CHAPTER XIV.

QUADRATURE, ETC. (III)

SURFACE INTEGRALS, AREALS, CORRESPONDING CURVES.

451. Use of Second Order Infinitesimals as Elements of Area.
‘* Surface Integrals,” Centroids, etc.

For many purposes it is found desirable, and often necessary,
to use for the element of area a second order infinitesimal.

Suppose, for instance, we desire to find the mass of the area
bounded by a given curve, the z-axis and a pair of ordinates,
where there is a distribution of surface density over the area,
not uniform, but represented at any point by o= ¢(, y), say,
where z, y are the coordinates of the point in question.
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Let Oz, Oy be the coordinate axes, 4B any arc of the curve
whose equation is y=f(x)

{a, f(a)} and {b, f(b)} the coordinates of the points 4, B upon
it, AJ and BK the ordinates of 4 and B. Let PN, QM be any
contiguous ordinates of the curve, and @, x+dx the abscissae

of the points P, Q. Let R, U be contiguous points on the
473



474 CHAPTER XIV.

ordinate of P, their ordinates being y, ¥+6y; and we shall
suppose 6z, 6y to be small quantities of the first order of
smallness.

Draw RS, UT, PV parallel to the z-axis. Thus the area of
the rectangle RSTU is éx 8y, and its mass may be regarded as
¢(x, y) Sz 8y to the second order of smallness.

Then the mass of the strip PNMV may be written

Ltsy=o[Z¢(w, y)dy]ow,
and in conformity with the notation of the Integral Caledlus

may be expressed as
[[#(@ nay o=

between the limits y =0 and y =f(x).

In performing this integration with regard to %, = is to be
regarded as constant, for we are finding the limit of the sum
of the masses of all elements in the elementary strip PM,
parallel to the y-axis, for which z retains the same value, s.e.
we are finding the mass of the strip PM.

If then we search for the mass of the area 4JKB, all such
strips as the above must now be summed which lie between
the ordinates 4J, BK, and the result may be written

/(@)
Ltyp—0Z Uo #(z,y) dy] da,
which may be further written as
b [ (/@)
[ 178t 91y |aa,
a'=J0

the limits of the integration with regard to z being from
z=a to x=>.
Thus the mass of the area AJKB for surface density ¢(x, y)

b [ (f(@)
=[ [ st iy |ae.
a 0
452. Notation.

This will be written
b (f(z)
[ [Fsenazay

the elements du, dy being written in the reverse order to
that in which they occur in the previous expression, and it
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will be remembered that the right-hand ome refers to the
first integration, and the left-hand one to the second. It has
already been stated (Art. 363) that we shall throughout the
book adopt this order.

If we put o=¢(z, y)=1, the result of our integration will
be to find the area.

Thus, Area= I: j:(Z)dw dy
¥ j : f(2)dz

b
=j vy dz, as before ;

or, in the case of the area being bounded by two curves,
y=¢(@), y= \//(:v) as in Art. 395,

4’(5)
e[
¥(@)
= [ 6@ -y (@naz.
Ex. If the surface density of a circular disc bounded by 22+y%2=a? be
given to vary as the square of the distance from the y-axis, find the mass

of the disc.
Here we have pa? for the density of the element 8z 8y, and its mass is

therefore padz &,
and the whole mass will be f f palda dy.

The limits for ¥ will be y=0 to y=~/a?—2? for the positive quadrant
and for z from 2=0 to z=a. The result must then be multiplied by 4,
for the distribution being symmetrical in the four quadrants, the mass is
four times the mass of the first quadrant.

@ (Val_a
Thus, Mass=4-£ [) paidx dy

=4p fo " g [_'y]:mdx
=i et .

Putting x=asin 6 and dz=a cos 0d6, we have

Mass=4pat A sin%6 cos?0 d6
o TAT@_, . WrkVr_pat
R e T
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453. Other Uses of Double Integration.

The same process may be used for many other purposes,
of which we give a few illustrative examples, which will
serve to indicate to the student the field of investigation now
open to him.

Ex. Find the statical moment of a quadrant of the ellipse

a?/ad+12b0 =1
about the y-axis, the surface density being supposed uniform.

Here each element of area 8z 8y is to be multiplied by its surface
density o (which is by hypothesis constant in the case supposed), and by
its distance from the y-axis; the sum of such elementary quantities is
then to be found over the whole quadrant. The limits of integration will

be from y=0 to y=, b JaT =2 for y; and from =0 to z=a for 2. Thus
we have

Moment—/ /_ oz dxdy

=—— A " e a2

o-b[ (aﬂ-zﬂ)i]« oba?

M31r

where M is the mass of the quadrant, z.e.
wab
- 4
454. Centroid of a Plane Area.
The formulae proved in Analytical Statics for the coordi-
nates of the centroid of a number of masses m,, m,, my, ... at
points (y, ¥1), (a, Ya), (%3, ¥s), ete., are
Zmzr _  Zmy
Sme YT Em
We may apply these to find the coordinates of the centroid
of a given area on which there is any proposed distribution
of surface density. 4
Let o be the surface density at a given point, which may
be either a constant, as for a uniform distribution, or a given
function of # and y. Then the mass of the element dzdy is

o dz 8y and E_Ifaxdwdy
o) [[odady {

g.

xr=

www.rcin.org.pl



CENTROIDS AND MOMENTS OF INERTIA. 477

Ha-y dz dy

~ [fodedy’

the limits in each case being determined so that the sum-
mation will be effected for the whole area in question.

Similarly,

Ex. Find the centroid of the elliptic quadrant of the example in the
last article.
It was proved there that

oba? da
ffﬂ'zd!tdy=—3—=l[3——ﬂ_
and f/o-dxdy= mass of quadrant = o;

.~4a
. Z=

Also ffoydxd/ o-f [y
E@A (a® - 2?) dx
ab“( LI a3) aab? 4b

Va' a?

Ly T

T T A ) 3’
= 4b
T 8r
Hence the coordinates of the centroid are 4—“, ;f_

455. Moment of Inertia.

When every element of mass of a given body is multiplied
by the square of its distance from a given line, the limit of
the sum of such products is called the Moment of Inertia
with regard to the line.

Ex. 1. Find the moment of inertia of the quadrant of an ellipse about
the y-axis, again taking uniform surface density

Here we have to multiply each element of mass, viz. o8z 8y, by 2%
and then integrate as before.

Moment of Inertia= f f ox? dx dy

- e ]

=0 gfx’N/a’ - atdx
=0 9—1—6— , this integral having been worked out in the
example of Art. 452,

abo aliiist rabo
=1r73—=M-‘I, since M= e

www.rcin.org.pl



478 CHAPTER XIV.

Ex. 2. Find the moment of inertia of the portion of the parabola
y*=4ax, bounded by the axis and the latus rectum, about the z-axis,
supposing the surface density at each point to vary as the n* power of

the abscissa.
Here the mass-element is pz" 8z 8y, p being a constant, and the moment

of inertia is,
LtJpyPandzdy or p f f y2a"dzdy,

where the limits for y are from y =0 to 2+/az, and for z from 0 to a.
We thus get o

N P _ K [*s 3 nti
Mom.ofIn.—aj; [y]o z"da:_a'LSax dz

a
8 2"+E 16
BB BRIy, SO e
3 5| “3@n+5)
b=
B 13

Again, the Mass of this portion of the parabola is given by
@ rovax s 2vaz
M= 2 dy = n
19 o it 450 Mg

—ougd ([ thgp— M nis
—2p.aj;:c dx 2n+3a" 3
Thus we have
42n+3

Moment of Inertia about Oz == Ma2,
32n+5

ExAmMPLES.

1. In the first quadrant, of the circle 22+y2=q? the surface density
varies at each point as zy.

Find (i) the mass of the quadrant,

(ii) its centroid,
(iii) its moment of inertia about the y-axis.

2. Work out the corresponding results for the portion of the parabola
y*=4ax bounded by the axis and the latus rectum, the surface density
varying as z%°.

3. Find the centroid of a fine rod of uniform sectional area and of
which the line-density varies as the 2'* power of the distance from one end.
Also its moment of inertia about that end, about the other end, and about
the middle point.

4. Find the centroid of the triangle bounded by the lines y =ma, z=a
and the z axis when the surface density at each point varies as the square
of the distance from the origin. Also find the moment of inertia about the
y-axis.

5. Find the centroid of

(i) either of the areas bounded by the circle (z — a)?+y2=a? and the
parabola y*=ax ;

www.rcin.org.pl



POLAR SURFACE ELEMENT. 479

(ii) the centroid of the area bounded by the parabolas
Yi=dax, z*=4by;
(iii) the centroid of the area bounded by
3/2 =daz, y=2,
the surface density being uniform in each case.
6. Find the moment of inertia of a triangle of uniform surface density
(i) about one of its sides ;
(ii) about an axis perpendicular to its plane through an angular
point.
456. Polar Coordinates. Second Order Element.
For polar curves it is desirable to use for our element of area
& second order infinitesimal of different form.

o

Fig. 85.

Let 0P, 0Q be two contiguous radii vectores of the curve
r=f(0); Oz the initial line. Let 6, 6436 be the vectorial
angles of the points P, Q on the curve. Draw two circular arcs
RU, ST cutting the radii OP, 0Q, with centre O and radii r
r+dr respectively, and let ér, 66 be small quantities of the first
order of smallness.

Then area RSTU =sector OST—sector ORU

=}(r+0r)* 80 —4r* 80
=186 ér to the second order.

And to this order RSTU may therefore be considered a
rectangle of sides ér (=RS)-and r 36 (=arc RU).

Thus, if the surface density at each point R(r, 6) be o =¢(r, 6),
the mass of the element RSTU is (to second order quantities)
o186 ér, and the mass of the elementary sector OPQ is

Lts,—o [Zor or] 66



480 CHAPTER XIV.

the summation being effected for all elements from =0 »=f(9),
(6)
ie. || orar s,

in which integration 6 is to be regarded as constant; and
taking the limit of the sum of the elementary sectors for
infinitesimal values of 36 between any specified radii vectores
0=a and 6=, we get the mass of the sectorial area 0AB

B "7(6)
=j [ aerdr a0, ‘
a 0

or, as we have agreed to write it (Art. 360),

B (4(6)
I or df dr.
a

0
Obviously when g=1 this formula gives the area of the sector.

457. Ex. 1. Find the mass of a circular Jamina of radius @ in which the
surface density at each point varies as the n'® power of the distance of that
point from a point O on the circumference.

Taking O as origin, and the diameter through O as the initial line, the
equation of the curve is

r=2a cos 6.

Q
P

RS

Fig. 86.

Then we have for the density at a point R distant » from 0, oc=pr"
where pis a constant. The mass of the element RS7'U=pur" (r36 dr).
Hence the mass of the circular lamina is

M52f;/mc”opr"rd0dr

- +2 fl (2a cos 0)"+* d6
a2 tln-12-3 2
(2) n+2 n n-2""3
+n”+1 ] REEGP
ok 2( ) 7n+2 n n-2"22

according as n is odd or even.

www.rcin.org.pl
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Ex. 2. If the moment of inertia were required about a perpendicular to
the plane of the lamina through O, each elementary mass pr"(» 80 &) is to
be multiplied by »* before integration. The result merely changes » into
n+2 in the former work, and writing # for the value found for the mass,

s aen+2043 5
Moment of Inertia =M i (2a)%

458. Centroids, etc. Polars.

The distance of the centroid of an area whose boundary is
defined by a polar equation, from any straight line in
the plane of the area and passing through the pole, may
be found, as before (Art. 454). Take the line proposed
as the z-axis and a perpendicular through the pole as the
y-axis. Then the distance of the centroid from the z-axis is
obtained by forming the sum of the moments of the masses
of the polar elements of area about that line and dividing by
Zmy
m’

Let o be the surface density. Then ordf ér being the
element of mass and rcos6, rsin6 being its abscissa and
ordinate respectively, its moments about the axes of y and z
through O are respectively

the sum of masses; 4.e. by the use of the formula =

rcos@.0r30r and rsinf.ordldr.

Thus jroos@.o-rdOdr ”rsine.a-'rdé?dr
£= ) g= >
j srdode ”m«dedr

the limits to be assigned so that the summations for all
elements are thereby effected.
459. Ex. 1. Find the centroid of the circular lamina of Art. 457 when

the surface density is pr™. i
Obviously the centroid lies on the diameter through 0. Hence y=0.

7 ]
To find z we have to integrate 2 f j:a ™ reos. prr df dr, and then to
divide by M, which has been found before (Art. 457, Ex. 1).

7 3
This integra =:T"3 fo' (2a cos 6)"+3 cos §dB = 2L (2a)"+? | cos"+49.df

=2 (a2 i3ntl 2, nodd,
n

n+dn+2°7 3’
b _ 2p wan+3n+l 17
or —m(2a)" atinFa "3y’ n even.
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482 CHAPTER XIV.
Hence 5=n+3' PR
and Y =0.
If the centroid of the upper half only of the lamina had been required,

we should have had the same value of z but for ¥ we shall have to
evaluate the additional integral

j;;j:am’rsin 6. prrd dr

and divide by } ¥, where # is the mass found for the whole lamina.

n+2 n+3 n+2 }

This mtegral (2a cos 0)"**sin 6 d6
_ B (gapees[ Z 08 46F
—n+3(2a) n+4 _|p
A NPT n+5
T )
L n+2 n+2 n_ 3
Hence m n+1 n—l § n Odd,
n+2 n+2 n 2 2
or ij.za.n+l ﬁ ‘i 1_I" n even.

Ex. 2. Find the centroid of a lamina in the form of the cardioide
r=a(1+cos 6)
in the case of uniform surface density.
As the initial line is an axis of symmetry, 7 is evidently =0 (see Fig. 82).
To find the abscissa we have

5=ffrcose.rdodr/fjrd0dr,

the limits for r being
from =0 to r=a(l+cos 6),
and for 6, from 8=0 to 6=
(and double to include the lower half).

2-/;-/00(1{»:0-.9)’ cos.rdb dr=2[cos 6 [g]:‘lm” do

== a-"f'(cos 0+ 3 cos?6+ 3 cos® 6 + cost6) d

@l wlh wl

/"' (3 c0s0+cos*6) dO
«[353

mlv—-
wl
+
W
m»—-
I_J

alﬂ
kY
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N 727 a(1+-cos 6)
The denominator=2 '/01 I:E]o do

=azﬁ'(l +2 cos 0+ cos?0) df

=2a? _/1(1+c0820)d9

Liglaai L _37ra2

2a 2+22 g,

3ra®_ 5a
=5

Ex. 3. Calculate the surface integral of pr2" taken over one loop of a
Bernoulli’s Lemniscate.

The curve is 72=a?cos 26 (Dif. Calc., Art. 458).
The surface integral is plainly

8= 2f'/ p.rz" rd@ dr

_ﬂ‘_/t 2, SA\r+1
ot~ B A (a?cos 26)*+1 df

Bl il 2u+zf n+1 k
e cos™*1p. dep, where p=26,

pa+? 1‘(";2)1‘() Ea’*”J;r(nTH)
4

2n+1 21—.(n+3) n+1 I,(n-;—S)

If the moment of inertia be required about an axis perpendicular to
the plane through the pole,

4 "aVcos 20
7 I f f 2. e 4 dr
0 Jo

ol
Hence =3 Tad

=0ULY vyscasess (1)

n+3
a i/ F(

i HEH)

et PO )

n+2p(1i-;_2)1.,(n-|2~4) (n+2)? I‘("—;ﬁ) ;

where M is the mass.
If weputn=0 in (1), we get the mass M of the loop for uniform surface
density p, viz. NGRS e a’

M=za2\/7r r(%)=i“'§1

-k f (a%cos 20y+2df ="

2
and p=1 gives the area, viz. 4 =a§ L
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Putting =1 in (1), we have the moment of inertia for a uniform
lamina about a perpendicular through the pole to the plane (or the
mass for a superficial distribution pr?), viz.

at I"(g) ,ua‘rr Mma®
Mom. In. ——E J—l‘(2) 3

Similarly z=2 in (1) gives the moment of inertia for a superficial dis-
tribution wr? or the mass for a superficial distribution ur, etc.

ExXAMPLES.

1. Find the centroid of a sector of a circle
(a) when the surface density is uniform ;

(B) when the surface density varies as the n* power of the direct
distance from the centre.

. Find the centroid of a circular lamina whose surface density varies
as the 2 power of the distance from a point O on the circumference.
Find also its moment of inertia
(1) about the tangent at O;
(2) about the diameter through 0;
(3) about a perpendicular to the plane through 0.
3. (2) Show that the moment of inertia of the triangle of uniform
surface density, bounded by the y-axis and the lines

y=mzx+ec, y=myr+c,

i

where A is the mass of the triangle.

about the y-axis, is

(b) Find the moments of inertia of the triangle of uniform surface
density, bounded by the lines
Yy=mx+c;, Y=mgZ+cy Y=myx+cy,
about the coordinate axes; and show that if M be the mass of the

triangle, they are the same as those of equal masses pla.ced at the mid-
points of the sides.

4. Find the centre of gravity and the moments of inertia about the
coordinate axes of the rectangle z=m, z=a,, y=b,, y=0b,, the surface
density being o = pa®y2.

5. If A, B be the moments of inertia of any plane area about a pair of

perpendicular axes Oz, Oy in its plane, and C the moment of inertia
about an axis through O at right angles to the plane, prove that

C=A4+8B
for any law of surface density.

WWW.rcin.org.pl
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6. Show that the moments of inertia of a uniform ellipse bounded by

2
22/a®+3%/b*=1 about the major and minor axes are respectively A%

2
and }i:«, and about a line through the centre and perpendicular to its

a?+ b2

plane, ¥ T M being the mass of the ellipse.

7. Find the area remote from the pole between the circles
r=a, r=2acosl;
and assuming a surface density varying inversely as the distance from
the pole, find

(1) the centroid;

(2) the moment of inertia about a line through the pole perpen-
dicular to the plane.

8. Find for the area included between the curves
P=daz, 2*=day,

(i) the moment of inertia about the z-axis;

(ii) the moment of inertia about an axis through the origin and
at right angles to the plane of the area.

9. Find the coordinates of the centroid of the area bounded by the

catenary y =c cosh %:, an ordinate, and the coordinate axes.

10. If the density at any point of a circular disc whose radius is a vary
directly as the distance from the centre and a circle described on a radius
as diameter be cut out, prove that the centroid of the remainder will be

. 6a
at a distance 5@r—2) from the centre. [Mars. TrIP., 1875.]

460. Trilinears and Areals,

These ccordinates are not well adapted for metrical purposes.
Their special role is the discussion of descriptive properties
of curves.

With the usual notation of the trilinear system [Smith’s
Conics, Chapter XIIL], we have

aa+bB+cy=2A,
as an identical relation between the three coordinates a, B, y
of a point, and in the areal system this is replaced by

e+y+z=1
The transformation formulae from the one system to the
other are poda 8 Y
Al YRR PR

WWW.It
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Variations da, df, dy or de, dy, dz of the coordinates are
therefore connected by the equations

ada+bdB+cdy=0,

de+ dy+ dz=0,

The evaluation of an area for such coordinates is best done

by throwing back the homogeneous equation given into a

Cartesian form, taking two sides of the triangle of reference as

.

} respectively.

Fig. 87.

coordinate axes. Thus taking CB and C4, sides of the
reference triangle, as axes of £ and », if £ 5 be the Cartesian
coordinates of the point a, B, y, we obviously have

a=7nsinC, B=¢sinC

and v=(2A —aznsin C—b¢ sin O)/c
At (dind
c b/

and then the evaluation of the area will be obtained by
=—sinC|yd¢ or sin ij dn or sin C_”df dn

or any of the methods customary for Cartesians.

461. Formulae can, however, be exhibited expressing the
area directly in terms of areal or trilinear coordinates for use
if necessary.

In the Case of Areals, since z, 7, z, the areal coordinates of
a point, are linear functions of £ 5 the Cartesian coordinates
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with reference to any chosen rectangular axes and z+y+2z=1,
we have

”dfd,,=>\ﬂdx Ay & #I By da o v”dz de,

where A, u, v are determinate constants depending upon the

triangle of reference alone. To determine A we shall apply

the first of these formulae to the triangle of reference itself.
If A be the area of the triangle of reference,

j dgdn=A
where the integration is conducted over the triangle.
Now let us evaluate J. dz dy for the triangle.

The limits of y, keeping « constant, are from y=0 to 2=0,
1.e. to y=1—=z, and for z from =0 to x=1.

;i
Thus dea; dy for the triangle= r I " de dy

j(l—m)dx[ ] =5

<o A=2A
Hence if f(z, y, 2)=0 be the equation of a closed curve in

areals, its area is
2A”dx o

the limits of integration being obtained from

f@, 9,1 -z—y)=0.
The corresponding result for trilinears will be

Ida s,
where the limits are to be found from

f(a, B, %_:MB) =0

f(a, B, y)=0 being the curve to be considered.

462. Illustrative Cases.

Ex. 1. As a test let us apply this method to find the area of the
circum-circle of the triangle of reference, viz. a’yz+b%x+c?xy=0 (in
areals).

sin C
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The result, from elementary considerations, should be
2
TR:= ”(ZZC) R being the radius of the circle.

Substituting 1-z—y for z, we have
(Py+b%z)(1 -2 —y)+c2ay =0,
a?y+b%x — ay?® — b%«® — 2ab cos C zy =0,
a?y?+(2ab cos Cx — a?)y = b2z — b%?,

y’+(22c030x— 1)y+1(2écos C'.z'—]\)2

=i gos()x+b~2008201"+ & 22'”2
=i+%cos.4z—§sin’0ﬁ

e
=Zcosec’A [1 —4sin? Bsin? 0( ;m‘m;—:@)e:l
=p?—@*(z—r)? say.

The limits for y are therefore
1/2bcos C J——r—_——
—§( i x—l)i PP—-qi(x—1)?,
and for =z, r'_':g .

The area=2Affdxdy=4Afmdx

4P
=18 g [ sl NP FEP e LD
o
re-
q
=?p2 [Sin-ll"Sin‘l(—l)]=21rA£;
P 1 cosec’4 1rA 1
Ll & o 2 "2 s8in A4 sin Bsin C
sind "  j

_’_’é.%;%c:_ (‘Z’Z)’,

the result to be expected.

Ex. 2. More generally consider the areal equation of an ellipse
ua® + vy 4 wet + 2w yz+ 20 22 + 20 zy =0,
To obtain the integration limits put z=1-2-y.

‘We obtain ax® + 2hxy + by? + 292 + 2fy +¢ =0,
where a=w+u—20, g=—w+7,
h=w+w' -w'-, f=-wtu,
b=w+v-2u, c=w.

www.rcin.org.pl
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Solving for y,
by:—(lw+f)iW:—(M+f)i'\/m—OAC—C(x—%2,
oH oH oH
where A=-ﬁ’ 2G=-@', 0=-a—c—,
and H=the Hessian,viz.| a, %4, g |=| %, w,
By 0, w, v, U
g ¢ v, v, w
The limits for y are ;
ks GZ—4C G\
{- e+ [T ~0o(=-§ b
and for z, %i%ﬁg

‘Writing the radical

CHC-0(2-3) as vF—aG—m,

am=2AHdzdy=¢3béf~/m3'u

r4+2
=+ B [ee - WFBE P s L=0]
Q

e %%p’[sin-‘ 1 - sin=1(- 1)]= isz—;-
Now g=NC=Nab=RB=VS(w—-u?)+23@ v -u)=v- K,

where K =| u, w/, ¢/, 1|, the “bordered Hessian,” and @2 - AC= - bH.

vy v, 1
v, ¥, v, 1
T gl al
2 = -
ey pPLe-av. -H.
b pot  (-m)

Therefore the area sought is + 2rA —H—, the positive value to be
taken, where (- K)

A=area of triangle of reference,
u w, v

v, v, o
,

v, u, w
K =the bordered Hessian, viz. | », w, v,

H =the Hessian, viz. >

3
v, v, o, 1
v, W, w1

i A vl PR
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463. Corresponding Points and Areas.

Let f(z, y) be any closed curve.
Its area (4,) is expressed by taking the line-integral

-—Iy dz or the line-integral ja: dy round the complete contour.

If the coordinates of the current point &, ¥ be connected
with those of a second point (£ 5) by the relations

z=m§, y=mnn,
this second point will trace out the curve
J(még, nn)=0,
whose area (4,) is expressed by the line-integral —J.r] dg or
the line-integral |£dy taken round the contour.

And we have

A= _Iy de= —Inqmdf= —m'njr; dé=mnd,,

or 4= Izdy: Imfnd;,= mn|Edp=mnd,,
or, if we use surface integrals,

A= de dy= Hmn dédy= mnj dédy=mnd,,

whence it appears that the area of any closed curve f(z, y)=0
is mn times that of the closed curve f(ma, ny) =0.

464. Ex. 1. Thus, in the ellipse
2 .2
£+%i= ]’ put g:é,

¥
a? b

)
2
The corresponding point traces out the circle £24%?=7% and area of

the ellipse = %I-) x area of circle = ggwr"’= wab.

Ex. 2. Find the area of the curve (m?z%+n%y?)?= a?2? + b%y2
Put mx=§, ny=m. Then the corresponding curve is

(@ +n22= “_2524.22 2
m? P
! a? oF 1
or in polars = o cos?6 + o sin%0,

the central pedal of an ellipse, symmetrical about both coordinate axes.
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Hence the area of the given curve

1 .
= — x area of derived curve
mn

1 t a? b .
=—2 i (’?cos’0+;,sm20) do

mn

T fa® b2
=M(n_ﬂ+7ﬁ)'

It will De noted that it is often possible by a selection of such a
change of the variables to arrange that the derived curve is of a much
more convenient form, and its area readily obtainable when expressed
in polars.

Ex. 3. Find the area of the curve

atyd bRty /a3 9B a®y? | b2l
(++ 5 +57 )G+ ) -(F +o)
where ¢ is less tha.n both @ and 5.
Let _""Is —'_$
Then the derived curve is
2
@+orm(f+5)=gem
2
or in polars, @+ ,-ﬂ)(c"s 9 “‘2,,")
a?b?
= a?cos?0 + bPsin?0

There is obviously symmetry about both axes, and though there is a
conjugate point in the original curve at the origin, the curve does not
pass through the origin, and the derived curve is one which could be

obtained from an ellipse by writing 72+ ¢? for 72

252
Let +c?=r2 Then r?= —m‘ﬂz—m, and the area of this

=1,

z.e.

ellipse is mab. The area of our first derived curve is therefore

2[ r2df = 41f (1 -)do=4. (’Ii‘-b—g ) = m(ab-);

. the area of the original curve is
Y. (ab-et),
which also =m(ab-c?).

465. In connection with the last example, it is worth noting
that in any curve »=f(0) if the area if any portion from
9=a to 0= be found as

%j’[f(@)]ﬂde shd ]
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then the sectorial area of the curve r2=[f(0)]?%c? between
the same limits is

3| U OP=do-425 B-a);

and if both be closed and the origin within both, then the
area of the new curve differs from the area of the original
curve by the area of a circle of radius ¢, supposing ¢ to be such
that = is real throughout the range of integration in each case.

EXAMPLES.
1. Find the whole area of a loop of each of the curves
()  =(@+y)=a@@®-9).

(ii) (m22? + n%y?)? = a2 - b2%2
[St, JorN’s, 1887.]

2. Trace the shape of the following curves, and find their areas:
(@) @+ =

(if) (22 +2¢%)% =azyt.
[BARNES SCHOLARSHIPS, 1887.]

3. Prove that the area of
@ gy P\ . me?
P o+ b_‘ P (a’ bz) 18 Sab ((142 + b’).
4. Prove that the area in the positive quadrant of the curve

@+ = mad g B8 L (G+5)-

3ab\a® " b® [a, 1890.]

5. Prove that the area of the curve
(a2 + b2y2)2 =cO(x2 — 9?) s gsc%s {ab + (0% - a?) tan‘lg
[ST. JouN’s, 1883,]

6. Show that the area of the loop of the curve

P L
s =57 IR 8 3 ab.
7. Find the area of the curve
ﬁ=l+ecosﬂ (e<1).
8. Show that the area bounded by

@+ ) (@ +9?) =4da%a® is (204
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9. Find the area included within the curve whose equation is

# £
z Y
a0 bA) el
(a) ¥ (b> [CorLLEGES, 1885.]
10. Trace the curve

o) (-9 -

and show that its area is half as great again as that of the ellipse
a2/ iyt
e
a [MarH. TrIPOS, 1884.]
11. Prove that the area of the curve
@+ 2’ =a®y(@"+y") is Fysma’+3Eia’
[ST. JoHN’S, 1889.]
12. Prove that the area of the curve
(a22? + 0%?2)5 = Batbizy (axS + b%y®) is aP+ 02
[St. Joun’s, 1889.]

13. Show that the area in the first quadrant of the curve
? (P P L ab@+ )
ct aa +53 b2> ( ) 18 T.
14. Trace the curve 4(22+ 2y%— 2ay)?=22(22 + 292), proving that
the area of a loop is 47 (2 —«/3)a?/s/3, and that the area included
between the loops is

8a2(2m — 3/3)/34/3. [TRINTTY, 1896.]
15. Find the whole area of the curve
2?9\ 2zy
(Ei o ﬁ) b’ [Oxzop L. P., 1890.]
and of a loop of the curve
@ p 2y
E‘+F=7¢7° [Oxrorp II. P., 1900.]

16. Show that the area of either oval of
a2 {a2fa + 9202 -1} +2=0 is 3wb(a-2c).
[ST. JonN's, 1890.]

.at f(x, y)=0 be a closed curve, show that its area is mn
times the area of the closed curve f(ma, ny)=0. Trace the curve

(422 + 99%)* = azy®, and find its area. [Oxrorp II. P., 1890.]
18. Trace the curve xs ‘g: L , and show that the area of its

loop is gab.
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19. A curve is defined by the equations
z=06asin?¢, y=~6asin®etan ¢,
where ¢ is a variable parameter. Show that the centroid of the
portion enclosed between the infinite branches and the asymptote
is situated on the z-axis at a distance 5a from the origin.
[Oxrorp II. P., 1889.]
20. (i) In 'an involute of a circle, show that the area swept out
by the radius vector drawn from the centre of the circle to a point
on the curve varies as the cube of the central perpendicular upon
the tangent, the initial line being the radius to the point where the
involute meets the circle.
(ii) In the Conchoid of Nicomedes r=asec 6 —b in the case when
a < b, show that the area of the loop is
a*(a sec’a. — 2 sec a cosh~!sec a + tan a),
and that the distance of the centroid of the loop from the node is
2 3aseca— 3 cosh~!sec a — sin a tan%a
3 aseca - 2cosh-Tseca+sina

7

where a=cos™a/b.
21. Prove that the area contained by the curve
78+ 20%2 + daa®y + 202 ()% — 22 — Zay) + @ =0 is wa2(4 - 5/u/2).
Find also the distance from the axis of y of the centre of gravity

of that portion of the area which lies in the first quadrant.
[CoLLEGES B, 1890.]

22. Show that the area i'ncluded between the curve
s=atany, its tangent at Yy =0 and its tangent at Yy =¢

is 1a2tan ¢ + a’tan 1 — a?log(sec ¢ + tan ¢).
[TriNITY, 1892.]

23. Show that an expression for the element of area in trilinear

coordinates is
cosec C' da df.

Show that the area of the conic whose trilinear equation is
a By +btyatctaf=0
is to that of the triangle of reference as L
47 : 34/3. {Oxrorp II. P., 1890.]
24. Show that the coordinates of the centroid of the area bounded
by half the cycloid #=a (8 +sin 0), y=a(1 - cos ), the line of cusps
and the y-axis are given by

Br-4)3r+4) 7 2 [WaLLIS.]
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25. OB and 0C are any two semi-diameters of an ellipse conjugate
to each other ; find the locus of the intersection of the normals at
B and C, and show that the area of the curve is

w(a® - b%)2
4ab [R. P.]

26. Tangents to a system of similar and similarly situated con-
centric ellipses are drawn such that the distance of each from the
centre is the same. Find the area of the curve formed by the points
of contact. [TrINITY, 1885.]

27. Show that the moment of inertia of the portion of a uniform
parabolic lamina cut off by the latus rectum about the tangent at an

2
extremity of the latus rectum, is equal to BML, 4a being the latus
: 7
rectum and M the mass of the lamina. [OxF. I. P., 1914.]

28. Prove by integration that the moment of inertia of a uniform
triangular lamina 4 BC of mass M about a perpendicular axis at 4 is

12 M (362 + 3¢ - a?). [0x. L P., 1915.]
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