
Archives of Mechanics • Arcbiwum Mechaniki Stosowanej • 16, I, pp. 25-35, Warszawa 1974 

Concentric supersonic thermal sources in a perfect gas 

S. KALISKI and E. WLODARCZYK (WARSZAWA) 

THE PROBLEM of a small spherical body of perfect gas subject to the action of a concentric super
sonic thermal wave is solved. The solution obtained is valid until the thermal wave has reached 
the neighbourhood of the centre of the gas ball, in which the thermal wave is caught up by 
the shock wave. The results of the present paper, together with the solution of the problem 
of a subsonic thermal wave now in preparation, furnish, in addition to direct technical applica
tion, a point of departure for the obtainment of averaged equations of laser heating and com
pression of plasma, taking into consideration thermal and shock wave fronts and the recovery 
of the fusion energy. 

W pracy podano rozwi~ie dynamiki kulki gazu doskonalego, poddanego dzialaniu koncen
trycznej naduderzeniowej fali termicznej. Rozwi~zanie skonstruowano do momentu osi~i~
cia przez fal~ termiczn~ otoczenia centrum kulki, w kt6rym nast~puje wyprzedzenie fali 
termicznej przez uderzeniow~. Wyniki pracy niniejszej, l~cznie z przygotowywanym rozwi~za
niem dla poduderzeniowej fali termicznej, poza ich bezposredni~ aplikacj~ techniczn~ stanowic 
~~ punkt wyj§cia dla konstrukcji usrednionych r6wnan laserowego nagrzewania i kompresji 
plazmy przy uwzgl~dnieniu front6w fal termicznych i uderzeniowych oraz odzysku energii 
syntezy. 

B pa6oTe ,llaeTcH peweHHe ,llHHaMHI<H wapHI<a H]leaJlbHoro raaa no,llaeprnyroro ]leiicramo 
ROHI.teHTpH'lec:Koii, caepxy,llapHoii Tennoaoii BO.JIHbi. PeweHHe nocrpoeHo WUI MOMeHTa JlOCTH
>I<eHHH TenJIOBOH BO.JIHOH O:KpeCTHOCTH tteHTpa wapHI<a, B I<OTOpOH HBCTYfiBeT BbiXO,ll TennOBOH 
B0.11Hbl nepe,ll y,llapHyro BOJIHY. PeayJILTaTbl HBCTOHI.I.tCH pa60Tbi, COBMCCTHO C npHrOTOBJIH
BaeMbiM peweHHeM ,llJIH ,llOy,llapHOH TenJIOBOH B0.11Hbl, RpOMe HX Henocpe,llCTBeHHoro TeXHH
qec:Koro npHMCHCHHH 6y,llYT COCTaBJIHTL HCXO.llHYJO TOq}(y ]lJIH llOCTpOeHHH ycpe,llHeHHbiX 
ypaBHCHHH Jia3epHoro Harpeaa H C>l<aTHH n!Ia3Mbl npH yqeTe <l>poHTOB TennOBbiX H y,llapHbiX 
BO.JIH, a Tal<>l<e BbiXO]la 3HeprHH CHHTe3a. 

1. Introduction 

REFERENCE [1, 2, 3, 4] were devoted to the problem of plane super sub and transonic 
waves produced in a perfect gas, by a thermal wave moving at constant speed. In addition 
to the possibility of direct application, these works furnished a simplified model consti
tuting a point of departure for the establishment of averaged equations of laser heating 
of plasma taking into account the infieunce of thermal and shock wave fronts and the 
recovered fusion energy [5, 6]. 

The analogous problem for concentric spherical waves is still more important for 
practice. For elastic waves, a number of solutions were obtained in [7, 8]. 

Some averaged descriptions for problems of laser heating and concentric compression 
of plasma were studied in Refs. [9 10, 11, 12]. In these averaged descriptions electron-type 
heat conduction [13] waves and hydrodynamic expansion waves [14, 15, 16] are considered 
separately. A joint analysis of plane thermal and shock waves was performed on the 
grounds of the averaged description in Refs. [5, 6]. 
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26 S. KALISKI AND E. WLODARCZYK 

To realize an analogous averaged description for a concentric spherical wave we must 
first construct, similarly to Refs. [2, 3, 4], solutions for a concentric spherical wave in 
perfect gas - that is, a concentric super and subsonic thermal wave. 

This problem will be dealt with in the present and the subsequent paper. The present 
paper will be devoted to the problem of concentric supersonic spherical thermal wave, 
for which we shall determine the pressure, velocity and density in function of r, t and the 
point at which the thermal wave is caught up by the shock wave (in the neighbourhood 
<>f the centre of the gas ball). 

In the subsequent paper, an analogous problem will be considered for a subsonic 
thermal wave. Similarly to Refs. [2, 3, 4], the two works, in addition to having direct appli
cations, provide a point of departure for the establishment of a theory of averaged laser 
compression of plasma taking into consideration the influence of thermal and shock 
wave fronts. 

In Sec. 2, we shall formulate the fundamental equations of the problem. In Sec. 3, we 
shall discuss a procedure for numerical solution of the equations, and Sec. 4 will be de
voted to the numerical analysis of the solution. 

In Sec. 5, a particular closed-form solution on the line t = r 0 jc will be obtained as 
a means of control of the numerical solution and a theoretical contribution to the methods 
for obtaining such solutions. In the concluding remarks we summarize the results. 

2. The fundamental equations 

Let us analyse the concentric motion of a perfect gas contained within a sphere the 
initial radius of which is r0 • In this body of gas a thermal wave front moves concentrically at 

FIG. 1. 

a constant supersonic speed c, the intensity T0 being also constant (Fig. 1). This gas ball 
is located in vacuum. 

We shall confine ourselves to the analysis of the parameters of state of the gas connected 
with the incident thermal wave and the action of the free surface of the gas. Problems of 
reflection of wave fronts from the centre will not be dealt with, since they require con-
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sideration of the problem of catching up of the thermal wave by the shock wave which 
takes place close to the centre. 

This problem will be dealt with in a separate paper devoted to the problem of subsonic 
velocity of a thermal wave. Our analysis will be made in Lagrangian coordinates r, t. 

The problem referred to is formulated in an unambiguous manner by the equations 

(2.1) / r+u)
2 

(!oV,, = -\--,- P,,, 

(2.2) 1 +u = (-'-)

2 

~' '' r+u (! 

(2.3) p = RT0 (! = ea* 2
, a* 2 = RT0 , 

from which we find, after some manipulations, the following quasi-linear equation 

(2.4) 
a* 2 *2 u-ru,, _ 

u,-(-1--)2-u,,+2a ( )(l ) -0. ' +u,, ' r r+u +u,, 

In the set of coordinates assumed, the local velocity of perturbation is 

(2.5) a(u) = -~~- = (~+u)2 _ _L__. 
.r 1 +u,, r eoa* 

The Eq. (2.4) can be replaced by the equivalent set of equations along the characteris-
tics 

(2.6) 
dp V 

dv = -a*--2a*--dt 
p r+u 

for dr = a(u,,) dt and 

(2.7) 
dp V 

dv = a*-+2a*--dt 
p r+u 

for dr = -a(u,,)dt. 
The relations (2.6) and (2. 7) take, on integrating, the finite form 

(2.8) 

v = -a*lnp-2a*J-v-dt for dr = adt, 
r+u 

v = a*lnp+2a*J-v-dt for dr = -adt. 
r+u 

To complete the set of Eqs. (2.8) use must be made of the relations of kinematic and 
dynamic continuity at the thermal wave front 

(2.9) 

where c is the velocity of the thermal wave front. This completes the formulation of the 
problem. 
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28 S. KALISKI AND E. WLODARCZYK 

3. Numerical solution of the equations 

The following dimensionless quantities will be introduced in the interests of simplicity: 

(3.1) 

r 
R=-, 

ro 
a*t 

T=-, 
ro 

u 
U= -- , 

'o 
V=~ a*, 

p 
p = eoa*2 ' 

a 
A=*, a 

c 
C=*=n. a 

FIG. 2. 

The solution will be found by means of the method of characteristics [17]. The characteristic 
pattern is as shown in Fig. 2. The recurrence equations for particular values of the para
meters of the problem will, in particular regions, take the form 

Region I 

(3.2) 
1 

R1c,1 = -i[Rk,l+1 +RA-1,1 +Ak,l+t (T1c,1- Tk,l+d -A1c-1,1(Tk,l- Tk-1,,)), 

V1c,1 = ~ {vk,l+1 + V~c-t,l + 1nPk,l+1 -lnP~c-t,r+ 2[(R:u) (T~c,r- Tk-t,r) 
k-l.l 
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[3.2] 
cont. 

Pkt = exp{{[Vk,t+t-Vk-t.t-lnPk,t-t +lnPk-t,,]-[(R:u) . (Tk,t-Tk-t,t) 
k-1•. 

+ (R :u ),,1+, (T,,.- Tt.l+tl ]l• 

The initial values of the parameters will be found from the thermal wave front. In agree
ment with [2] we have, bearing in mind (3.1): 

Cl ( / --4-) (!c 
pc = -2 I -l' 1 - -Cl- = e~ ' 

(3.3) 

Vc =- ~ = c(-;;-t), Uc = 0. 

By applying the indicia! notation in agreement with the scheme of Fig. 2, we have 

P, .• = ~~(~- v~~-;:). 
(3.4) Pk,k 

Vu= --c· Uk,1c=O, Ak,k = Pk,k 

1-Rk,k 
rk,k = --c--, Ru = 1- (k-1)h, 

where h is the computation step. 
Region 11 
In this region, the gas is expanded. A set of characteristic lines pass through the point 

1.1 (which means that the solution is not unique). In order to make the problem unique, 
we assume initial values of the parameters A 1 ·' = P 1 •1• where the index I denotes successive 
natural numbers. 

Within Region II the computation is carried out according to the scheme (3.2) except 
for the points 2,1, for which we have 

I 
Rl,, = 2[Rl.t+t +R.,,+Al,l+t(Tl.t-Tl,t+t)-At,,(Tl,,-T •. ,)], 

v2 ,1 = v2.'+' -2(Rfu },,+, (T2 .• - T2.•+•>· P2 ,,=P, .•• 

(3.5) 

vl,, + vl.l+I 
Ul.t = Ul,l+t---

2
- - (Tl,,-Tl,t+t), 

A routine was prepared for the above equations for an EMC and the computation was 
carried out. In agreement with Ref. [17] the second approximation was used, giving accu
racy of order O(h3

). The results are discussed in the next section. 
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4. Computation results and analysis 

As indicated in the foregoing section, numerical computation was carried out by means 
of an EMC. The results and the data are represented in Figs. 3, 4, 5 and 6. 

-V 
r-a3 

r-az 
T-Q18 

FIG. 3. 

FIG. 4. 
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32 S. KALISKI AND E. WLODARCZYK 

Figures 3 and 4 show the variation of the dimensionless quantities v and e(P f'.J e) in 
given sections t = const of the phase plane. Figures 5 and 6 show analogous diagrams 
for r = const and various n. 

In addition to the numerical results (which are verified additionally in Sec. 5) we can 
draw from these figures the following conclusions. 

1. The values of e and v at the thermal wave front remain constant similarly to the 
-case of the plane wave [2]. 

2. Directly behind the thermal wave front we have isothermal compression of the gas 
the rate of which increases as the wave front approaches the centre. 

3. When the thermal wave front approaches the centre, the density distribution ap
proaches a constant distribution along r except the zone of rarefaction which is separated 
by an unloading wave. The action of the free surface is in our case (in which vacuum is 
assumed outside the gas ball) very rapid. 

4. The velocity distribution shows similar features. 
5. When the centre is approached, the increase in density and velocity behind the ther

mal front is considerable (about 100%). 
6. If the shock wave front approaches and exceeds the speed of the thermal wave 

front (in numerical computations it is manifested by intersection between the characteris
tics and the thermal wave front), the variability of v and e becomes of a different type, 
singularities occurring in a sufficiently small neighbourhood of the centre. 

7. Zones of durable constant parameters occur in the neighbourhood of r0 /2. 
8. The above results lead to very promising conclusions concerning the averaging 

method in connection with the remark made in p. 3 and 7. 

5. A particular closed-form solution for t = r 0 / e 

It will be shown that an (analytic) closed-form solution can be found for the line t = 

= r0 /e. This will enable verification of the numerical analysis and, in addition, a method 
will be obtained for constructing such solutions. 

We sha11 start out from the equations of the problem expressed in Eulerian coordinates 

(5.1) 

. ' ' 2 0 e+ev+ev +-ev = ' r 

e(v+vv')+Ae' = o, 
where p = Ae, A = RT0 = a* 2

, the dot and the prime denoting differentiation with 
respect to time and r, respectively. 

In the neighbourhood of the point et ~ r0 , the coefficient 2/r in the Eqs. (5.1) can be 
replaced by 

(5.2) 
2 2 
--~ ----
r r+et-r0 

Then, a solution of the set of equations ( 5.1) may be sought in the form 

(5.3) {! = (!(et+r-ro) = (!(Z), V = V(ct+r-ro) = V(z). 
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Our equations become 

(5.4) 

. 2 
(c+v)(Ine)+v+-v = 0, 

z 

(c+v)v+A(hie) = o, 

33 

the dot denoting now differentiation with respect to the argument. On eliminating l~e 
from (5.4}, we find: 

(5.5) 
dv dz 
-[(c+v}2 -A) = 2A-
v z 

or, on integrating and determining the integration constant from the condition 

(5.6) 

the equation 

(5.7) 

where 

(5.8) 

v = v0 for z -... e, 

a* 2 
( c2 

) 2c u2 -1 a* 2 z - --1 lnu+-(u-1}+---2-ln- = 0 
v5 a* 2 v0 2 v5 e ' 

V 
u=-. 

Vo 

From (5.4) and the condition of e = e1 for u = 1, we find e: 

(5.9) 

The condition (5.6) expresses the fact that the shock wave catches up with the thermal 
wave before reaching the centre; therefore it has been written for the close neighbourhood 
of the centre. In this sense, the relation (5.2) is approximate. Thus, by analogy to the 
similarity theory [15] our solution preserves its sense for r or order e, that is, for 

(5.10) r ~ 2e. 

Let us denote 

(5.11) c = na*. 

Then, on the basis of the analogous solution for the thermal wave front (Ref. [2]), we 
have 

(5.12) Vo = !!__ [t --. / 1 - 4 ] . 
a* 2 V n2 

In this connection, the expression for e takes the form 

(5.13) 

n2. ( v'-4 }2.[ 2-u2 2(u-1) J - 1- 1-- --+---
4 n2. 2 -v-4-

1- 1--e = e,e n2. ' 
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34 S. KALISKI AND E. WLODARCZYK 

and we obtain the following equation for u: 

(5.14) lnu+ -~[1--. I I-
4 

]<u-1)+ u
2

-I ~ (1- .. /~- 4 
)

2 

n2 -1 Jl n2 8 n2
- 1 V n2 

2 z 
---In--= 0. 

n2 -I c 

By finding u from (5.14), we obtain e from (5.13) and hence p. This solution enables veri
fication of the numerical solution, and indicates a method which is of use in problems of 
spherical and cylindrical waves. 

Let us verify the solutions. We assume 

(5.15) n = 3. 

Then we can find for c = r 0 /IO a solution according to (5.10) for x = rfr0 ~ 0.2. 
The Eq. (5.14) now takes the form 

u2 -I 1 
(5.16) lnu+0.287(u-1)+ 109 = 4 1n2.0. 

Hence u = 1.14, which accurately coincides {after changing the variable u into V) with 
the result expressed in Fig. 3. For x = 0.1 we have u = I, in agreement with the initial 
condition (5.6). For e = r0 /5 (which means a rough approximation, e being considerable) 
and x = 0.5 (more strictly the boundary lies at 0.4). We find u = 1.18 instead of the 
value of 1.16 obtained previously by the numerical solution (conversely e = r0 f4; x = 0.5 
or e = r0 /5; x = 0.4. u = 1.145). It is seen that the difference between the present solution 
and the numerical solution above is insignificant. 

If we plot v and e in function of x, they will be of the same type as the diagrams in 
Figs. 3 to 6. 

6. Final remarks 

Summing up the results of the present paper, the problem may be considered to have 
been solved numerically. A fragment of it has been solved in an analytic manner, which 
enables certain conclusions of a qualitative nature to be drawn on the type of the distri
bution of above all, e and v, and also the expansion of gas away from the surface and 
the point at which the thermal wave caught up by the shock wave (close to the centre). 
It can also be easily shown that in limiting cases (omitted in the present paper) our 
solutions become the corresponding solutions for the plane wave [2]. They have definite 
properties, the same as the solution for the linear elastic problem. 

In addition to the direct technical application, the solutions obtained will (similarly 
to the results of Refs. [2, 3, 4] for the plane wave) constitute a point of departure for the 
construction of averaged equations of concentric laser heating and compression of plasma, 
taking into consideration the influence of thermal and shock wave fronts (Refs. [5, 6] for 
the plane problem). 

To this end, it is necessary to obtain analogous solutions for subsonic concentric 
thermal waves which, by the different method of solution will be dealt with in a separate 
publication in view. 
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