
89.

ON FAREY SERIES.

[Johns Hopkins University Circulars, ιι. (1883), p. 143.]

The ordinary Farey Series is a succession of proper vulgar fractions 
arranged in order of magnitude, whereof the denominator does not exceed 
a given amount. The theory may be generalized and simplified by con
sidering the terms of each fraction as the coordinates of a node in a “ rdseau.” 
If a simple and anautotomic closed boundary drawn on a tessellation be called 
a scroll, and any node within it be assumed as origin, a radius of indefinite 
length rotating about that point as centre, will pass through a series of 
nearest nodes to it in succession, all lying within the scroll—and the coupled 
coordinates to those successive points, say (p, q), (p', q'), ... will form a 
certain series which in general but not universally will satisfy the equation 
pq' ~ P O. = 1 or = — 1 according as the order of magnitude is descending or 
ascending. The character of the series may be termed Farey if this law is 
satisfied throughout the entire succession and otherwise Non-Farey. The 
character obviously can only depend on the form, magnitude, position, and 
aspect of the scroll and the position of the assumed centre. The author of 
the paper showed that the position of the centre was indifferent except that 
it must be taken at some node within the scroll, and that the scroll might 
undergo uniform expansion and contraction about any internal node (and 
consequently also translation along any line of nodes) without change of 
character. Application of these principles was made to a triangular or 
rectangular scroll (including Mr Glaisher’s extension of the theory of ordinary 
Farey Series to a two-fold constant limit), to the case potentially indicated 
by Dirichlet where the scroll is formed by two asymptotes to, and the branch 
of a hyperbola, and two other cases: the theory is deduced without the use
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of continued fractions or indeterminate linear equations or any other alge
braical process whatever, from the well-known fact that all elementary 
triangles in a reticulation are of equal area and from the not very recondite 
theorem that a triangle may be divided into four equal and similar triangles 
by straight lines joining the bisections of its three sides; and with the aid 
of a solid reticulation may be extended to triplets and so on indefinitely. 
It will be found fully set forth in Note H, interact, part 2, Vol. v., No. 4, 
American Journal of Mathematics [Vol. IV. of this Reprint],
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