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On discrete dislocations in micropolar elasticity 

W. NOWACKI (WARSZAWA) 

Two-DIMENSIONAL problems of dislocations in elastic micropolar media are considered. In the 
case of a plane state of strain, the compatibility equations may be divided into two mutually 
independent systems of equations. The first system is connected with the vectors of displacement 
u = (u1, u2 , 0) and rotation <p = (0, 0, 9'3), the second with vectors u = (0, 0, u3) and cp = 
= (9'1, <p 2 , 0). The equations of compatibility for the both cases are written in terms of stresses. 
The cases of edge, screw and wedge dislocations are considered in detail. 

Rozpatrzono dwuwymiarowe zagadnienia dyslokacji w mikropolamym osrodku spr~zystym. 
Dla zagadnienia plaskiego stanu odksztalcenia moma rozdzielic r6wnania zgodno8ci na 
dwa niezaleme od siebie uklady r6wnan. Pierwszy z nich zwiClzallY jest z wektorem prze
mieszczenia u = (u1. u2, 0) i obrotu <p = (0, 0, 9'3), drugi z wektorami u = (0, 0, u3) 
i <p = (9'1, 9'2, 0). Podano r6wnania zgodno8ci dla obu zagadnien w napr~i:eniach. Szczeg61o
wo rozpatrzono przypadek dyslokacji kraw~dziowej, klinowej i srubowej. 

PaccMo-rpeHbi ,IUJyMepHbie sa~atiH ~CJIOKanHH B MHKpono.JIHpHo:H ynpyro:H cpe~e. ,n;m sa,o;aqu 
nJIOCKOrO p;e$opM~HOHHOro COCTOHHIDI ypaBHeHHH COBMeCTHOCTH MO>I<HO pas~emrn, Ha ,IUJe 
HesaBHCffii.Uie p;pyr OT p;pyra CHCTeMbl ypaBHeHHH. IJepBaH H3 HHX CBH38Ha C BeKTOpoM nepe
Mell.\eHHH U := (u1 , U2, 0) H Bpall.\eHHH <p := (0, 0, 9'3), BTOpaH C BeKTOpaMH U := (0, 0, U3) 
H <p = (9'u <p2 , 0). YpaBHeHHH coBMeCTHoCTH JJ;.JIH o6omc sap;aq ~arorcH B HaiipiDKemmx. 
IJop;po6HO paCCMOTpeH CJiyqaH KpaeBOH, KJIHHOBOH H BHHTOBOH ~CJIOKa~. 

1. Introduction 

IN TilE PRESENT author's paper [I] the state of stress occurring in a micropolar medium 
containing distortions Yi~, xJ1 is discussed. Initial strains of that type may occur in metals 
deformed beyond the yield limit- such as plastic strains. In this paper, we shall deal 
with the state of stress produced by discrete dislocations. The action of edge, screw and 
wedge dislocations will also be discussed. 

Returning to distortions let us assume that the total strains provoked by distortions, 
y};, x};, may be expressed by the formulae 

(I. I) 

Here 'Yiit "ii are elastic strains. The stresses produced by distortions are [I] 

aii = (u+a) <r]i-Yi~)+(u-a) (ylj-yB)+J.~ji<Yf~c-re~c), 
(1.2) 

llii = Cr +e) C"J,- "JD +Cr- e) C"lj- "B) +P~ii("f"- "e~c). 

Here a, {J, y, e, )., p, are material constants. In the considerations which follow, the 
definition of total strains will be needed, 

(I.3) 

Here uT are components of the displacement vector, and q;f- of the rotation vector. 

http://rcin.org.pl



4 W. NOWACKI 
--- ----------------------------

On substituting into the equilibrium equations 

(1.4) 

the constitutive relations (1.2) and using the definitions (1.3), a set of six equations for 
rotations and displacements is obtained from which the functions uT and f!Jf may be 
determined: 

(1.5) 
[(y + e)V2

- 4tX] f!Jf + (fJ +y- e)f!JJ.Ji + 2tX Eu"ul,1 = EiiJ, aJ" + ,uJL. 
The following notations are introduced here: 

aJ, = (,u +tX)yJ, +(.,u- tX)Y8 + A<5urf~:, 
(1.6) 

,uf, = (y +e)"J,+ (y-e)";~ +IMu"f". 

Once the functions u[, f!JT are known. we may proceed to determine y];, "J; from the 
Eqs. (1.3), and the force stresses O'Jj and couple stresses .Uii from the constitutive relations 
(1.2). 

This is the first method of determining the strains produced in finite or infinite bodies 
by distortions [1]. 

On the other hand, the stresses due to distortions may also be determined by the 
method developed by Beltrami in classical elasticity. 

Namely, comparison of the Eqs. (1.3), (1.1) yields: 

(1.7) 
u[J-Ekjif/Jf = yf,+/'ih 

fPlJ = "J~+"Ji· 
Elimination of uT, f!Jf from these equations leads to a system of nonhomogeneous equations 
for the elastic strains y1, "J• [2, 3], 

(1.8) 

where 

Ethl/'u,h- "ii + <5u "kk = tXJh 

Ejhl"li,h = ()Jh 

tXJt = -EJhtY8.~a+"~-<5ii"f~:, () = -"ft.,.eihl· 

The above equations may be expressed in terms of stresses in view of the relations: 

(1.9) 

Here 

y1, = (,u' +tX')a1i +(,u'- tX')au +A' <5ua""' 

"ii = (y' + e') ,u h + (y'- e') ,Uu + {3' <5u ,Uu · 

2,u' = _!_ 
2p' 

2tX' = _!_ 
2tX' 

A'=- A 
2,u(3A+2p) ' 

2e' = _!_ 
2e' 

{3' {3 = - 2y(3{3 +2y) . 

Inserting (1.9) into (1.8) and using the equations of equilibrium, we arrive at an equation 
in stresses which is analogous to that by Beltrami-MicheJJ. 

Let us adopt this manner of solution in further considerations confined, however, 
to the plane strain state of the body. Assume all the causes and effects to be independent 
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of the variable x 3 • In this particular case, the set of compatibility equations (1.8) splits 
into two sets of equations. In the first one, the following strain matrices appear 

lYu Y12 0] rO 0 "13] 
(1.10) y= Y21 Y22 0' X= .0 0 "23. 

0 0 0 0 0 0 

The equations of compatibility take the form 

OtY21-02'Ytt-"t3 = cx31' 
(1.11) 

where 

(1.12) 

a1'Y22-a2Y12-"23 = cx32, 

alx23-a2"t3 = 833, 

!131 = -a~r~~ +o2r~1 +x~3, 

cx32 = -a~r~2+a2r?2+"~3, 

fJ33 = -a~"~3+a2"~3. 
The second system of compatibility equations, independent of ( 1 .1 1 ), has the form 

a2Y3t +x22 = CXu, -ati'J2+"11 = a22' 

(1.13) a2Y32-"21 = CX12' -OtYJt-"t2 = CX21' 

aty23-a2Yt3+xll +x22 = cx33, 
where 

cxu = - a2 ygl- "g2, CX22 = 01 'Yg2- "~!J 
(1. 14) cx12 = -02 yg2 +xgl' cx21 = al yg 1 +x~2' 

CX33 = -alyg3+o2y?3-X~1-X~2· 

2. The first problem of plane strain 

Let us consider the set of compatibility Eqs. (1.11 ). Strains appearing in those equations 
are expressed in terms of stresses by means of the constitutive relations (1.9). First of 
all, the set of Eqs. ( 1.11) is transformed to the form: 

(2.1) 

where 

o~Ytt +a~Y22- at o2(Y12 +y21) = At, 

a. a2(Yu-Y22)+a~y12-0~Y2t +otx13+o2X23 = A2, 

a1"23-a2"13 = A3, 

A1 = 033+atcx32-a2cx31, A2 = -alcx31-a2cx32, A3 = 833· 

Expressing the strains in terms of stresses, we obtain 

a~ utt +a~U22- -i(A :p)- Vf(u11 +o-22)- a1 o2(u12 +o-21) = 2pAt, 

(2.2) (o~- oD (u12 +o-21) + _!!:__ vf<ut2 -u21)+ ~ (at#t3 +o2/-'23) 
ex y+e 

+ 2a 1 a 2 ( u 11 - u 22) = 4'"'A 2 , 
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The state of stress is expressed by the following matrices: 

(2.3) u = r~ 
.1'31 

~ ~0::]. 
#32 

Three of the stress components may be written in terms of the remaining ones. These 
are 

A y-e y-e 
(2.4) 0'33 = - 2(A+p,) - (au +a22), #32 = y +e #23, #3t = y + e #13 · 

Six unknown values of stress components appear in the Eqs . (2.2). The equations of 
compatibility (2.2) are then supplemented by the equation of equilibrium 

a1 O'u +820'21 = 0, a1 0'12 +820'22 = 0, 
(2.5) 

a1/-t13 + a2/-t23 +a12- 0'31 = 0, 

and thus the number of equations equals the number of unknowns. 
(a) Let us consider the particular case A 1 =F 0, A 2 =F 0, A3 = 0. The stresses are 

expressed in terms of the Airy-Mindlin function 

(2.6) 

1'3 = al 'P, 1'23 = a2 'P. 

These expressions satisfy the equations equilibrium (2.5) and the last of the Eqs. (2.2). 
The remaining equations of (2.2) are reduced to simple differential equations 

(2.7) 

(2.8) f2 = (y+e){p,+IX) 
4p,IX 

Let us consider the action of a discrete edge dislocation characterized by the Burgers 
vector b = (b1 , 0, 0). Assuming the x3-axis for the dislocation line, and passing from 
distortions to dislocations [4-6], we obtain 

(2.9) Y~1 = -bt J d(x-x')dS2(x'). 
s 

The remaining magnitudes y1~ nad "f. vanish. It is assumed that S2 constitutes part of 
the X 1 X3-plane for negative values of x1 • The normal to S2 directed towards the negative 
direction of x 2 (dS2 = -dx~dx~). Hence 

0 00 

(2.10) Y~t = b1 J d(x1 -xDdx~ d(x2) J d(x3 -x~)dx~ = b1H( -x~)d(x2), 
-oo -oo 

and 

(2.11) IX31 = -82 Y~1 = b1 d(x1) d(x2), A2 = - a2IX31 , A2 = a. IX31. 

Here H( -z) denotes the Heaviside function. 
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The solution of the Eqs. (2.7), (2.8) is found by means of the double integral Fourier 
transform 

(2.12) 
-oo 

(2.13) 

The above integrals, being improper, do not exist in the usual sense; nor can we assing 
to them the Cauchy principal values. We may, however, separate out of the them what 
are called the "finite parts" [7, 81, which consequently yields the results: 

-oo 

00 

(2.14) 

-oo 

r = (xt+xi)12
, 

Here, K0 (z) denotes the modified Bessel function of the third kind (McDonald) and C is 
the Euler constant. 

Thus we may write 

(2.15) 

(2.16) 

The stresses are calculated from the Eqs. (2.6) 

ftbt (x2 2xfx2) IT/ au = - - - - + -- -a1 a2 r, 
2n(l-v) r2 r4 

ftbl ( x2 2xf x2) a tp 
<122 = - 2n(I -v) ~I---,:;;- +at 2 , 

= ftbt (~ _ 2 x1xi) -a2p 
<112 2 (1 ) 2 4 2 ' n -v r r 

(2.17) 
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In passing from the Cosserat to Hooke's body, 'P has to be assumed to vanish, 'P = 0. 
The known values of stresses in Hookean bodies due to an edge dislocation are obtained 
as follows: 

al 1 = a12 and p,1 3 = f-tl 3 = 0. 

(b) Let us consider the case in which A3 = 033 , and A1 = Al = 0. Representation 
of stresses by the potentials F, 'P does not in such a case yield any result: the equations 
of equilibrium would be satisfied, but the compatibility condition (2.2h could not in 
this manner be fulfilled. 

By consecutive elimination of stresses, from the Eqs. (2.2), (2.5), we obtain 

Vft-tu = -(y+e)a2A3, V~f-tl3 = (y+e)alA3, 

(2.18) 

Consider a discrete wedge dislocation [2] 

(2.19) A3 = 033 , 833 = .CM(xt) ~(x2), !J = const, Cl31 = Cl32 = 0. 

The following functions are solutions of the Eqs. (2.18): 

_ (y+e)Q a (I)_ (y+e)!J x2 
flu - 2n ax2 1 - - 2.n -,: ' 

- (y+e)!J a (/) - (y +e)D Xt_ 
p,23 - - 2n axl 1 - 2.n ? ' 

K a2 K X 1 X2 
all= alt = - ·---- (/3) = -----, 

2n ax.ax2 4n r1 (2.20) 

K ol K ( xi) all = - ---- (/3 ) = - Inr + -··- . 
2.n axt 4n r2 

The above solutions were obtained earlier by K. H. ANTONY by a different method [2]. 

3. 'Ibe second problem of plane strain 

Let us return to the system of Eqs. ( 1.13) for the second problem of plane state of 
strain. By eliminating some of the strain components, we obtain five independent com
patibility conditions, 

(3.1) 

af"2l +a~"u -at a1("11 +u1d = A1, 

a~"u-of"21 +alal("u-"ll) = Al, 

al (Yu +;'23)- al(Yu +;'31) = A3, 

"ll-"u-al,.,32-a1,.,31 =A., 

"11 +"l2-alyl3+ati'23 =As, 
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where 

(3.2) 

A1 = aitXu +a~tX22 +at a2(tXu +tX21), 

A2 = a1a2(tX22-tX11)+a~tX21-a:tX12• 

AJ = IXJJ- tXll- tX22' A4 = tX2t- tX12' As = IXJJ. 

9 

Let us observe that in the expressions (3.2) the components of disclination density 
011 do not appear. Using the constitutive relations (1.9) we may express the compatibility 
conditions (3.1) in terms of stresses. In this manner we obtain 

a~,u22 +a~,ull- i(:+fJ) VU,uu +,u22)- at o2(,u12 +,U2t) = 2yA1' 

(o~- an (,u12 + ,U21) + L V~(,u12- .U21)- 2ol o2(,u22- ,uti) = 4yA2' 
E 

(3.3) a1(a23+a32)-a2(a31 +a13) = 2,uA3, 

y+fJ ( ,u+tX ) /l1t +,u22 + --~ (02 0'31- Ota'J2) = (y +fJ) (2As- --IX- A3 , 

e(,u +tX) 
.U21- ,Uu- -

2
-- (atu3t +a2 <132) = 2eA4. 
,UtX 

Observe that the Eq. (3.3)4 may also be written in the form 

Eight unknown stresses ,u11 ,,u22 ,,u12 ,fl21 ,u13 ,u31 ,u23 ,u32 appear in the system 
of five Eqs. (3.3). Supplementing the system (3.3) by three equations of equilibrium 

a, ,Uu +a2,u21 +u23- 0'32 = 0, 

(3.4) a. ,Uu +a2,u22 +a31- 0'13 = 0, 

atO'IJ+azO'zJ = 0, 

we have at our disposal a number of equations sufficient for the determination of stresses. 
The system is connected with the vectors u = (0, 0, u3 ), <p = (q> 1 , q; 2 , 0) and with the 
matrices 

(3.5) 

The stress fl33 is found from the formula 

(3.6) 

Let us consider the case of a screw dislocation b = (0, 0, b3 ). Assuming the x3-axis 
for the dislocation line, and the x 1 x3 -plane (x 1 < 0) for the plane of discontinuity, we 
arrive at the conclusion that only y~3 ::/: 0, 

(3.7) y~3 = -b3 J ~(x-x')dS2 (x') = b3H(-x1 )~(x2) 
s 
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Now, we have A 1 = A 2 = A4 = 0, and 

(3.8) 

Further elimination of stresses from Eqs. (3.3), (3.4) yields (with A 1 = A2 = A4 = 0, 
A 3 = As #: 0) the following differential equations 

(3.9) 

(3.10) 

here 

H(pu +ll22) = -(y+IJ)As 

D(p12 -ll21) = 0: 

D= FVf-1, 2 2r+P 
'V=~, 

[2 = (y +e) (p +a) 
4lta 

The force-stresses uii are determined from the equations 

(3.11) HV~u1 3 = -o2NAs, HVfu23 = o1NAs, 

HVfu31 = -o2MAs, HVfu3 2 = o1 MAs, 
where 

N = (a+lt)H+a, M= (p-a)H-a, As= b3 ~(X1 )·~(x2). 

Application of the exponential Fourier transform leads to the following relations 

b3 " b3 " 
(113 = 2n o2(p/1 +a/2), (131 = 2n o2(p/1- a/2), 

(3.12) 

where 

/ 1 = -(C+lnr), j2 = Ko(: ). 
Let us observe that in a Hookean solid, with a = 0, the classical, known results are 

obtained. Force-stresses are then symmetric. 
Elimination of stresses from the sets of Eqs. (3.3), (3.4) yields, by means of Eqs. (3.9), 

(3.10) and (3.11), the following differential equations for couple-stresses: 

HV~/ln = - (ri!~+ ~ v~) A,, 

(3.13) HV~!ltt = -(ri!~+ ~ vt)A,, 

HVfll12 = HV2ll21 = -2ya1o2As, As= b3~(x1)~(x2). 
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