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Large macro-homogeneous strain in a random micro-nonhomogeneous
elastic space

P. WILDE (GDANSK)

ApDITIONAL displacements produced by the micro-nonhomogeneity are assumed to be small.
The metric tensor matrices and Christoffel symbols of the convective coordinate system are
obtained. Higher order terms are disregarded due to the assumption that Grad « is an extremely
small magnitude. The problem considered is stochastically non-linear and may be solved by
means of the perturbation method. The solution is expressed in terms of the Green tensor of
linear elasticity. The correlation tensor for additional displacement is obtained as also the
expression for the expected value of stress,

W pracy przyjeto, ze dodatkowe przemieszczenia wywolane mikroniejednorodnoscia sa male.
Otrzymano macierze tensor6w metrycznych i symbole Christoffela konwekcyjnego ukladu
wsp6lrzednych. Przyjmujac, 2e Grad u jest wielkoécia bardzo mala, pominieto czlony wyiszego
rzedu., Omawiane zagadnienie jest stochastycznie nieliniowe i rozwiazano je metoda malego
parametru, Rozwigzanie moze byé przedstawione za pomocg tensora Greena liniowej teorii
sprezystoéei. Otrzymano tensor korelacji dla dodatkowego przemieszczenia oraz wyrazenie na
wartoé¢ oczekiwana naprezenia.

B pafore npmHATO, YTO MOMOJHHTENLHBIE NEPEMEINEHHsA, BhISBAHHBIE MHKPOHEOJHODOIHO-
CTBIO, Maibl. IToyueHbI MaTpHI(l METPHUECKHX TeH30poB M cumBonkl Kprcroddens comyr-
crByIOwIel cHCcTeMbl KoopauHar. ITpuaumasn, uro Grad  ABNAETCA BEMUHMHON OUEHb MANOH,
orGpoleHs! WieHb! BeIciuero mopsafaka. Obcyxmaemasa npobGnema CToXacTHYeCKHM HeJIHHeHHA
H pelleHa METONOM Manoro mapamerpa. Peirenue moxier GBITB NpE[CTaBIEHO NMpPH IMOMOLIH
TeH3opa ['puHa yuHelHOH Teopun ynpyroctd. Ilomyuens! TeH30p KOppPEIALMA IS JOTOHE~
TEJILHOTO MEpEMEIICHHA H BRIDHKEHHE [UIA OYKHIAEMOr0 3HAUECHHA HANPKEHHA.

1. Geometrical preliminaries

THE PROBLEM of stresses in micro-nonhomogeneous elastic bodies within the linear theory
of elasticity was considered in the papers [1, 2]. In this paper is considered the problem
arising when the macro-strain is large but the additional displacements due to the random
nonhomogeneity are infinitesimal.

In the undeformed state, the positions of the points are described by the Cartesian
coordinate system x . In the deformed state, an auxillary Cartesian coordinate system is
taken related to the Cartesian coordinate system in the unstrained state by the following
equation:

(1.1) Yi=dixl, x*=H.T"
where the matrix of transformation A with the components &'; is a nonsingular set of
numbers and b7, are components of its inverse. Let us assume that for a homogeneous
body the Egs. (1.1) describe the deformation of the body.

The Cartesian coordinate system in the strained micro-nonhomogeneous body is

related to the auxiliary coordinate system ¥, by the equations:

(1.2) Z'=Y'+ed(Y?, Y2, Y?),



56 P. WILDE

where #'(Y?, Y2, ¥3) are components of random additional displacements due to the non-
homogeneity and ¢ is a nonrandom parameter. This description does not so far introduce
any approximations, but it is suitable only in the case in which the additional displacements
are small, and the nonhomogeneities are small and are at least almost statistically homo-

geneous in space.
The position vector in the deformed state is

(1.3) R = Z'E;,

where E! are Cartesian base vectors. The Cartesian components are related by the Egs. (1.2)
and (1.1) to the Cartesian components x' in the undeformed state. Let us consider a con-
vected coordinate system 6 which in the undeformed state corresponds to the Cartesian
coordinate system x'. The base vectors of the convected coordinate system are

éR ouy
(1.4) G, = F3 [6,- +e—yr :| I E;.
The covariant metric tensor of the convected coordinate system is
duy du out  ou’
(1'5) G = a.lm[alr+s( ayr 0 3}:’1 ) +é? ayv aye (5“- aly.
Let us introduce the notation

_ 9 triem

(1.6) Gradu = 7P E'ER1,

In this notation and denoting by A the matrix with coefficients &'; , the expression for
the matrix tensor (1.5) assumes the following matrix form:
(1.7) G = AT[I+2¢(Gradu)’ + *(Gradu)"(Gradu)] A.

Now, let us assume the gradient of the additional displacement field to be so small that
its squares may be disregarded. Within this assumption the expression for the metric
tensor of the convected coordinate system reduces to the following linear form in the
displacement gradient:

(1.8) G = AT[I+2¢(Gradu)’]A.

The matrix of the contravariant components of the metric tensor of the convected
system is the inverse matrix. Thus, considering linear terms in ¢ only:

(1.9) G! = A~![I—2¢(Gradu)]S(A™)T.

The cobase vectors of the convected coordinate system, taking into account the linear
terms in &, are

(1.10) G" = [5;_5 Oy ] mE

aY!

The Christoffel symbols of the convected coordinate system are:

2

o%u s
(1.11) Pu-—-G Gl'j_ ebP—— ay"a}" fa.,.
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2. The state of stress

The invariants of strain are:

I1 = g"°G,; = tr{AT[I+2¢(Gradu)s]A},
(2.1) Iy = Glg = det{AT[I+2¢(Gradu)S]A},

It = 8,sG"I, = Iy tr{A~" [I-2¢(Gradu)S|(A~1)T}..
Following the methods used in the study of superposition of infinitesimal strains on finite
deformation [3], the invariants may be expanded in series of powers in &. Retaining linear
terms only, it follows

Iy = trATA +&lf,
2.2) In = (detAYtr[(A~)(A~)T]+ ¢l
I = (detA)? + el yy,

where

I} = 2tr[AT(Gradu)* A],
2.3) Iy = 2(det A)*{tr[(A~")(A~")"]tr(Grad u)® + tr[A~* (Gradw)*(A~!)T]},
Ity = 2(det A)*tr(Gradu)s.
The increments of the strain invariants /g are linear functions in the symmetrical parts
of the additional displacement gradients.
For a homogeneous isotropic elastic body in finite deformation, the stresses in the
convected coordinate system are:

(2.4) ) = &g +¥BY +pGY,
where
2 oW 2 oW
“Vim k' T i o
B = Ig'—g"g"G,,

— oW
p=2/I mg

and
W = W(l, Iy, Iy).
For homogeneous strain, the functions @, ¥ and p are constant. When there are

additional displacements, the function W is a function of the invariants I and their in-
crements Ig. Thus it follows that up to linear terms in &:

o
(2.5) D= @(II, In, Im’)‘l"sﬁ; (Ill fn, IIH)IE'

The same is true for ¥ and p.
Let us assume that the material functions are random fields in space. The functions
may be represented by the following equations:

(2.6) D =(P>+4D, ¥ = V)+4¥, p={p)+4p,

where (D), (¥>, {p) are the expected values, and 4D, AV, Ap are the fluctuations. The
expected values of the fluctuations are zero. In an analogous way, the derivatives with
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respect to the strain invariants may be represented as sums of the expected values and
fluctuations. For example,
2.7 Px ={Pr>+4P
oD
aly ’
The tensors B'Y and G may be expanded as functions of &. It follows in matrix no-
tation, using previous results, that

2.8) B=B+eB, G'=G'+eG)",
0 0

where @y =

where

B = [[I-ATA, B’ = I[I-2AT(Gradu)’A,
0

G =A"1A"Y, (G)!'= —2A""(Gradu)*(A™)".
]

When all the notations are used, the stress tensor in the convected coordinate system
when only linear terms in ¢ are considered, is given by the following relation:

29) 7 =71+ADPI+A¥YB+ApG~' +e[{yp>B +{p)(G") ' +A¥B' +4p(G")~]
) 0 0

+ e[ DO Ld +<{¥ IxB +{p, 0 IxG™"] +£[ﬁ¢,xfil+45"x,fi? +Ap.x1i(o;"]-
0 0

The tensor components are given in the convected coordinate system. Thus, in absolute
notation the stress tensor is defined by

(2 10) T = TUG; (4] Gj .

For physical discussion, the stress components in the convected coordinate system
have no direct meaning. It is therefore useful to substitute the base vectors expressed
in terms of Cartesian base vectors E; (1.4) in the Eq. (2.10). Finally, the matrix of the
physical components is expressed by the following equation:

(2.11) T = AtAT +2¢ATAT(Gradu)’,
where J is the matrix of the physical components.
When the Egs. (2.3) are substituted into (2.9) and then into (2.11), the final result is

(2.12) TY = TULATY + e ™ Huy  + edc™uy,,
0 0
where .?' i are the physical components in large deformation of a homogeneous body,

AT Y depends on the fluctuation and is a random tensor field, {c/*'> are the expected
values of material tensors, A¢'* is a random tensor field depending upon the fluctuations.
For a neo-Hookean body, the function W is expressed by

(2.13) W = c(I;-3),
and the body is incompressible which means that

(2.14) detA =1, tr(Gradu)® = 0.
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In this case, the expressions in the Eq. (2.12) assume the following simple form:

.4.?: ¢ (T —poD)+ Apl,
0

%
<cljkl> = % [(9’1& _poau) 6” + (g"il —Po ail) 6&} + (5‘}! —Po 6]&) 6!1
0 0 0

+ (ylj —Po élj) ts“] »
0

(2.15) Atk — f"

__E__>_ <cijkl> .

3. Differential equations of the problem

The equilibrium equations in the convected coordinate system 6 are

(3.1) ), =0.

When the expressions for Christoffel symbols (1.11) are used, it follows that

3.2) ge: ———aX, e’ L a'a’ ;v + eb?. a.a 1™ =0
ay* 4 3Y oy’ . am}" Tl q '

Let us multiply both sides of the Egs. (3.2) by a'; . Simple manipulations yield

azuj J az
7y Tt e Gyt

(3.3) (a!y7Hd*)) + & da ™', = 0.

aY*
From the Eq. (2.11) when only linear terms in & are considered, it follows that
(3.4) ATA = 7 [I-2¢(Gradu)].

Thus the equations of equilibrium, when only linear terms in & are taken, in terms
of the physical components, 7"/ become
(3.9 [T%— e (ug o +ttr, )k +€D"P*up g = 0,

where

himt [f’*é"’+ —%—F"’é“"-’r —;-F”‘&“’].

Expressing the stress components by the displacements by means of the Eq. (2.12)
yields the differential displacement equations. The problem is especially simple for the
neo-Hookean solid. In this case, the expressions in the square brackets in the Eq. (3.5)
in matrix notation assume the following form:

(3.6) J —2¢7 (Gradu)® = 9*+ % € (T —pol) +Ap1—2po(Gradu).

O]
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Thus, the differential equations of the problem are

dex

o (F"‘—poﬁ"‘) =0,

Ac
(3?) [l +'<—'$:lﬂip k“p sk +Ap 1+ —
where
alpsk (g'st_p 6&*) étp el (‘g'ls —Po 613) apk (y'lk - Do atk) aps
L]

This equation can be expressed in terms of the large deformations, when it is considered
from the first of the Eqs. (2.15) that

(3.8) T —pol = 2(c)AAT.
0

In the Egs. (3.7), there are three unknown components of the additional displacement
vector u and the unknown scalar function 4p. These equations must be supplemented by
the condition of incompressibility (2.14), which yields the fourth equation

(3.9) Uy, = 0.

In view of the incompressibility condition (3.9), the Eq. (3.7) simplifies to the following
form:
(3.10) |:1 o —_](9-“ —Po FFuy +dp, = —&(y"‘ —Po 5“).
) ’ e) "o
By means of the condition (3.9), the additional displacements can be eliminated from
the set of equations (3.10) to obtain a single equation for the unknown function Ap. After
differentiating and adding, the author obtained

G.11) A _(g-rx_p oy Acu Acu

Thus the unknown function Ap can be found from the Poisson Eq. (3.11), and when the
solution is substituted into the Eq. (3.10), we obtain a set of three differential equations
for the unknown additional displacements.

For further discussion, it will be useful to substitute

(3.12) dp = q+po '2‘>_
When this notation is used, the Eqgs. (3.10) and (3.11) become
(.13 (1 +_) (T**~po 6N ur g+, = — ey T,
{e> ) o
A¢e
= —ghZlu
q.u H —(c)

The equations are linear in the random additional displacements and random function ¢.
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4. Solution of the problem

Particularly simple is the solution in the case in which we consider uniform pressure
in the body. In this case, the stresses in the homogeneous body are

4.1) T = [2{c) +po] 8"
0
and the Egs. (3.10), (3.9) are satisfied if we take u, = 0 and

. .. 8 i
(4.2) Ap ( > [2¢cd]0Y.

When we substitute into the Eqs. (2.15) and (2.12), it emerges that in this case the inho-
mogeneities have no influence upon the stresses.

So far it has been assumed that the additional displacements are small, but nothing
has been said about the fluctuations of the material constants. Let us assume that the
increments in material functions are of the order ¢ and solve the problem by the pertur-
bation method. A direct solution is difficult because, although the equations are geometric-
ally linear, they are statistically non-linear, since they include a product of the random
field dc and the random displacement field. Let us expand the unknown displacements
and the function g in terms of the small parameter &;

- n = Vg
(4.3) u—;__;;sf, q—ﬁeq,.

After substitution into the Egs. (3.10) and (3.9), the author obtained for the first approx-
imation

(4.4 (T**—po MYy sk +q, = — f’_f'_k_g-u"
0 0 0 {e> o
Ugs = 0,
0
and for the subsequent steps
sk sk Ac sk K
(4.5) (T =po 0 ug+q; = — < (T =po )y,
0 n n <C> 0 n=1
ugs = 0.
0

According to the Egs. (4.4) and (4.5), the problem reduces to the solution of successive
equations for an anisotropic elastic incompressible body within the linear theory.

For an infinite body, the equations may easily be solved by means of the Green's
tensors for the anisotropic body. It follows for the first approximation that

(V") = - f Kn (V1= Y))- “lc" (Y)T™dV,
(4.6)

By 5 _yiy s yngn
(=~ [ rp-ng ey



62 P. WILDE

When we apply a Green identity, the Egs. (4.6) can be transformed to

o= (A yiyn iy
wir= [ o EObE-Thay
0 de
Ny | — i_yi
= [ G g

where

; d
i_ydy = g i_yi
hp (Y= YY) = T s K (Y = 19)),

2

0

h(¥i-Yi)y = 7% K (Y- 1),
21 0 Y 21

d
2
When we restrict our discussion to the first approximation, it follows that the expected
value of the additional displacements and the function g are zero because we have assumed
that the expected value of Ac is zero.
To find the correlation tensors between the additional displacement vector and the
function describing the inhomogeneities, let us multiply the first of the expressions (4.7)
by Ac(};’ 7) on both sides and take the expected values:

(4.8) R, = u (Y9 de(YH)) = (c)~! f R (Y, Y)h(YI=Y))av,
e 01 3 7 dede 3 2 2 1 2

where R is the correlation function for the function 4c, and dV = dY'dY2dY3. When
de,dc 2 2 2 2

the material functions are statistically homogeneous, their correlation function depends
on the difference of coordinates of points:

(4.9) R = R (Yi-Y)).
de,dc dc,dc 3 2

In this case, the Eq. (4.8) reduces to the following form:

(4.10) R, (Yi=Yi) =<(c>™' [ R (YI=Yi-y)h,(y)dV,
n,d:' 3 1 p dede 3 1

where

w=Yi-Yl  dV = dy'dy*dy’.
1

2

Thus, the correlation tensor function depends upon the difference of coordinates only.
The correlation tensors between the displacement vectors at point 1 and 3 by definition
are

(4.11) R, (Y4, YI) = Cupu, .
wu 3 I 13
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When we substitute displacements expressed by the solutions (4.7), it follows that:
4.12) P,.(Y-" Y’) = ()2 fJ R (Y-’ YJ)h (YL YJ)h,(YJ-Y')dVdV

where

dv = dy'dy*dy?, dv =dy'dy?*dy3.
2 2 @7 4 & 4 &

When the field Ac is statistically homogeneous:

4.13) Ryr(¥I~ 1Y) = (e~ f f R (YI=YI 4y =y (P (y)dVa,

e, dc 3

where

yi=Yi_Yyi =YY
2 1 4 4 3

and
dV = dy'dy*dy®, dV = dy'dy*dy?.
2 2 2 2 4 4 4 4
Let us calculate the stresses due to the first approximation. According to the Eq. (2.12)
it follows

Ae
.14 i = ij ij ij
4149 T y+<c>3’f’ +ch
Ae
ki e N-C _pyi_yi
+<{c >‘I[l+ <c>( ]<c> (1) 1 kk(Y r)dgf.

For practical calculations, the expected value of the stress is of great importance. When
the expected value is taken in the Eq. (4.14), it follows that

(4.15) (THy = T4y f (> K (¥?,¥7)~ 2 h(Y?~Y?)aV.
0 5 dc,dc 21 3{ 2 3 2

Thus, even in the first approximation, the expected value of the stress depends upon the
distribution of nonhomogeneities in space, and therefore it is not described by the field
quantities at the point. If the random field of the material properties is statistically homo-
geneous, then the Eq. (4.15) reduces to

(4.16) (T = 9' e J’ ey~ 2K’(}"’)h;t PV

In this case, the expected stress field is constant.

It must be noted that in the integrals the Green’s functions decrease rapidly when
we move from the point at which we calculate the quantities, thus only the contributions
of the neighbourhoods of the points are of importance. In the calculations, the next steps
can be taken. Then, in general, the expected values of the additional displacements will
be different from zero.
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