43.

ON THE EXACT RELATION WHICH RESULTANTS AND DIS-CRIMINANTS BEAR TO THE PRODUCT OF DIFFERENCES OF ROOTS OF EQUATIONS.

[Messenger of Mathematics, IX. (1880), pp. 164-166.]

FIRST, for Resultants.

Let there be two rational integral functions in x of the degrees r, s respectively; and, for greater simplicity, let the coefficients of x^r , x^s in these functions be each made equal to unity. Call ρ the roots of the one, σ of the other; and denote the product of the differences found by subtracting each σ from each ρ by $D_{\rho,\sigma}$.

Also, by the resultant $R_{r,s}$ understand that irreducible rational integral function of the coefficients, vanishing when the functions have a root in common, in which the highest power of the last coefficient of the "s" equations enters with the positive sign.

We must then have $R_{r,s} = \mu D_{\rho,\sigma}$; and it only remains to determine μ as a function of r, s.

To do this let the r function become x^r , and the s function $x^s + 1$.

For greater distinctness, suppose r = 4, s = 2.

Then, obviously, $R_{r,s}$ becomes the dialytic resultant of

$$x^{5}$$

 x^{4}
 x^{5} + x^{3}
 x^{4} + x^{2}
 x^{3} + x
 x^{2} + 1

which is equal to 1.

And in like manner for all values of r, s,

$$R_{r,s} = 1.$$

Again, $D_{\rho,\sigma} = \{0 - (-1)^{\frac{1}{s}}\}^{rs} = (-)^{rs+r}$. Hence μ , which is a function of r, s exclusively, $= (-)^{rs+r}$.

Next, for Discriminants.

By the discriminant of fx of the order n, and where, for greater simplicity, the coefficient of x^n is supposed to be unity, I mean the resultant of fx and f'x; or, which is the same thing, of $\frac{df(x, 1)}{dx}$ and $\frac{df(x, 1)}{d1}$, when the term in which the highest power of the last coefficient in fx appears is made positive. Let this be called R_n , and the product of the squared differences of the roots Z_n ; we have then $R_n = \mu Z_n$, where μ is a function of n to be determined. To find it let us take $fx = x^n - 1$.

 $(_)n-1n2n-2$

 R_n is then the resultant of nx^{n-1} , $-ny^{n-1}$, that is, is equal to

 ρ representing $\cos \frac{2\pi}{n} + i \sin \frac{2\pi}{n}$.

 $\theta =$

Hence

$$Z_n = n^n \cdot (-)^{\frac{1}{2}n (n-1)} \cdot \{\rho^{\frac{1}{2}n (n-1)}\}^{n-1}$$

where and

$$-\frac{1}{2} \{n (n-1)\} + (n-1)^2 = \frac{1}{2} \{(n-1) (n-2)\},\$$

$$\theta + (n-1) = \frac{1}{2} \{(n-1) n\}.$$

Hence $R_n = (-)^{\frac{1}{2}(n-1)n} n^{n-2} Z_n$, or $\mu = (-)^{\frac{1}{2}(n-1)n}$, which was to be found.

For ordinary algebraical investigations the determination of μ has little importance, which may account for its value being omitted in the ordinary text books; but for certain investigations concerning the numerical divisors of cyclotomic functions, with which I am occupied, I found it necessary to pay attention to the numerical part at least of this factor, and I have thought that the publication of the result might save others some unnecessary trouble.

43]