43.

ON THE EXACT RELATION WHICH RESULTANTS AND DISCRIMINANTS BEAR TO THE PRODUCT OF DIFFERENCES OF ROOTS OF EQUATIONS.

[Messenger of Mathematics, Ix. (1880), pp. 164-166.]

FIRST, for Resultants.

Let there be two rational integral functions in x of the degrees r, s respectively ; and, for greater simplicity, let the coefficients of x^{r}, x^{8} in these functions be each made equal to unity. Call ρ the roots of the one, σ of the other; and denote the product of the differences found by subtracting each σ from each ρ by $D_{\rho, \sigma}$.

Also, by the resultant $R_{r, s}$ understand that irreducible rational integral function of the coefficients, vanishing when the functions have a root in common, in which the highest power of the last coefficient of the " s " equations enters with the positive sign.

We must then have $R_{r, s}=\mu D_{\rho, \sigma}$; and it only remains to determine μ as a function of r, s.

To do this let the r function become x^{r}, and the s function $x^{8}+1$.
For greater distinctness, suppose $r=4, s=2$.
Then, obviously, $R_{r, s}$ becomes the dialytic resultant of

$$
\begin{aligned}
& x^{5}
\end{aligned}
$$

which is equal to 1 .
And in like manner for all values of r, s,

$$
R_{r, s}=1
$$

Again,

$$
D_{\rho, \sigma}=\left\{0-(-1)^{\frac{1}{s}}\right\}^{r s}=(-)^{r s+r}
$$

Hence μ, which is a function of r, s exclusively, $=(-)^{r s+r}$.

Next, for Discriminants.

By the discriminant of $f x$ of the order n, and where, for greater simplicity, the coefficient of x^{n} is supposed to be unity, I mean the resultant of $f x$ and $f^{\prime} x$; or, which is the same thing, of $\frac{d f(x, 1)}{d x}$ and $\frac{d f(x, 1)}{d 1}$, when the term in which the highest power of the last coefficient in $f x$ appears is made positive. Let this be called R_{n}, and the product of the squared differences of the roots Z_{n}; we have then $R_{n}=\mu Z_{n}$, where μ is a function of n to be determined. To find it let us take $f x=x^{n}-1$.
R_{n} is then the resultant of $n x^{n-1},-n y^{n-1}$, that is, is equal to

$$
(-)^{n-1} n^{2 n-2} .
$$

Again, $\left.\begin{array}{rll}Z_{n}= & (1-\rho) & \left(1-\rho^{2}\right) \\ & \ldots\left(1-\rho^{n-1}\right) \\ & \left(\rho-\rho^{2}\right) & \left(\rho-\rho^{3}\right) \\ & \ldots(\rho-1) \\ & \cdots \\ & \left(\rho^{n-1}-1\right)\left(\rho^{n-2}-\rho\right) \ldots\left(\rho^{n-1}-\rho^{n-2}\right)\end{array}\right\} \div(-)^{\frac{1}{2}(n \cdot n-1)}$,
ρ representing $\cos \frac{2 \pi}{n}+i \sin \frac{2 \pi}{n}$.
Hence

$$
\begin{aligned}
Z_{n} & =n^{n} \cdot(-)^{\frac{1}{2} n(n-1)} \cdot\left\{\rho^{\frac{1}{2} n(n-1)}\right\}^{n-1} \\
& =(-)^{\theta} n^{n},
\end{aligned}
$$

where

$$
\theta=-\frac{1}{2}\{n(n-1)\}+(n-1)^{2}=\frac{1}{2}\{(n-1)(n-2)\},
$$

and

$$
\theta+(n-1)=\frac{1}{2}\{(n-1) n\} .
$$

Hence $R_{n}=(-)^{\frac{1}{2}(n-1) n} n^{n-2} Z_{n}$, or $\mu=(-)^{\frac{1}{2}(n-1) n}$, which was to be found.
For ordinary algebraical investigations the determination of μ has little importance, which may account for its value being omitted in the ordinary text books; but for certain investigations concerning the numerical divisors of cyclotomic functions, with which I am occupied, I found it necessary to pay attention to the numerical part at least of this factor, and I have thought that the publication of the result might save others some unnecessary trouble.

