intervals, so that
Then by drawing with centre 0 the successive circular arcs 
PN, P1N1, P2N2, etc., it may be at once seen that the limit of the sum of the circular sectors.0PN, 0P1N1,0P2N2, etc.
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SECTORIAL AREAS. POLARS. 419is the area required. For the remaining elements PNP1, 
P1N1P2, P2N2P3, etc., may be made rotate about 0 so as to occupy new positions on the greatest sector, say OPn-1Q, as indicated in the figure Their sum is plainly less than this sector; and in the limit when the angle of this sector is indefinitely diminished its area also diminishes without limit, provided the radius vector 0Q is finite.Now the area of a circular sector is1/2(radius)2 × circular measure of angle of sector.Thus the area required the summation beingconducted for such values of θ as lie between θ = xOP and

i.e., in the limit, Ox being the initial line.In the notation of the integral calculus, if andthis will be expressed asorIt is assumed that f(θ) is finite and continuous from θ = a to 
θ = β inclusive.408. If the curve consist of a closed oval and the origin be within it, the limits of integration to find the whole area are 0 and 2π, viz. the extent to which a radius vector must rotate about 0 to sweep out the whole area (Fig. 50).

Fig. 50. Fig. 51.If the origin be on the perimeter of the oval, and if it be not a singular point, the limits will be from —a to +π-a if the tangent at the origin makes an angle — a with the x-axis as shown in Fig. 51.
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420 CHAPTER XII.In this case, if the initial line be an axis of symmetry, it is sufficient to integrate from 0 to π/2 and double the result (Fig. 52)

Fig. 52.If there be a loop and the origin be a singular point on the curve at which the tangents make an angle 2α with each

Fig. 53.other, and if the initial line be an axis of symmetry, the limits for the area of the loop will be 0 and a and double the result (Fig. 53).409. Another Expression for an Area.Let (x, y) be the Cartesian coordinates of any point P on a curve, (x+δx, y+δy) those of an adjacent point Q. Let

Fig 54.(r, θ), (r+δr, θ + δθ) be the corresponding polar coordinates. Also, we shall suppose that, in travelling along the curve from 
P to Q on an infinitesimal arc PQ, the direction of rotation of 
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OTHER FORMULAE FOR AREAS. 421the radius vector OP is counter-clockwise, and that the area to be considered is on the left hand to a person travelling in this 
direction (Fig. 54).Then, to the first order of infinitesimals,

1/2r2δθ = sectorial area OPQ

Hence, another expression for the area of a sectorial portion of a curve bounded by a definite portion of an arc isorthe limits being the initial and final values of s, correspondir to the portion of the sectorial area to be found.Obviously we might take any other independent variabl say t, and supposing the curve expressed as 
and that the values of t, corresponding to the beginning and end of the arc, are t1 and t2 respectively,sectorial areaIf the curve be a closed curve and the origin lies within it, the limits for θ are θ and 2π, andareaIn the same case, if we take the formulaorthe limits for t must be such that the point (x, y) travels once, and once only, completely round the curve.410. If the origin lies outside the curve, as the current point 
P travels round the curve, we obtain sectorial elements such as 
OP1Q1(Fig. 55), including portions of space such as OP2Q2,
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422 CHAPTER XII.shown in the figure, which he outside the curve. These portions are, however, ultimately removed from the whole integral
when the point P travels over the element P2Q2, for the

Fig. 55.sectorial element OP2Q2 is reckoned negatively as θ is decreasing and δθ is negative.411. Precautions.If the curve cross itself as in Fig. 56, the expression
taken round the whole perimeter, no longer represents the sum of the areas of the several regions. For draw two contiguous radii vectores OP1, 0Q1, cutting the curve again at Q2, P3, Q4 and P2, Q3, P4 respectively. Then, in travelling round the curve continuously through the complete perimeter, we obtain positive elements such as OP1Q1 and OP3Q3, and negative elements such as OP2Q2 and OP4Q4.Now, taking all these elements positively,

OP1Q1 -OP2Q2+OP3Q3 -OP4Q4= quadrilateral P1Q1P4Q4-quadrilateral P2Q2P3Q3, and in integrating for the whole curve we therefore obtain the difference of the two regions instead of their sum.Similarly, if the curve cuts itself more than once, theintegral gives the difference of the sum of
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OTHER FORMULAE FOR AREAS. 423the odd regions and the sum of the even regions. Thus, to obtain the absolute area bounded by such a curve, we must take our limits for each area separately and obtain the absolute 
area of each region, and then add, together the results. It is

Fig. 56.obvious that in curves consisting of several equal regions, or loops, it will be sufficient to ascertain the area of any one, and then to multiply that area by the number of the loops.412. Another Form.If we write y/x=v, we havex

and accordingly we may transform the formula
This is equivalent to a choice of new coordinates, of which one is the Cartesian abscissa and the other, viz. v, is the tangent of the polar angle θ.In using the formula, x is to be expressed in terms of υ, and the limits of the integration so chosen that the current point (x, y) travels from the beginning to the end of the arc, i.e. if 

a, β be the limits for θ, tan a and tan β will be the limits for v.
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424 CHAPTER XIIIn using this formula, however, care must be taken not to 
integrate through an infinite value of v. It must be remembered that v=tan0 and becomes infinite when or any oddmultiple of .

413. For example, if we apply this method to the area of an ellipse 
x2∣a2+y2∣b2 = 1, putting y∣x = v, we have

and Area

between properly chosen limits. Now, in the first quadrant v varies 
from 0 to ∞. Hence the area of a quadrant =  and therefore
the area of the ellipse = παb.It will be noted that the formulaArea i.e.

is equivalent to half the sum of and eachof which has been shown to represent the area when the integration follows the complete perimeter.414. It may also be worth the student’s notice to remark that the problem of finding the area bounded by y = ϕ(x), the x-axis, and a pair of ordinates x=a, x=b,viz.is manifestly the same as that of finding the mass of a rod of small section but of line density ϕ(x), of length b—a, and of any shape if x be measured along the rod. For the mass of a length δx of the rod is ϕ (x) δx, the limit of the sum of such expressions being required, when δx is indefinitely diminished, between limits x=a and x=b, that is415. Illustrative Examples.
1. Obtain the area of the semicircle bounded by r=acosθ and the 

initial line.
Here the radius vector sweeps over the angular interval from
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ILLUSTRATIVE EXAMPLES. 425
Hence the area is

i.e. (radius)2.

2. Find the area of the lemniscate r2 = α2cos20.
Here the axis is a line of symmetry ; the tangents at the origin are

Fig. 57.

The area is therefore

3. Find the area of the pedal of an ellipse with regard to the centre 
With the usual axes and notation, the equation of the pedal is

and Area

4. Find the area of one loop of the curve r=αsin 3θ.
The curve consists of three equal loops, as indicated in the figure

Fig. 58.
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426 CHAPTER XII.

The proper limits for the integration extending over the first loop 
are 0=0 and for these are two successive values of 0 for which
r vanishes :

Area of loop

where 30=ϕ,

The total area of the three loops is therefore

5. Find the area of the curve

Fig. 59.

Upon elimination of t, we have and the shape is shown

in the figure. There is symmetry about both axes, and the area

or we may use the formula
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ILLUSTRATIVE EXAMPLES. 427
which gives

as before.

6. Find the area of the loop of the curve

(1) There is symmetry about the line y=x.
(2) There is an asymptote x+y = a.
(3) By Newton’s rule, the form at the origin is that of two 

semicubical parabolas y3 = 5αx2, x3 = 5αy2.
The shape is then as shown in Fig. 60.

Fig. 60.

The polar equation is

As there is symmetry about 0=π/4, we may take limits 0 to and 
double.

Area of loop

or, putting tan θ = t,

Area

www.rcin.org.pl



428 CHAPTER XII.

Otherwise ; this curve is unicursal; and we may write (putting y=tx)

and integrate with limits 0 and ∞, which gives

as before.

EXAMPLES.

Find the areas bounded by
1. r2=a2 cos2 θ - b2 sin2 θ, the central pedal of a hyperbola.

2. One loop of r=α sin 40. Also state the total area.

3. One loop of r=a sin 50. Also state the total area.

4. One loop of r=αsin n0.
Give the total area in the cases, (i) n even ; (ii) n odd.
5. The portion of r=αe0cotα bounded by the radii vectores

6. Any sector of r1/20=α1/2 (0=α to 0=β).

7. Any sector of the reciprocal spiral r0=α (0=α to 0=β).

8. The cardioide r=ααα(l — cos 0).

9. The Limaςon r=a+b cos 0, (i) if a > b ; (ii) if a <b obtain the two 
areas of outer and inner portions.

10. Find the area included between the two loops of the curve
0xF. I. P., 1889. ]

11. Prove that the area in the positive quadrant of the curve
[γ, 1899.]

12. Find the area of the closed part of the Folium

[I. C. S., 1884. ]
13. Show that the area of a loop of the curve

is a and c being positive.
[Colleges, 1881.]

14. Trace the curve whose equation is

and find the area between the curve and any pair of radii vectores 
drawn from the pole. [Trinity, 1882.]
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PROBLEMS ON QUADRATURE. 429
15. Trace the lemniscate r2 = α2cos20 and its first positive pedal, and 

show that the area of a loop of the latter is double the area of a loop of 
the former.

Find the areas of each of the two small lozenge-shaped portions 
common to the two loops of the pedal.

16. Show that the area contained between the curve

and' the circle r=a is three-fourths of the area of the circle.
[OxF. I. P., 1888. ]

17. Find the area between the curve r=α(sec 0+cos θ) and its
asymptote. [St. John’s, 1881.]

18. Prove that the area of the curve

is equal to πac. [I. C. S., 1879. ]

19. Find the area of the curve
[Math. Trip., 1882.]

20. Find the area of the loop of the curve

between θ = 0and θ=π/2.

GENERAL PROBLEMS ON QUADRATURE. (CARTESIANS AND POLARS.)1. Find the area bounded by and [H. C. S.]Also the area of the loop of the curve
(a and b both positive). [I. C. S., 1882.]2. Find the whole area of the curve

[I. C. S., 1885; 
Colleges, 1892.]3. A parabola y2 = αx cuts the hyperbola x2-y2 = 2α2 at the points P, Q; and the tangent at P to the hyperbola cuts the parabola again at R. Find the area of the curvilinear triangle PQR.4. Find the area included between one of the branches of the curve x2y2 = α2(x2 + y2) and its asymptotes.Find the whole area of the curve

[Colleges α, 1887.]
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430 CHAPTER XII.5. Trace the curve α2y2 = x3(2α - x), and prove that its area isequal to that of the circle whose radius is a. [I. c. S., 1887.]6. Prove that the whole area of
is [Colleges β, 1891. ]7. Find the area of the loops of the curvewhen

[Oxford I. P., 1902.]8. Find the area bounded by the cycloid
and the straight line joining two consecutive cusps.9. Show that the coordinates of a point P on the Folium of Descartes x3 + y3 = axy can be expressed as

Show that as t varies from 0 to ∞ P traces out a closed loop, and  that its area is a2/6. [Colleges, 1896. ]10. Prove that the area of either loop of the curve
is

[γ, 1893.]11. Show that in that part of the curve (x + y- 3c)xy + c3 = 0 for which x is positive, the area between the curve, the axis of x, and the ordinate which touches the curve is 1/2c2. [St. John’s, 1886. ]12. Trace the curveand show that the area of the segment which lies between the axisof y and the straight line whose equation is y = x is α2 log 2.
[Colleges e, 1883.]13. Pairs of ordinates of the hyperbola xy = a2 are determined by the condition that the area included by any pair, the curve, and the x-axis is constant; show that the lengths of any such pair are in a constant ratio. [Oxford I. P., 1888.]
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PROBLEMS ON QUADRATURE. 43114. Show that the area between the curve
and its asymptote is πa2. [St. John’s, 1892. ]15. Show that the area between the inner branch of the curve
and the positive parts of the two axes is πα2∕3√3. [St. John’s, 1888.]16. Prove that the whole area of the epicycloid generated by a point on a circle of radius rolling on a fixed circle of radius a is to the area of the fixed circle in the ratio of 15 to 8.17. Find the whole area of the curve whose equation is

[Colleges, 1886.]18. Find the area of a loop of the curve
[Oxford I. P., 1888. ]19. Find the area cut off from an ellipse by a focal chord.

[Colleges α, 1883.]20. Prove that the areas cut off by the equiangular spiral r = aeθcotafrom the space bounded by any two fixed lines through the pole are in geometrical progression. [Oxford I. P., 1900.]21. Find the area of the curve r = aθeb0 enclosed between two given radii vectores and two successive branches of the curve.
[Trinity, 1881. ]22. Find the area of the loop of the curve r = α0cos0 betweenand [Oxford II. P., 1890.]23. Find the area of the curve

[Colleges a, 1887.]24. Show that the area of the loop of the folium x3 + y3 = 3axy is divided by the parabola y2 = ax in the ratio 5 :4.In what ratio does the line x + y = 2a cut the loop in the above folium. [Oxford I. P., 1889.]25. Find the area included between the axis of y and the curve
the curve being supposed to stop at the node. [St. John’s, 1884. ]
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432 CHAPTER XII.26. Determine by integration the area of the ellipse
27. (i) Find the whole area enclosed by the hypocycloid

[Oxford I. P., 1888.](ii) Prove that the area of the locus of intersection of pairs of tangents at right angles for this curve is 1/4πα2. [Math. Tripos, 1888. ]28. Prove that the locus of the points of bisection of the intercepts on the normals of a cycloid between the cycloid and its base divides the area between the cycloid and its base into two parts in the ratio 7 : 5. [Oxford II. P., 1886. ]29. Trace the curve when n is even,and when n is odd, n being a positive integer; and prove that thearea of the loop is Prove that this is also the areabetween the infinite branches of the curve and the asymptote.
[St. John's, 1882.]30. Find the whole area contained between the curve

and its asymptotes. [Oxford I. P., 1887.]31. Find the area bounded by the circle x=αcosθ, y=asinθand the hyperbola x = b cosh u, y = b sinh u; that area being taken which lies within the circle and on the convex side of the hyperbola, and b being less than a. [Trinity, 1888. ]32. (a) Show that in the Archimedean Spiral r=aθ, if A1, A2, 
A3, A4, ... be the areas of the inner loop and the successive heart- shaped figures formed by the convolutions of the curve

(b) In the Reciprocal Spiral rθ=a, if A1, A2, A3 ... be the areas of the successive closed loops,
33. Find the area of the loop of the curve

[Oxford I. P., 1890 ]34. At all points of the first negative pedal of the curve 
r = cosh (mθ cot a) lines are drawn making a constant angle α with
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PROBLEMS ON QUADRATURE. 433the tangent. Show that the area bounded by any pair of such lines, the curve enveloped and the first negative pedal is
where A is the area of the corresponding portion of the first negative pedal bounded by radii vectores from the pole.

[Colleges α, 1891.]35. Find the area of that portion of the loop of the curve
which is not enclosed by the curveIf a family of such curves be taken (by varying p and q), such that this area is constant, show that the envelope of the system is a curve whose equation is r2 = c + a cos θ. [Colleg es β, 1889. ]36. Show that the whole area enclosed by the outer line of thecurve [Colleges, 1876. ]37. In a hyperbola, C is the centre, A the end of the transverse axis and P any point (x, y) on the same branch of the curve as A; prove that twice the area of the sector CAP is

38. Show that the area contained between a hyperbola, any tangent and a line parallel to the asymptote which bisects the part of the tangent intercepted between the curve and the asymptote
and is constant. [Trinity, 1886.]39. Prove that the area of the curve
is [Math. Tripos, 1882.140. Show that the area cut off from the ellipse
by the line lx + my = 1 iswhere α, β are the semiaxes of the ellipse and

[Colleges, 1892.]

www.rcin.org.pl



434 CHAPTER XII.41. Trace the curve whose equation is
and prove that the area between the curve, the axis of x and a tangent parallel to the axis of y is

[St. John’s, 1885.]42. Show that in the curve
the area between the curve and the lines ■ is

[St. John’s, 1886.]43. Find in integral form, and completely, the area enclosed between two confocal conics and two given radii from the centre.
[Trinity, 1881.]44. Prove that the area of each of the two equal and similar pieces of the ellipse x2∕a2 + y2∕b2 = 1 which are cut off by the hyperbola is

[ST. John’s, 1887.]45. Prove that the areas of the two loops of the curve
are

[Math. Tripos, 1875.]46. The area between two tangents to the same convolution of an equiangular spiral at right angles to one another, and the curve,iswhere p, p' are the perpendiculars from the pole on the tangents and γ is the angle of the spiral. [Colleges, 1882.]47. A circle with centre at the origin cuts the loop of the Folium 
x3 + y3 -3αxy = 0. If the angle subtended at the origin by thecommon chord equals
prove that the area between the loop and the circle is

[Colleges, 1885.]
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PROBLEMS ON QUADRATURE. 43548. The centre of a circle of constant radius a moves along a fixed straight line AB in its plane, and from A a fixed point in the line a tangent A P is drawn to the circle. Show that the area included between the locus of P and its asymptotes is πα2.
[Math. Tripos, 1882. ]49. Show that the curve

has three loops, whose areas are
respectively. [Colleges, 1892. ]50. Show that the area of the Cassinian
is provided b > a,

but is when a>b.

[Math. Tripos, 1883.]51. Prove that the area of the first negative pedal of an ellipse with respect to the focus is
where a and e are the semi major axis and the eccentricity of the ellipse. [Colleges, 1892. ]How do you interpret this result if e <1/2 ?52. Find the area of the curve whose Cartesian equation is

[Math. Tripos, 1896.]53. Find the value of  being the real root of the cubic
[Colleges, 1872; R. P.]54. Find the area in the first quadrant bounded by the axes of coordinates and the curve

taking a, b, c all positive. [I. C. S., 1897. ]
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436 CHAPTER XII.55. Trace the whole curve
where 0 < b < a, and find its whole area. [I. C. S., 1898.]56. It is given that the abscissa ON and ordinate NP of a pointon any arch of a cycloidal arc are a(θ - sin θ) and α(l - cos θ). NP is produced to K so that NK = 2a, and the rectangle ONKA is completed. Prove that the area included by ON, NP and the arc OP never differs from three-fourths of ONKA by more than  . . '3α2/8√3; and find for what positions of P the difference vanishes.

[I. C. S., 1912. ]57. Trace on squared centimetre paper the curves
taking α = 10 cm., and estimate the area of a loop of each curve.Prove thatand hence calculate the area of a loop of the second curve. Find also the area of a loop of the first curve. Give each area to the nearest square centimetre when a is 10 centimetres.

[C. S., 1913.]58. Obtain the area contained between the two curvesand
[0xf. I. P., 1912. ]59. Show that the area of the loop of the curve

is equal to α2∕14. [0xf. I. P., 1914.]60. Prove by any method that the area of the ellipse
is independent of a, and find the area.Prove also that the straight line y = x divides the ellipse x2 + 3y2 = 6y into two areas which are in the ratio

[0xf. I. P., 1916. ]61. Trace the curveand show that the area of a loop is
[Math. Trip. I., 1919. ]
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PROBLEMS ON QUADRATURE. 43762. Show that the curve has three loops,the area of the larger loop being and the areas of thetwo smaller loops being [Math. Trip. I., 1916.]63. Show that the coordinates of any point on the curvemay be taken as
and prove that the area of the loop and the area between the curve and its asymptote are both equal to 3√3α2. [Math. Trip. I., 1915. ]64. Show that the area of the loop of the curve
in the positive quadrant is [Math. Trip. Γ., 1920.]65. Having established Simpson’s Rule, that if
thenprove that if y(x) also contains a term α4x4 the error in still usingSimpson’s Rule is

[Math. Trip. I., 1920.]
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